xref: /openbmc/linux/arch/arm64/include/asm/kvm_host.h (revision 9ad685db)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/percpu.h>
20 #include <linux/psci.h>
21 #include <asm/arch_gicv3.h>
22 #include <asm/barrier.h>
23 #include <asm/cpufeature.h>
24 #include <asm/cputype.h>
25 #include <asm/daifflags.h>
26 #include <asm/fpsimd.h>
27 #include <asm/kvm.h>
28 #include <asm/kvm_asm.h>
29 
30 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
31 
32 #define KVM_HALT_POLL_NS_DEFAULT 500000
33 
34 #include <kvm/arm_vgic.h>
35 #include <kvm/arm_arch_timer.h>
36 #include <kvm/arm_pmu.h>
37 
38 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
39 
40 #define KVM_VCPU_MAX_FEATURES 7
41 
42 #define KVM_REQ_SLEEP \
43 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
44 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
45 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
46 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
47 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
48 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
49 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
50 
51 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
52 				     KVM_DIRTY_LOG_INITIALLY_SET)
53 
54 #define KVM_HAVE_MMU_RWLOCK
55 
56 /*
57  * Mode of operation configurable with kvm-arm.mode early param.
58  * See Documentation/admin-guide/kernel-parameters.txt for more information.
59  */
60 enum kvm_mode {
61 	KVM_MODE_DEFAULT,
62 	KVM_MODE_PROTECTED,
63 	KVM_MODE_NV,
64 	KVM_MODE_NONE,
65 };
66 #ifdef CONFIG_KVM
67 enum kvm_mode kvm_get_mode(void);
68 #else
69 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
70 #endif
71 
72 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
73 
74 extern unsigned int __ro_after_init kvm_sve_max_vl;
75 int __init kvm_arm_init_sve(void);
76 
77 u32 __attribute_const__ kvm_target_cpu(void);
78 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
79 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
80 
81 struct kvm_hyp_memcache {
82 	phys_addr_t head;
83 	unsigned long nr_pages;
84 };
85 
86 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
87 				     phys_addr_t *p,
88 				     phys_addr_t (*to_pa)(void *virt))
89 {
90 	*p = mc->head;
91 	mc->head = to_pa(p);
92 	mc->nr_pages++;
93 }
94 
95 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
96 				     void *(*to_va)(phys_addr_t phys))
97 {
98 	phys_addr_t *p = to_va(mc->head);
99 
100 	if (!mc->nr_pages)
101 		return NULL;
102 
103 	mc->head = *p;
104 	mc->nr_pages--;
105 
106 	return p;
107 }
108 
109 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
110 				       unsigned long min_pages,
111 				       void *(*alloc_fn)(void *arg),
112 				       phys_addr_t (*to_pa)(void *virt),
113 				       void *arg)
114 {
115 	while (mc->nr_pages < min_pages) {
116 		phys_addr_t *p = alloc_fn(arg);
117 
118 		if (!p)
119 			return -ENOMEM;
120 		push_hyp_memcache(mc, p, to_pa);
121 	}
122 
123 	return 0;
124 }
125 
126 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
127 				       void (*free_fn)(void *virt, void *arg),
128 				       void *(*to_va)(phys_addr_t phys),
129 				       void *arg)
130 {
131 	while (mc->nr_pages)
132 		free_fn(pop_hyp_memcache(mc, to_va), arg);
133 }
134 
135 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
136 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
137 
138 struct kvm_vmid {
139 	atomic64_t id;
140 };
141 
142 struct kvm_s2_mmu {
143 	struct kvm_vmid vmid;
144 
145 	/*
146 	 * stage2 entry level table
147 	 *
148 	 * Two kvm_s2_mmu structures in the same VM can point to the same
149 	 * pgd here.  This happens when running a guest using a
150 	 * translation regime that isn't affected by its own stage-2
151 	 * translation, such as a non-VHE hypervisor running at vEL2, or
152 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
153 	 * canonical stage-2 page tables.
