xref: /openbmc/linux/arch/arm64/include/asm/kvm_host.h (revision 852a53a0)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/bitmap.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <linux/kvm_types.h>
18 #include <linux/percpu.h>
19 #include <asm/arch_gicv3.h>
20 #include <asm/barrier.h>
21 #include <asm/cpufeature.h>
22 #include <asm/cputype.h>
23 #include <asm/daifflags.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_asm.h>
27 #include <asm/thread_info.h>
28 
29 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
30 
31 #define KVM_USER_MEM_SLOTS 512
32 #define KVM_HALT_POLL_NS_DEFAULT 500000
33 
34 #include <kvm/arm_vgic.h>
35 #include <kvm/arm_arch_timer.h>
36 #include <kvm/arm_pmu.h>
37 
38 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
39 
40 #define KVM_VCPU_MAX_FEATURES 7
41 
42 #define KVM_REQ_SLEEP \
43 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
44 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
45 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
46 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
47 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
48 
49 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
50 				     KVM_DIRTY_LOG_INITIALLY_SET)
51 
52 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
53 
54 extern unsigned int kvm_sve_max_vl;
55 int kvm_arm_init_sve(void);
56 
57 int __attribute_const__ kvm_target_cpu(void);
58 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
59 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
60 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
61 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
62 
63 struct kvm_vmid {
64 	/* The VMID generation used for the virt. memory system */
65 	u64    vmid_gen;
66 	u32    vmid;
67 };
68 
69 struct kvm_s2_mmu {
70 	struct kvm_vmid vmid;
71 
72 	/*
73 	 * stage2 entry level table
74 	 *
75 	 * Two kvm_s2_mmu structures in the same VM can point to the same
76 	 * pgd here.  This happens when running a guest using a
77 	 * translation regime that isn't affected by its own stage-2
78 	 * translation, such as a non-VHE hypervisor running at vEL2, or
79 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
80 	 * canonical stage-2 page tables.
81 	 */
82 	pgd_t		*pgd;
83 	phys_addr_t	pgd_phys;
84 
85 	/* The last vcpu id that ran on each physical CPU */
86 	int __percpu *last_vcpu_ran;
87 
88 	struct kvm *kvm;
89 };
90 
91 struct kvm_arch {
92 	struct kvm_s2_mmu mmu;
93 
94 	/* VTCR_EL2 value for this VM */
95 	u64    vtcr;
96 
97 	/* The maximum number of vCPUs depends on the used GIC model */
98 	int max_vcpus;
99 
100 	/* Interrupt controller */
101 	struct vgic_dist	vgic;
102 
103 	/* Mandated version of PSCI */
104 	u32 psci_version;
105 
106 	/*
107 	 * If we encounter a data abort without valid instruction syndrome
108 	 * information, report this to user space.  User space can (and
109 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
110 	 * supported.
