xref: /openbmc/linux/arch/arm64/include/asm/kvm_host.h (revision 9b3ae173)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/percpu.h>
20 #include <linux/psci.h>
21 #include <asm/arch_gicv3.h>
22 #include <asm/barrier.h>
23 #include <asm/cpufeature.h>
24 #include <asm/cputype.h>
25 #include <asm/daifflags.h>
26 #include <asm/fpsimd.h>
27 #include <asm/kvm.h>
28 #include <asm/kvm_asm.h>
29 #include <asm/thread_info.h>
30 
31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
32 
33 #define KVM_USER_MEM_SLOTS 512
34 #define KVM_HALT_POLL_NS_DEFAULT 500000
35 
36 #include <kvm/arm_vgic.h>
37 #include <kvm/arm_arch_timer.h>
38 #include <kvm/arm_pmu.h>
39 
40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41 
42 #define KVM_VCPU_MAX_FEATURES 7
43 
44 #define KVM_REQ_SLEEP \
45 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
46 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
47 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
48 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
49 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
50 
51 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
52 				     KVM_DIRTY_LOG_INITIALLY_SET)
53 
54 /*
55  * Mode of operation configurable with kvm-arm.mode early param.
56  * See Documentation/admin-guide/kernel-parameters.txt for more information.
57  */
58 enum kvm_mode {
59 	KVM_MODE_DEFAULT,
60 	KVM_MODE_PROTECTED,
61 };
62 enum kvm_mode kvm_get_mode(void);
63 
64 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
65 
66 extern unsigned int kvm_sve_max_vl;
67 int kvm_arm_init_sve(void);
68 
69 int __attribute_const__ kvm_target_cpu(void);
70 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
71 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
72 
73 struct kvm_vmid {
74 	/* The VMID generation used for the virt. memory system */
75 	u64    vmid_gen;
76 	u32    vmid;
77 };
78 
79 struct kvm_s2_mmu {
80 	struct kvm_vmid vmid;
81 
82 	/*
83 	 * stage2 entry level table
84 	 *
85 	 * Two kvm_s2_mmu structures in the same VM can point to the same
86 	 * pgd here.  This happens when running a guest using a
87 	 * translation regime that isn't affected by its own stage-2
88 	 * translation, such as a non-VHE hypervisor running at vEL2, or
89 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
90 	 * canonical stage-2 page tables.
91 	 */
92 	phys_addr_t	pgd_phys;
93 	struct kvm_pgtable *pgt;
94 
95 	/* The last vcpu id that ran on each physical CPU */
96 	int __percpu *last_vcpu_ran;
97 
98 	struct kvm *kvm;
99 };
100 
101 struct kvm_arch_memory_slot {
102 };
103 
104 struct kvm_arch {
105 	struct kvm_s2_mmu mmu;
106 
107 	/* VTCR_EL2 value for this VM */
108 	u64    vtcr;
109 
110 	/* The maximum number of vCPUs depends on the used GIC model */
111 	int max_vcpus;
112 
113 	/* Interrupt controller */
114 	struct vgic_dist	vgic;
115 
116 	/* Mandated version of PSCI */
117 	u32 psci_version;
118 
119 	/*
120 	 * If we encounter a data abort without valid instruction syndrome
121 	 * information, report this to user space.  User space can (and
122 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
123 	 * supported.