154 	 */
155 	phys_addr_t	pgd_phys;
156 	struct kvm_pgtable *pgt;
157 
158 	/* The last vcpu id that ran on each physical CPU */
159 	int __percpu *last_vcpu_ran;
160 
161 	struct kvm_arch *arch;
162 };
163 
164 struct kvm_arch_memory_slot {
165 };
166 
167 /**
168  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
169  *
170  * @std_bmap: Bitmap of standard secure service calls
171  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
172  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
173  */
174 struct kvm_smccc_features {
175 	unsigned long std_bmap;
176 	unsigned long std_hyp_bmap;
177 	unsigned long vendor_hyp_bmap;
178 };
179 
180 typedef unsigned int pkvm_handle_t;
181 
182 struct kvm_protected_vm {
183 	pkvm_handle_t handle;
184 	struct kvm_hyp_memcache teardown_mc;
185 };
186 
187 struct kvm_arch {
188 	struct kvm_s2_mmu mmu;
189 
190 	/* VTCR_EL2 value for this VM */
191 	u64    vtcr;
192 
193 	/* Interrupt controller */
194 	struct vgic_dist	vgic;
195 
196 	/* Timers */
197 	struct arch_timer_vm_data timer_data;
198 
199 	/* Mandated version of PSCI */
200 	u32 psci_version;
201 
202 	/*
203 	 * If we encounter a data abort without valid instruction syndrome
204 	 * information, report this to user space.  User space can (and
205 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
206 	 * supported.
207 	 */
208 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
209 	/* Memory Tagging Extension enabled for the guest */
210 #define KVM_ARCH_FLAG_MTE_ENABLED			1
211 	/* At least one vCPU has ran in the VM */
212 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
213 	/*
214 	 * The following two bits are used to indicate the guest's EL1
215 	 * register width configuration. A value of KVM_ARCH_FLAG_EL1_32BIT
216 	 * bit is valid only when KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED is set.
217 	 * Otherwise, the guest's EL1 register width has not yet been
218 	 * determined yet.
219 	 */
220 #define KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED		3
221 #define KVM_ARCH_FLAG_EL1_32BIT				4
222 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
223 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		5
224 
225 	unsigned long flags;
226 
227 	/*
228 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
229 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
230 	 */
231 	unsigned long *pmu_filter;
232 	struct arm_pmu *arm_pmu;
233 
234 	cpumask_var_t supported_cpus;
235 
236 	u8 pfr0_csv2;
237 	u8 pfr0_csv3;
238 	struct {
239 		u8 imp:4;
240 		u8 unimp:4;
241 	} dfr0_pmuver;
242 
243 	/* Hypercall features firmware registers' descriptor */
244 	struct kvm_smccc_features smccc_feat;
245 
246 	/*
247 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
248 	 * the associated pKVM instance in the hypervisor.
249 	 */
250 	struct kvm_protected_vm pkvm;
251 };
252 
253 struct kvm_vcpu_fault_info {
254 	u64 esr_el2;		/* Hyp Syndrom Register */
255 	u64 far_el2;		/* Hyp Fault Address Register */
256 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
257 	u64 disr_el1;		/* Deferred [SError] Status Register */
258 };
259 
260 enum vcpu_sysreg {
261 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
262 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
263 	CLIDR_EL1,	/* Cache Level ID Register */
264 	CSSELR_EL1,	/* Cache Size Selection Register */
265 	SCTLR_EL1,	/* System Control Register */
266 	ACTLR_EL1,	/* Auxiliary Control Register */
267 	CPACR_EL1,	/* Coprocessor Access Control */
268 	ZCR_EL1,	/* SVE Control */
269 	TTBR0_EL1,	/* Translation Table Base Register 0 */
270 	TTBR1_EL1,	/* Translation Table Base Register 1 */
271 	TCR_EL1,	/* Translation Control Register */
272 	ESR_EL1,	/* Exception Syndrome Register */
273 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
274 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
275 	FAR_EL1,	/* Fault Address Register */
276 	MAIR_EL1,	/* Memory Attribute Indirection Register */
277 	VBAR_EL1,	/* Vector Base Address Register */
278 	CONTEXTIDR_EL1,	/* Context ID Register */
279 	TPIDR_EL0,	/* Thread ID, User R/W */
280 	TPIDRRO_EL0,	/* Thread ID, User R/O */
281 	TPIDR_EL1,	/* Thread ID, Privileged */
282 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
283 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
284 	PAR_EL1,	/* Physical Address Register */
285 	MDSCR_EL1,	/* Monitor Debug System Control Register */
286 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
287 	OSLSR_EL1,	/* OS Lock Status Register */
288 	DISR_EL1,	/* Deferred Interrupt Status Register */
289 
290 	/* Performance Monitors Registers */
291 	PMCR_EL0,	/* Control Register */
292 	PMSELR_EL0,	/* Event Counter Selection Register */
293 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
294 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