111 	 */
112 	bool return_nisv_io_abort_to_user;
113 };
114 
115 struct kvm_vcpu_fault_info {
116 	u32 esr_el2;		/* Hyp Syndrom Register */
117 	u64 far_el2;		/* Hyp Fault Address Register */
118 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
119 	u64 disr_el1;		/* Deferred [SError] Status Register */
120 };
121 
122 enum vcpu_sysreg {
123 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
124 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
125 	CSSELR_EL1,	/* Cache Size Selection Register */
126 	SCTLR_EL1,	/* System Control Register */
127 	ACTLR_EL1,	/* Auxiliary Control Register */
128 	CPACR_EL1,	/* Coprocessor Access Control */
129 	ZCR_EL1,	/* SVE Control */
130 	TTBR0_EL1,	/* Translation Table Base Register 0 */
131 	TTBR1_EL1,	/* Translation Table Base Register 1 */
132 	TCR_EL1,	/* Translation Control Register */
133 	ESR_EL1,	/* Exception Syndrome Register */
134 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
135 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
136 	FAR_EL1,	/* Fault Address Register */
137 	MAIR_EL1,	/* Memory Attribute Indirection Register */
138 	VBAR_EL1,	/* Vector Base Address Register */
139 	CONTEXTIDR_EL1,	/* Context ID Register */
140 	TPIDR_EL0,	/* Thread ID, User R/W */
141 	TPIDRRO_EL0,	/* Thread ID, User R/O */
142 	TPIDR_EL1,	/* Thread ID, Privileged */
143 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
144 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
145 	PAR_EL1,	/* Physical Address Register */
146 	MDSCR_EL1,	/* Monitor Debug System Control Register */
147 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
148 	DISR_EL1,	/* Deferred Interrupt Status Register */
149 
150 	/* Performance Monitors Registers */
151 	PMCR_EL0,	/* Control Register */
152 	PMSELR_EL0,	/* Event Counter Selection Register */
153 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
154 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
155 	PMCCNTR_EL0,	/* Cycle Counter Register */
156 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
157 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
158 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
159 	PMCNTENSET_EL0,	/* Count Enable Set Register */
160 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
161 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
162 	PMSWINC_EL0,	/* Software Increment Register */
163 	PMUSERENR_EL0,	/* User Enable Register */
164 
165 	/* Pointer Authentication Registers in a strict increasing order. */
166 	APIAKEYLO_EL1,
167 	APIAKEYHI_EL1,
168 	APIBKEYLO_EL1,
169 	APIBKEYHI_EL1,
170 	APDAKEYLO_EL1,
171 	APDAKEYHI_EL1,
172 	APDBKEYLO_EL1,
173 	APDBKEYHI_EL1,
174 	APGAKEYLO_EL1,
175 	APGAKEYHI_EL1,
176 
177 	ELR_EL1,
178 	SP_EL1,
179 	SPSR_EL1,
180 
181 	CNTVOFF_EL2,
182 	CNTV_CVAL_EL0,
183 	CNTV_CTL_EL0,
184 	CNTP_CVAL_EL0,
185 	CNTP_CTL_EL0,
186 
187 	/* 32bit specific registers. Keep them at the end of the range */
188 	DACR32_EL2,	/* Domain Access Control Register */
189 	IFSR32_EL2,	/* Instruction Fault Status Register */
190 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
191 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
192 
193 	NR_SYS_REGS	/* Nothing after this line! */
194 };
195 
196 /* 32bit mapping */
197 #define c0_MPIDR	(MPIDR_EL1 * 2)	/* MultiProcessor ID Register */
198 #define c0_CSSELR	(CSSELR_EL1 * 2)/* Cache Size Selection Register */
199 #define c1_SCTLR	(SCTLR_EL1 * 2)	/* System Control Register */
200 #define c1_ACTLR	(ACTLR_EL1 * 2)	/* Auxiliary Control Register */
201 #define c1_CPACR	(CPACR_EL1 * 2)	/* Coprocessor Access Control */
202 #define c2_TTBR0	(TTBR0_EL1 * 2)	/* Translation Table Base Register 0 */
203 #define c2_TTBR0_high	(c2_TTBR0 + 1)	/* TTBR0 top 32 bits */