124 	 */
125 	bool return_nisv_io_abort_to_user;
126 
127 	/*
128 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
129 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
130 	 */
131 	unsigned long *pmu_filter;
132 	unsigned int pmuver;
133 
134 	u8 pfr0_csv2;
135 	u8 pfr0_csv3;
136 };
137 
138 struct kvm_vcpu_fault_info {
139 	u32 esr_el2;		/* Hyp Syndrom Register */
140 	u64 far_el2;		/* Hyp Fault Address Register */
141 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
142 	u64 disr_el1;		/* Deferred [SError] Status Register */
143 };
144 
145 enum vcpu_sysreg {
146 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
147 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
148 	CSSELR_EL1,	/* Cache Size Selection Register */
149 	SCTLR_EL1,	/* System Control Register */
150 	ACTLR_EL1,	/* Auxiliary Control Register */
151 	CPACR_EL1,	/* Coprocessor Access Control */
152 	ZCR_EL1,	/* SVE Control */
153 	TTBR0_EL1,	/* Translation Table Base Register 0 */
154 	TTBR1_EL1,	/* Translation Table Base Register 1 */
155 	TCR_EL1,	/* Translation Control Register */
156 	ESR_EL1,	/* Exception Syndrome Register */
157 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
158 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
159 	FAR_EL1,	/* Fault Address Register */
160 	MAIR_EL1,	/* Memory Attribute Indirection Register */
161 	VBAR_EL1,	/* Vector Base Address Register */
162 	CONTEXTIDR_EL1,	/* Context ID Register */
163 	TPIDR_EL0,	/* Thread ID, User R/W */
164 	TPIDRRO_EL0,	/* Thread ID, User R/O */
165 	TPIDR_EL1,	/* Thread ID, Privileged */
166 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
167 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
168 	PAR_EL1,	/* Physical Address Register */
169 	MDSCR_EL1,	/* Monitor Debug System Control Register */
170 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
171 	DISR_EL1,	/* Deferred Interrupt Status Register */
172 
173 	/* Performance Monitors Registers */
174 	PMCR_EL0,	/* Control Register */
175 	PMSELR_EL0,	/* Event Counter Selection Register */
176 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
177 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
178 	PMCCNTR_EL0,	/* Cycle Counter Register */
179 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
180 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
181 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
182 	PMCNTENSET_EL0,	/* Count Enable Set Register */
183 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
184 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
185 	PMSWINC_EL0,	/* Software Increment Register */
186 	PMUSERENR_EL0,	/* User Enable Register */
187 
188 	/* Pointer Authentication Registers in a strict increasing order. */
189 	APIAKEYLO_EL1,
190 	APIAKEYHI_EL1,
191 	APIBKEYLO_EL1,
192 	APIBKEYHI_EL1,
193 	APDAKEYLO_EL1,
194 	APDAKEYHI_EL1,
195 	APDBKEYLO_EL1,
196 	APDBKEYHI_EL1,
197 	APGAKEYLO_EL1,
198 	APGAKEYHI_EL1,
199 
200 	ELR_EL1,
201 	SP_EL1,
202 	SPSR_EL1,
203 
204 	CNTVOFF_EL2,
205 	CNTV_CVAL_EL0,
206 	CNTV_CTL_EL0,
207 	CNTP_CVAL_EL0,
208 	CNTP_CTL_EL0,
209 
210 	/* 32bit specific registers. Keep them at the end of the range */
211 	DACR32_EL2,	/* Domain Access Control Register */
212 	IFSR32_EL2,	/* Instruction Fault Status Register */
213 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
214 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
215 
216 	NR_SYS_REGS	/* Nothing after this line! */
217 };
218 
219 struct kvm_cpu_context {
220 	struct user_pt_regs regs;	/* sp = sp_el0 */
221 
222 	u64	spsr_abt;
223 	u64	spsr_und;
224 	u64	spsr_irq;
225 	u64	spsr_fiq;
226 
227 	struct user_fpsimd_state fp_regs;
228 
229 	u64 sys_regs[NR_SYS_REGS];
230 
231 	struct kvm_vcpu *__hyp_running_vcpu;
232 };
233 
234 struct kvm_pmu_events {
235 	u32 events_host;
236 	u32 events_guest;
237 };
238 
239 struct kvm_host_data {
240 	struct kvm_cpu_context host_ctxt;
241 	struct kvm_pmu_events pmu_events;
242 };
243 
244 struct kvm_host_psci_config {
245 	/* PSCI version used by host. */
246 	u32 version;
247 
248 	/* Function IDs used by host if version is v0.1. */
249 	struct psci_0_1_function_ids function_ids_0_1;
250 
251 	bool psci_0_1_cpu_suspend_implemented;
252 	bool psci_0_1_cpu_on_implemented;
253 	bool psci_0_1_cpu_off_implemented;
254 	bool psci_0_1_migrate_implemented;
255 };
256 
257 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
258 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
259 
260 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
261 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
262 
263 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
264 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
265 
266 struct vcpu_reset_state {
267 	unsigned long	pc;
268 	unsigned long	r0;
269 	bool		be;
270 	bool		reset;
271 };
272 
273 struct kvm_vcpu_arch {
274 	struct kvm_cpu_context ctxt;
275 	void *sve_state;
276 	unsigned int sve_max_vl;
277 
278 	/* Stage 2 paging state used by the hardware on next switch */
279 	struct kvm_s2_mmu *hw_mmu;
280 
281 	/* HYP configuration */
282 	u64 hcr_el2;
283 	u32 mdcr_el2;
284 
285 	/* Exception Information */
286 	struct kvm_vcpu_fault_info fault;
287 
288 	/* State of various workarounds, see kvm_asm.h for bit assignment */
289 	u64 workaround_flags;
290 
291 	/* Miscellaneous vcpu state flags */
292 	u64 flags;
293 
294 	/*
295 	 * We maintain more than a single set of debug registers to support
296 	 * debugging the guest from the host and to maintain separate host and
297 	 * guest state during world switches. vcpu_debug_state are the debug
298 	 * registers of the vcpu as the guest sees them.  host_debug_state are
299 	 * the host registers which are saved and restored during
300 	 * world switches. external_debug_state contains the debug
301 	 * values we want to debug the guest. This is set via the
302 	 * KVM_SET_GUEST_DEBUG ioctl.