295 	PMCCNTR_EL0,	/* Cycle Counter Register */
296 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
297 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
298 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
299 	PMCNTENSET_EL0,	/* Count Enable Set Register */
300 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
301 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
302 	PMUSERENR_EL0,	/* User Enable Register */
303 
304 	/* Pointer Authentication Registers in a strict increasing order. */
305 	APIAKEYLO_EL1,
306 	APIAKEYHI_EL1,
307 	APIBKEYLO_EL1,
308 	APIBKEYHI_EL1,
309 	APDAKEYLO_EL1,
310 	APDAKEYHI_EL1,
311 	APDBKEYLO_EL1,
312 	APDBKEYHI_EL1,
313 	APGAKEYLO_EL1,
314 	APGAKEYHI_EL1,
315 
316 	ELR_EL1,
317 	SP_EL1,
318 	SPSR_EL1,
319 
320 	CNTVOFF_EL2,
321 	CNTV_CVAL_EL0,
322 	CNTV_CTL_EL0,
323 	CNTP_CVAL_EL0,
324 	CNTP_CTL_EL0,
325 
326 	/* Memory Tagging Extension registers */
327 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
328 	GCR_EL1,	/* Tag Control Register */
329 	TFSR_EL1,	/* Tag Fault Status Register (EL1) */
330 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
331 
332 	/* 32bit specific registers. */
333 	DACR32_EL2,	/* Domain Access Control Register */
334 	IFSR32_EL2,	/* Instruction Fault Status Register */
335 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
336 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
337 
338 	/* EL2 registers */
339 	VPIDR_EL2,	/* Virtualization Processor ID Register */
340 	VMPIDR_EL2,	/* Virtualization Multiprocessor ID Register */
341 	SCTLR_EL2,	/* System Control Register (EL2) */
342 	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
343 	HCR_EL2,	/* Hypervisor Configuration Register */
344 	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
345 	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
346 	HSTR_EL2,	/* Hypervisor System Trap Register */
347 	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
348 	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
349 	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
350 	TCR_EL2,	/* Translation Control Register (EL2) */
351 	VTTBR_EL2,	/* Virtualization Translation Table Base Register */
352 	VTCR_EL2,	/* Virtualization Translation Control Register */
353 	SPSR_EL2,	/* EL2 saved program status register */
354 	ELR_EL2,	/* EL2 exception link register */
355 	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
356 	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
357 	ESR_EL2,	/* Exception Syndrome Register (EL2) */
358 	FAR_EL2,	/* Fault Address Register (EL2) */
359 	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
360 	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
361 	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
362 	VBAR_EL2,	/* Vector Base Address Register (EL2) */
363 	RVBAR_EL2,	/* Reset Vector Base Address Register */
364 	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
365 	TPIDR_EL2,	/* EL2 Software Thread ID Register */
366 	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
367 	SP_EL2,		/* EL2 Stack Pointer */
368 
369 	NR_SYS_REGS	/* Nothing after this line! */
370 };
371 
372 struct kvm_cpu_context {
373 	struct user_pt_regs regs;	/* sp = sp_el0 */
374 
375 	u64	spsr_abt;
376 	u64	spsr_und;
377 	u64	spsr_irq;
378 	u64	spsr_fiq;
379 
380 	struct user_fpsimd_state fp_regs;
381 
382 	u64 sys_regs[NR_SYS_REGS];
383 
384 	struct kvm_vcpu *__hyp_running_vcpu;
385 };
386 
387 struct kvm_host_data {
388 	struct kvm_cpu_context host_ctxt;
389 };
390 
391 struct kvm_host_psci_config {
392 	/* PSCI version used by host. */
393 	u32 version;
394 
395 	/* Function IDs used by host if version is v0.1. */
396 	struct psci_0_1_function_ids function_ids_0_1;
397 
398 	bool psci_0_1_cpu_suspend_implemented;
399 	bool psci_0_1_cpu_on_implemented;
400 	bool psci_0_1_cpu_off_implemented;
401 	bool psci_0_1_migrate_implemented;
402 };
403 
404 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
405 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
406 
407 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
408 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
409 
410 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
411 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
412 
413 struct vcpu_reset_state {
414 	unsigned long	pc;
415 	unsigned long	r0;
416 	bool		be;
417 	bool		reset;
418 };
419 
420 struct kvm_vcpu_arch {
421 	struct kvm_cpu_context ctxt;
422 
423 	/*
424 	 * Guest floating point state
425 	 *
426 	 * The architecture has two main floating point extensions,
427 	 * the original FPSIMD and SVE.  These have overlapping
428 	 * register views, with the FPSIMD V registers occupying the
429 	 * low 128 bits of the SVE Z registers.  When the core
430 	 * floating point code saves the register state of a task it
431 	 * records which view it saved in fp_type.