204 #define c2_TTBR1	(TTBR1_EL1 * 2)	/* Translation Table Base Register 1 */
205 #define c2_TTBR1_high	(c2_TTBR1 + 1)	/* TTBR1 top 32 bits */
206 #define c2_TTBCR	(TCR_EL1 * 2)	/* Translation Table Base Control R. */
207 #define c3_DACR		(DACR32_EL2 * 2)/* Domain Access Control Register */
208 #define c5_DFSR		(ESR_EL1 * 2)	/* Data Fault Status Register */
209 #define c5_IFSR		(IFSR32_EL2 * 2)/* Instruction Fault Status Register */
210 #define c5_ADFSR	(AFSR0_EL1 * 2)	/* Auxiliary Data Fault Status R */
211 #define c5_AIFSR	(AFSR1_EL1 * 2)	/* Auxiliary Instr Fault Status R */
212 #define c6_DFAR		(FAR_EL1 * 2)	/* Data Fault Address Register */
213 #define c6_IFAR		(c6_DFAR + 1)	/* Instruction Fault Address Register */
214 #define c7_PAR		(PAR_EL1 * 2)	/* Physical Address Register */
215 #define c7_PAR_high	(c7_PAR + 1)	/* PAR top 32 bits */
216 #define c10_PRRR	(MAIR_EL1 * 2)	/* Primary Region Remap Register */
217 #define c10_NMRR	(c10_PRRR + 1)	/* Normal Memory Remap Register */
218 #define c12_VBAR	(VBAR_EL1 * 2)	/* Vector Base Address Register */
219 #define c13_CID		(CONTEXTIDR_EL1 * 2)	/* Context ID Register */
220 #define c13_TID_URW	(TPIDR_EL0 * 2)	/* Thread ID, User R/W */
221 #define c13_TID_URO	(TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
222 #define c13_TID_PRIV	(TPIDR_EL1 * 2)	/* Thread ID, Privileged */
223 #define c10_AMAIR0	(AMAIR_EL1 * 2)	/* Aux Memory Attr Indirection Reg */
224 #define c10_AMAIR1	(c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
225 #define c14_CNTKCTL	(CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
226 
227 #define cp14_DBGDSCRext	(MDSCR_EL1 * 2)
228 #define cp14_DBGBCR0	(DBGBCR0_EL1 * 2)
229 #define cp14_DBGBVR0	(DBGBVR0_EL1 * 2)
230 #define cp14_DBGBXVR0	(cp14_DBGBVR0 + 1)
231 #define cp14_DBGWCR0	(DBGWCR0_EL1 * 2)
232 #define cp14_DBGWVR0	(DBGWVR0_EL1 * 2)
233 #define cp14_DBGDCCINT	(MDCCINT_EL1 * 2)
234 
235 #define NR_COPRO_REGS	(NR_SYS_REGS * 2)
236 
237 struct kvm_cpu_context {
238 	struct user_pt_regs regs;	/* sp = sp_el0 */
239 
240 	u64	spsr_abt;
241 	u64	spsr_und;
242 	u64	spsr_irq;
243 	u64	spsr_fiq;
244 
245 	struct user_fpsimd_state fp_regs;
246 
247 	union {
248 		u64 sys_regs[NR_SYS_REGS];
249 		u32 copro[NR_COPRO_REGS];
250 	};
251 
252 	struct kvm_vcpu *__hyp_running_vcpu;
253 };
254 
255 struct kvm_pmu_events {
256 	u32 events_host;
257 	u32 events_guest;
258 };
259 
260 struct kvm_host_data {
261 	struct kvm_cpu_context host_ctxt;
262 	struct kvm_pmu_events pmu_events;
263 };
264 
265 typedef struct kvm_host_data kvm_host_data_t;
266 
267 struct vcpu_reset_state {
268 	unsigned long	pc;
269 	unsigned long	r0;
270 	bool		be;
271 	bool		reset;
272 };
273 
274 struct kvm_vcpu_arch {
275 	struct kvm_cpu_context ctxt;
276 	void *sve_state;
277 	unsigned int sve_max_vl;
278 
279 	/* Stage 2 paging state used by the hardware on next switch */
280 	struct kvm_s2_mmu *hw_mmu;
281 
282 	/* HYP configuration */
283 	u64 hcr_el2;
284 	u32 mdcr_el2;
285 
286 	/* Exception Information */
287 	struct kvm_vcpu_fault_info fault;
288 
289 	/* State of various workarounds, see kvm_asm.h for bit assignment */
290 	u64 workaround_flags;
291 
292 	/* Miscellaneous vcpu state flags */
293 	u64 flags;
294 
295 	/*
296 	 * We maintain more than a single set of debug registers to support
297 	 * debugging the guest from the host and to maintain separate host and
298 	 * guest state during world switches. vcpu_debug_state are the debug
299 	 * registers of the vcpu as the guest sees them.  host_debug_state are
300 	 * the host registers which are saved and restored during
301 	 * world switches. external_debug_state contains the debug
302 	 * values we want to debug the guest. This is set via the
303 	 * KVM_SET_GUEST_DEBUG ioctl.