303 	 *
304 	 * debug_ptr points to the set of debug registers that should be loaded
305 	 * onto the hardware when running the guest.
306 	 */
307 	struct kvm_guest_debug_arch *debug_ptr;
308 	struct kvm_guest_debug_arch vcpu_debug_state;
309 	struct kvm_guest_debug_arch external_debug_state;
310 
311 	struct thread_info *host_thread_info;	/* hyp VA */
312 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
313 
314 	struct {
315 		/* {Break,watch}point registers */
316 		struct kvm_guest_debug_arch regs;
317 		/* Statistical profiling extension */
318 		u64 pmscr_el1;
319 	} host_debug_state;
320 
321 	/* VGIC state */
322 	struct vgic_cpu vgic_cpu;
323 	struct arch_timer_cpu timer_cpu;
324 	struct kvm_pmu pmu;
325 
326 	/*
327 	 * Anything that is not used directly from assembly code goes
328 	 * here.
329 	 */
330 
331 	/*
332 	 * Guest registers we preserve during guest debugging.
333 	 *
334 	 * These shadow registers are updated by the kvm_handle_sys_reg
335 	 * trap handler if the guest accesses or updates them while we
336 	 * are using guest debug.
337 	 */
338 	struct {
339 		u32	mdscr_el1;
340 	} guest_debug_preserved;
341 
342 	/* vcpu power-off state */
343 	bool power_off;
344 
345 	/* Don't run the guest (internal implementation need) */
346 	bool pause;
347 
348 	/* Cache some mmu pages needed inside spinlock regions */
349 	struct kvm_mmu_memory_cache mmu_page_cache;
350 
351 	/* Target CPU and feature flags */
352 	int target;
353 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
354 
355 	/* Detect first run of a vcpu */
356 	bool has_run_once;
357 
358 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
359 	u64 vsesr_el2;
360 
361 	/* Additional reset state */
362 	struct vcpu_reset_state	reset_state;
363 
364 	/* True when deferrable sysregs are loaded on the physical CPU,
365 	 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
366 	bool sysregs_loaded_on_cpu;
367 
368 	/* Guest PV state */
369 	struct {
370 		u64 last_steal;
371 		gpa_t base;
372 	} steal;
373 };
374 
375 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
376 #define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
377 				      sve_ffr_offset((vcpu)->arch.sve_max_vl)))
378 
379 #define vcpu_sve_state_size(vcpu) ({					\
380 	size_t __size_ret;						\
381 	unsigned int __vcpu_vq;						\
382 									\
383 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
384 		__size_ret = 0;						\
385 	} else {							\
386 		__vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl);	\
387 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
388 	}								\
389 									\
390 	__size_ret;							\
391 })
392 
393 /* vcpu_arch flags field values: */
394 #define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
395 #define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
396 #define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
397 #define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
398 #define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
399 #define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
400 #define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
401 #define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
402 #define KVM_ARM64_PENDING_EXCEPTION	(1 << 8) /* Exception pending */
403 #define KVM_ARM64_EXCEPT_MASK		(7 << 9) /* Target EL/MODE */
404 
405 /*
406  * When KVM_ARM64_PENDING_EXCEPTION is set, KVM_ARM64_EXCEPT_MASK can
407  * take the following values:
408  *
409  * For AArch32 EL1:
410  */
411 #define KVM_ARM64_EXCEPT_AA32_UND	(0 << 9)
412 #define KVM_ARM64_EXCEPT_AA32_IABT	(1 << 9)
413 #define KVM_ARM64_EXCEPT_AA32_DABT	(2 << 9)
414 /* For AArch64: */
415 #define KVM_ARM64_EXCEPT_AA64_ELx_SYNC	(0 << 9)
416 #define KVM_ARM64_EXCEPT_AA64_ELx_IRQ	(1 << 9)
417 #define KVM_ARM64_EXCEPT_AA64_ELx_FIQ	(2 << 9)
418 #define KVM_ARM64_EXCEPT_AA64_ELx_SERR	(3 << 9)
419 #define KVM_ARM64_EXCEPT_AA64_EL1	(0 << 11)
420 #define KVM_ARM64_EXCEPT_AA64_EL2	(1 << 11)
421 
422 /*
423  * Overlaps with KVM_ARM64_EXCEPT_MASK on purpose so that it can't be
424  * set together with an exception...