432 	 */
433 	void *sve_state;
434 	enum fp_type fp_type;
435 	unsigned int sve_max_vl;
436 	u64 svcr;
437 
438 	/* Stage 2 paging state used by the hardware on next switch */
439 	struct kvm_s2_mmu *hw_mmu;
440 
441 	/* Values of trap registers for the guest. */
442 	u64 hcr_el2;
443 	u64 mdcr_el2;
444 	u64 cptr_el2;
445 
446 	/* Values of trap registers for the host before guest entry. */
447 	u64 mdcr_el2_host;
448 
449 	/* Exception Information */
450 	struct kvm_vcpu_fault_info fault;
451 
452 	/* Ownership of the FP regs */
453 	enum {
454 		FP_STATE_FREE,
455 		FP_STATE_HOST_OWNED,
456 		FP_STATE_GUEST_OWNED,
457 	} fp_state;
458 
459 	/* Configuration flags, set once and for all before the vcpu can run */
460 	u8 cflags;
461 
462 	/* Input flags to the hypervisor code, potentially cleared after use */
463 	u8 iflags;
464 
465 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
466 	u8 sflags;
467 
468 	/*
469 	 * Don't run the guest (internal implementation need).
470 	 *
471 	 * Contrary to the flags above, this is set/cleared outside of
472 	 * a vcpu context, and thus cannot be mixed with the flags
473 	 * themselves (or the flag accesses need to be made atomic).
474 	 */
475 	bool pause;
476 
477 	/*
478 	 * We maintain more than a single set of debug registers to support
479 	 * debugging the guest from the host and to maintain separate host and
480 	 * guest state during world switches. vcpu_debug_state are the debug
481 	 * registers of the vcpu as the guest sees them.  host_debug_state are
482 	 * the host registers which are saved and restored during
483 	 * world switches. external_debug_state contains the debug
484 	 * values we want to debug the guest. This is set via the
485 	 * KVM_SET_GUEST_DEBUG ioctl.
486 	 *
487 	 * debug_ptr points to the set of debug registers that should be loaded
488 	 * onto the hardware when running the guest.
489 	 */
490 	struct kvm_guest_debug_arch *debug_ptr;
491 	struct kvm_guest_debug_arch vcpu_debug_state;
492 	struct kvm_guest_debug_arch external_debug_state;
493 
494 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
495 	struct task_struct *parent_task;
496 
497 	struct {
498 		/* {Break,watch}point registers */
499 		struct kvm_guest_debug_arch regs;
500 		/* Statistical profiling extension */
501 		u64 pmscr_el1;
502 		/* Self-hosted trace */
503 		u64 trfcr_el1;
504 	} host_debug_state;
505 
506 	/* VGIC state */
507 	struct vgic_cpu vgic_cpu;
508 	struct arch_timer_cpu timer_cpu;
509 	struct kvm_pmu pmu;
510 
511 	/*
512 	 * Guest registers we preserve during guest debugging.
513 	 *
514 	 * These shadow registers are updated by the kvm_handle_sys_reg
515 	 * trap handler if the guest accesses or updates them while we
516 	 * are using guest debug.
517 	 */
518 	struct {
519 		u32	mdscr_el1;
520 		bool	pstate_ss;
521 	} guest_debug_preserved;
522 
523 	/* vcpu power state */
524 	struct kvm_mp_state mp_state;
525 
526 	/* Cache some mmu pages needed inside spinlock regions */
527 	struct kvm_mmu_memory_cache mmu_page_cache;
528 
529 	/* Target CPU and feature flags */
530 	int target;
531 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
532 
533 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
534 	u64 vsesr_el2;
535 
536 	/* Additional reset state */
537 	struct vcpu_reset_state	reset_state;
538 
539 	/* Guest PV state */
540 	struct {
541 		u64 last_steal;
542 		gpa_t base;
543 	} steal;
544 
545 	/* Per-vcpu CCSIDR override or NULL */
546 	u32 *ccsidr;
547 };
548 
549 /*
550  * Each 'flag' is composed of a comma-separated triplet:
551  *
552  * - the flag-set it belongs to in the vcpu->arch structure
553  * - the value for that flag
554  * - the mask for that flag
555  *
556  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
557  * unpack_vcpu_flag() extract the flag value from the triplet for
558  * direct use outside of the flag accessors.
559  */
560 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
561 
562 #define __unpack_flag(_set, _f, _m)	_f
563 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
564 
565 #define __build_check_flag(v, flagset, f, m)			\
566 	do {							\
567 		typeof(v->arch.flagset) *_fset;			\
568 								\
569 		/* Check that the flags fit in the mask */	\
570 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
571 		/* Check that the flags fit in the type */	\
572 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
573 	} while (0)
574 
575 #define __vcpu_get_flag(v, flagset, f, m)			\
576 	({							\
577 		__build_check_flag(v, flagset, f, m);		\
578 								\
579 		READ_ONCE(v->arch.flagset) & (m);		\
580 	})
581 
582 /*
583  * Note that the set/clear accessors must be preempt-safe in order to
584  * avoid nesting them with load/put which also manipulate flags...
585  */
586 #ifdef __KVM_NVHE_HYPERVISOR__
587 /* the nVHE hypervisor is always non-preemptible */
588 #define __vcpu_flags_preempt_disable()
589 #define __vcpu_flags_preempt_enable()
590 #else
591 #define __vcpu_flags_preempt_disable()	preempt_disable()
592 #define __vcpu_flags_preempt_enable()	preempt_enable()
593 #endif
594 
595 #define __vcpu_set_flag(v, flagset, f, m)			\
596 	do {							\
597 		typeof(v->arch.flagset) *fset;			\
598 								\
599 		__build_check_flag(v, flagset, f, m);		\
600 								\
601 		fset = &v->arch.flagset;			\
602 		__vcpu_flags_preempt_disable();			\
603 		if (HWEIGHT(m) > 1)				\
604 			*fset &= ~(m);				\
605 		*fset |= (f);					\
606 		__vcpu_flags_preempt_enable();			\
607 	} while (0)
608 
609 #define __vcpu_clear_flag(v, flagset, f, m)			\
610 	do {							\
611 		typeof(v->arch.flagset) *fset;			\
612 								\
613 		__build_check_flag(v, flagset, f, m);		\
614 								\
615 		fset = &v->arch.flagset;			\
616 		__vcpu_flags_preempt_disable();			\
617 		*fset &= ~(m);					\
618 		__vcpu_flags_preempt_enable();			\
619 	} while (0)
620 
621 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
622 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
623 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
624 
625 /* SVE exposed to guest */
626 #define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
627 /* SVE config completed */
628 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
629 /* PTRAUTH exposed to guest */
630 #define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
631 
632 /* Exception pending */
633 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
634 /*
635  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
636  * be set together with an exception...
637  */
638 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
639 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
640 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
641 
642 /* Helpers to encode exceptions with minimum fuss */
643 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
644 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
645 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
646 
647 /*
648  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
649  * values:
650  *
651  * For AArch32 EL1:
652  */
653 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
654 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
655 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
656 /* For AArch64: */
657 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
658 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
659 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
660 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
661 /* For AArch64 with NV: */
662 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
663 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
664 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
665 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
666 /* Guest debug is live */
667 #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
668 /* Save SPE context if active  */
669 #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
670 /* Save TRBE context if active  */
671 #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
672 /* vcpu running in HYP context */
673 #define VCPU_HYP_CONTEXT	__vcpu_single_flag(iflags, BIT(7))
674 
675 /* SVE enabled for host EL0 */
676 #define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
677 /* SME enabled for EL0 */
678 #define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
679 /* Physical CPU not in supported_cpus */
680 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
681 /* WFIT instruction trapped */
682 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
683 /* vcpu system registers loaded on physical CPU */
684 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
685 /* Software step state is Active-pending */
686 #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
687 
688 
689 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
690 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
691 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
692 
693 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
694 
695 #define vcpu_sve_state_size(vcpu) ({					\
696 	size_t __size_ret;						\
697 	unsigned int __vcpu_vq;						\
698 									\
699 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
700 		__size_ret = 0;						\
701 	} else {							\
702 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
703 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
704 	}								\
705 									\
706 	__size_ret;							\
707 })
708 
709 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
710 				 KVM_GUESTDBG_USE_SW_BP | \
711 				 KVM_GUESTDBG_USE_HW | \
712 				 KVM_GUESTDBG_SINGLESTEP)
713 
714 #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
715 			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
716 
717 #ifdef CONFIG_ARM64_PTR_AUTH
718 #define vcpu_has_ptrauth(vcpu)						\
719 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
720 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
721 	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
722 #else
723 #define vcpu_has_ptrauth(vcpu)		false
724 #endif
725 
726 #define vcpu_on_unsupported_cpu(vcpu)					\
727 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
728 
729 #define vcpu_set_on_unsupported_cpu(vcpu)				\
730 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
731 
732 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
733 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
734 
735 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
736 
737 /*
738  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
739  * memory backed version of a register, and not the one most recently
740  * accessed by a running VCPU.  For example, for userspace access or
741  * for system registers that are never context switched, but only
742  * emulated.