425  */
426 #define KVM_ARM64_INCREMENT_PC		(1 << 9) /* Increment PC */
427 
428 #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
429 			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
430 
431 #ifdef CONFIG_ARM64_PTR_AUTH
432 #define vcpu_has_ptrauth(vcpu)						\
433 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
434 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
435 	 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)
436 #else
437 #define vcpu_has_ptrauth(vcpu)		false
438 #endif
439 
440 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
441 
442 /*
443  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
444  * memory backed version of a register, and not the one most recently
445  * accessed by a running VCPU.  For example, for userspace access or
446  * for system registers that are never context switched, but only
447  * emulated.
448  */
449 #define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])
450 
451 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
452 
453 #define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
454 
455 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
456 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
457 
458 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
459 {
460 	/*
461 	 * *** VHE ONLY ***
462 	 *
463 	 * System registers listed in the switch are not saved on every
464 	 * exit from the guest but are only saved on vcpu_put.
465 	 *
466 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
467 	 * should never be listed below, because the guest cannot modify its
468 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
469 	 * thread when emulating cross-VCPU communication.
470 	 */
471 	if (!has_vhe())
472 		return false;
473 
474 	switch (reg) {
475 	case CSSELR_EL1:	*val = read_sysreg_s(SYS_CSSELR_EL1);	break;
476 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
477 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
478 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
479 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
480 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
481 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
482 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
483 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
484 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
485 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
486 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
487 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
488 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
489 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
490 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
491 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
492 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
493 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
494 	case PAR_EL1:		*val = read_sysreg_par();		break;
495 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
496 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
497 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
498 	default:		return false;
499 	}
500 
501 	return true;
502 }
503 
504 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
505 {
506 	/*
507 	 * *** VHE ONLY ***
508 	 *
509 	 * System registers listed in the switch are not restored on every
510 	 * entry to the guest but are only restored on vcpu_load.
511 	 *
512 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
513 	 * should never be listed below, because the MPIDR should only be set
514 	 * once, before running the VCPU, and never changed later.
515 	 */
516 	if (!has_vhe())
517 		return false;
518 
519 	switch (reg) {
520 	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	break;
521 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
522 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
523 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
524 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
525 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
526 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
527 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
528 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
529 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
530 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
531 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
532 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
533 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
534 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
535 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
536 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
537 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
538 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
539 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
540 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
541 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
542 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
543 	default:		return false;
544 	}
545 
546 	return true;
547 }
548 
549 struct kvm_vm_stat {
550 	ulong remote_tlb_flush;
551 };
552 
553 struct kvm_vcpu_stat {
554 	u64 halt_successful_poll;
555 	u64 halt_attempted_poll;
556 	u64 halt_poll_success_ns;
557 	u64 halt_poll_fail_ns;
558 	u64 halt_poll_invalid;
559 	u64 halt_wakeup;
560 	u64 hvc_exit_stat;
561 	u64 wfe_exit_stat;
562 	u64 wfi_exit_stat;
563 	u64 mmio_exit_user;
564 	u64 mmio_exit_kernel;
565 	u64 exits;
566 };
567 
568 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
569 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
570 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
571 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
572 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
573 
574 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
575 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
576 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
577 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
578 
579 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
580 			      struct kvm_vcpu_events *events);
581 
582 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
583 			      struct kvm_vcpu_events *events);
584 
585 #define KVM_ARCH_WANT_MMU_NOTIFIER
586 int kvm_unmap_hva_range(struct kvm *kvm,
587 			unsigned long start, unsigned long end, unsigned flags);
588 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
589 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
590 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
591 
592 void kvm_arm_halt_guest(struct kvm *kvm);
593 void kvm_arm_resume_guest(struct kvm *kvm);
594 
595 #define kvm_call_hyp_nvhe(f, ...)						\
596 	({								\
597 		struct arm_smccc_res res;				\
598 									\
599 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
600 				  ##__VA_ARGS__, &res);			\
601 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
602 									\
603 		res.a1;							\
604 	})
605 
606 /*
607  * The couple of isb() below are there to guarantee the same behaviour
608  * on VHE as on !VHE, where the eret to EL1 acts as a context
609  * synchronization event.