743  */
744 #define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])
745 
746 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
747 
748 #define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
749 
750 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
751 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
752 
753 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
754 {
755 	/*
756 	 * *** VHE ONLY ***
757 	 *
758 	 * System registers listed in the switch are not saved on every
759 	 * exit from the guest but are only saved on vcpu_put.
760 	 *
761 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
762 	 * should never be listed below, because the guest cannot modify its
763 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
764 	 * thread when emulating cross-VCPU communication.
765 	 */
766 	if (!has_vhe())
767 		return false;
768 
769 	switch (reg) {
770 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
771 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
772 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
773 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
774 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
775 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
776 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
777 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
778 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
779 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
780 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
781 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
782 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
783 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
784 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
785 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
786 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
787 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
788 	case PAR_EL1:		*val = read_sysreg_par();		break;
789 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
790 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
791 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
792 	default:		return false;
793 	}
794 
795 	return true;
796 }
797 
798 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
799 {
800 	/*
801 	 * *** VHE ONLY ***
802 	 *
803 	 * System registers listed in the switch are not restored on every
804 	 * entry to the guest but are only restored on vcpu_load.
805 	 *
806 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
807 	 * should never be listed below, because the MPIDR should only be set
808 	 * once, before running the VCPU, and never changed later.
809 	 */
810 	if (!has_vhe())
811 		return false;
812 
813 	switch (reg) {
814 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
815 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
816 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
817 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
818 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
819 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
820 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
821 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
822 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
823 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
824 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
825 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
826 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
827 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
828 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
829 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
830 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
831 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
832 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
833 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
834 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
835 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
836 	default:		return false;
837 	}
838 
839 	return true;
840 }
841 
842 struct kvm_vm_stat {
843 	struct kvm_vm_stat_generic generic;
844 };
845 
846 struct kvm_vcpu_stat {
847 	struct kvm_vcpu_stat_generic generic;
848 	u64 hvc_exit_stat;
849 	u64 wfe_exit_stat;
850 	u64 wfi_exit_stat;
851 	u64 mmio_exit_user;
852 	u64 mmio_exit_kernel;
853 	u64 signal_exits;
854 	u64 exits;
855 };
856 
857 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
858 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
859 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
860 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
861 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
862 
863 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
864 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
865 
866 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
867 			      struct kvm_vcpu_events *events);
868 
869 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
870 			      struct kvm_vcpu_events *events);
871 
872 #define KVM_ARCH_WANT_MMU_NOTIFIER
873 
874 void kvm_arm_halt_guest(struct kvm *kvm);
875 void kvm_arm_resume_guest(struct kvm *kvm);
876 
877 #define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
878 
879 #ifndef __KVM_NVHE_HYPERVISOR__
880 #define kvm_call_hyp_nvhe(f, ...)						\
881 	({								\
882 		struct arm_smccc_res res;				\
883 									\
884 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
885 				  ##__VA_ARGS__, &res);			\
886 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
887 									\
888 		res.a1;							\
889 	})
890 
891 /*
892  * The couple of isb() below are there to guarantee the same behaviour
893  * on VHE as on !VHE, where the eret to EL1 acts as a context
894  * synchronization event.