610  */
611 #define kvm_call_hyp(f, ...)						\
612 	do {								\
613 		if (has_vhe()) {					\
614 			f(__VA_ARGS__);					\
615 			isb();						\
616 		} else {						\
617 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
618 		}							\
619 	} while(0)
620 
621 #define kvm_call_hyp_ret(f, ...)					\
622 	({								\
623 		typeof(f(__VA_ARGS__)) ret;				\
624 									\
625 		if (has_vhe()) {					\
626 			ret = f(__VA_ARGS__);				\
627 			isb();						\
628 		} else {						\
629 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
630 		}							\
631 									\
632 		ret;							\
633 	})
634 
635 void force_vm_exit(const cpumask_t *mask);
636 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
637 
638 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
639 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
640 
641 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
642 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
643 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
644 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
645 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
646 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
647 
648 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
649 
650 void kvm_sys_reg_table_init(void);
651 
652 /* MMIO helpers */
653 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
654 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
655 
656 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
657 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
658 
659 int kvm_perf_init(void);
660 int kvm_perf_teardown(void);
661 
662 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
663 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
664 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
665 
666 bool kvm_arm_pvtime_supported(void);
667 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
668 			    struct kvm_device_attr *attr);
669 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
670 			    struct kvm_device_attr *attr);
671 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
672 			    struct kvm_device_attr *attr);
673 
674 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
675 {
676 	vcpu_arch->steal.base = GPA_INVALID;
677 }
678 
679 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
680 {
681 	return (vcpu_arch->steal.base != GPA_INVALID);
682 }
683 
684 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
685 
686 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
687 
688 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
689 
690 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
691 {
692 	/* The host's MPIDR is immutable, so let's set it up at boot time */
693 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
694 }
695 
696 static inline bool kvm_arch_requires_vhe(void)
697 {
698 	/*
699 	 * The Arm architecture specifies that implementation of SVE
700 	 * requires VHE also to be implemented.  The KVM code for arm64
701 	 * relies on this when SVE is present:
702 	 */
703 	if (system_supports_sve())
704 		return true;
705 
706 	return false;
707 }
708 
709 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
710 
711 static inline void kvm_arch_hardware_unsetup(void) {}
712 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
713 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
714 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
715 
716 void kvm_arm_init_debug(void);
717 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
718 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
719 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
720 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
721 			       struct kvm_device_attr *attr);
722 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
723 			       struct kvm_device_attr *attr);
724 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
725 			       struct kvm_device_attr *attr);
726 
727 /* Guest/host FPSIMD coordination helpers */
728 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
729 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
730 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
731 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
732 
733 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
734 {
735 	return (!has_vhe() && attr->exclude_host);
736 }
737 
738 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
739 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
740 {
741 	return kvm_arch_vcpu_run_map_fp(vcpu);
742 }
743 
744 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
745 void kvm_clr_pmu_events(u32 clr);
746 
747 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
748 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
749 #else
750 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
751 static inline void kvm_clr_pmu_events(u32 clr) {}
752 #endif
753 
754 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
755 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
756 
757 int kvm_set_ipa_limit(void);
758 
759 #define __KVM_HAVE_ARCH_VM_ALLOC
760 struct kvm *kvm_arch_alloc_vm(void);
761 void kvm_arch_free_vm(struct kvm *kvm);
762 
763 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
764 
765 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
766 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
767 
768 #define kvm_arm_vcpu_sve_finalized(vcpu) \
769 	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
770 
771 #define kvm_vcpu_has_pmu(vcpu)					\
772 	(test_bit(KVM_ARM_VCPU_PMU_V3, (vcpu)->arch.features))
773 
774 #endif /* __ARM64_KVM_HOST_H__ */
775