895  */
896 #define kvm_call_hyp(f, ...)						\
897 	do {								\
898 		if (has_vhe()) {					\
899 			f(__VA_ARGS__);					\
900 			isb();						\
901 		} else {						\
902 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
903 		}							\
904 	} while(0)
905 
906 #define kvm_call_hyp_ret(f, ...)					\
907 	({								\
908 		typeof(f(__VA_ARGS__)) ret;				\
909 									\
910 		if (has_vhe()) {					\
911 			ret = f(__VA_ARGS__);				\
912 			isb();						\
913 		} else {						\
914 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
915 		}							\
916 									\
917 		ret;							\
918 	})
919 #else /* __KVM_NVHE_HYPERVISOR__ */
920 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
921 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
922 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
923 #endif /* __KVM_NVHE_HYPERVISOR__ */
924 
925 void force_vm_exit(const cpumask_t *mask);
926 
927 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
928 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
929 
930 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
931 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
932 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
933 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
934 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
935 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
936 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
937 
938 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
939 
940 int __init kvm_sys_reg_table_init(void);
941 
942 /* MMIO helpers */
943 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
944 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
945 
946 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
947 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
948 
949 /*
950  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
951  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
952  * loaded is considered to be "in guest".
953  */
954 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
955 {
956 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
957 }
958 
959 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
960 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
961 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
962 
963 bool kvm_arm_pvtime_supported(void);
964 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
965 			    struct kvm_device_attr *attr);
966 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
967 			    struct kvm_device_attr *attr);
968 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
969 			    struct kvm_device_attr *attr);
970 
971 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
972 int __init kvm_arm_vmid_alloc_init(void);
973 void __init kvm_arm_vmid_alloc_free(void);
974 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
975 void kvm_arm_vmid_clear_active(void);
976 
977 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
978 {
979 	vcpu_arch->steal.base = INVALID_GPA;
980 }
981 
982 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
983 {
984 	return (vcpu_arch->steal.base != INVALID_GPA);
985 }
986 
987 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
988 
989 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
990 
991 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
992 
993 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
994 {
995 	/* The host's MPIDR is immutable, so let's set it up at boot time */
996 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
997 }
998 
999 static inline bool kvm_system_needs_idmapped_vectors(void)
1000 {
1001 	return cpus_have_const_cap(ARM64_SPECTRE_V3A);
1002 }
1003 
1004 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
1005 
1006 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1007 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
1008 
1009 void kvm_arm_init_debug(void);
1010 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1011 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1012 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1013 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1014 
1015 #define kvm_vcpu_os_lock_enabled(vcpu)		\
1016 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & SYS_OSLSR_OSLK))
1017 
1018 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1019 			       struct kvm_device_attr *attr);
1020 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1021 			       struct kvm_device_attr *attr);
1022 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1023 			       struct kvm_device_attr *attr);
1024 
1025 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1026 				struct kvm_arm_copy_mte_tags *copy_tags);
1027 
1028 /* Guest/host FPSIMD coordination helpers */
1029 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1030 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1031 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1032 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1033 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1034 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
1035 
1036 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1037 {
1038 	return (!has_vhe() && attr->exclude_host);
1039 }
1040 
1041 /* Flags for host debug state */
1042 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1043 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1044 
1045 #ifdef CONFIG_KVM
1046 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
1047 void kvm_clr_pmu_events(u32 clr);
1048 #else
1049 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
1050 static inline void kvm_clr_pmu_events(u32 clr) {}
1051 #endif
1052 
1053 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
1054 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
1055 
1056 int __init kvm_set_ipa_limit(void);
1057 
1058 #define __KVM_HAVE_ARCH_VM_ALLOC
1059 struct kvm *kvm_arch_alloc_vm(void);
1060 
1061 static inline bool kvm_vm_is_protected(struct kvm *kvm)
1062 {
1063 	return false;
1064 }
1065 
1066 void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
1067 
1068 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1069 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1070 
1071 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1072 
1073 #define kvm_has_mte(kvm)					\
1074 	(system_supports_mte() &&				\
1075 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1076 
1077 #define kvm_supports_32bit_el0()				\
1078 	(system_supports_32bit_el0() &&				\
1079 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1080 
1081 int kvm_trng_call(struct kvm_vcpu *vcpu);
1082 #ifdef CONFIG_KVM
1083 extern phys_addr_t hyp_mem_base;
1084 extern phys_addr_t hyp_mem_size;
1085 void __init kvm_hyp_reserve(void);
1086 #else
1087 static inline void kvm_hyp_reserve(void) { }
1088 #endif
1089 
1090 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1091 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1092 
1093 #endif /* __ARM64_KVM_HOST_H__ */
1094