304 	 *
305 	 * debug_ptr points to the set of debug registers that should be loaded
306 	 * onto the hardware when running the guest.
307 	 */
308 	struct kvm_guest_debug_arch *debug_ptr;
309 	struct kvm_guest_debug_arch vcpu_debug_state;
310 	struct kvm_guest_debug_arch external_debug_state;
311 
312 	struct thread_info *host_thread_info;	/* hyp VA */
313 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
314 
315 	struct {
316 		/* {Break,watch}point registers */
317 		struct kvm_guest_debug_arch regs;
318 		/* Statistical profiling extension */
319 		u64 pmscr_el1;
320 	} host_debug_state;
321 
322 	/* VGIC state */
323 	struct vgic_cpu vgic_cpu;
324 	struct arch_timer_cpu timer_cpu;
325 	struct kvm_pmu pmu;
326 
327 	/*
328 	 * Anything that is not used directly from assembly code goes
329 	 * here.
330 	 */
331 
332 	/*
333 	 * Guest registers we preserve during guest debugging.
334 	 *
335 	 * These shadow registers are updated by the kvm_handle_sys_reg
336 	 * trap handler if the guest accesses or updates them while we
337 	 * are using guest debug.
338 	 */
339 	struct {
340 		u32	mdscr_el1;
341 	} guest_debug_preserved;
342 
343 	/* vcpu power-off state */
344 	bool power_off;
345 
346 	/* Don't run the guest (internal implementation need) */
347 	bool pause;
348 
349 	/* Cache some mmu pages needed inside spinlock regions */
350 	struct kvm_mmu_memory_cache mmu_page_cache;
351 
352 	/* Target CPU and feature flags */
353 	int target;
354 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
355 
356 	/* Detect first run of a vcpu */
357 	bool has_run_once;
358 
359 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
360 	u64 vsesr_el2;
361 
362 	/* Additional reset state */
363 	struct vcpu_reset_state	reset_state;
364 
365 	/* True when deferrable sysregs are loaded on the physical CPU,
366 	 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
367 	bool sysregs_loaded_on_cpu;
368 
369 	/* Guest PV state */
370 	struct {
371 		u64 steal;
372 		u64 last_steal;
373 		gpa_t base;
374 	} steal;
375 };
376 
377 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
378 #define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
379 				      sve_ffr_offset((vcpu)->arch.sve_max_vl)))
380 
381 #define vcpu_sve_state_size(vcpu) ({					\
382 	size_t __size_ret;						\
383 	unsigned int __vcpu_vq;						\
384 									\
385 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
386 		__size_ret = 0;						\
387 	} else {							\
388 		__vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl);	\
389 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
390 	}								\
391 									\
392 	__size_ret;							\
393 })
394 
395 /* vcpu_arch flags field values: */
396 #define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
397 #define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
398 #define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
399 #define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
400 #define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
401 #define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
402 #define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
403 #define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
404 
405 #define vcpu_has_sve(vcpu) (system_supports_sve() && \
406 			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
407 
408 #ifdef CONFIG_ARM64_PTR_AUTH
409 #define vcpu_has_ptrauth(vcpu)						\
410 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
411 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
412 	 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)
413 #else
414 #define vcpu_has_ptrauth(vcpu)		false
415 #endif
416 
417 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
418 
419 /*
420  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
421  * memory backed version of a register, and not the one most recently
422  * accessed by a running VCPU.  For example, for userspace access or
423  * for system registers that are never context switched, but only
424  * emulated.
425  */
426 #define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])
427 
428 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
429 
430 #define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
431 
432 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
433 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
434 
435 /*
436  * CP14 and CP15 live in the same array, as they are backed by the
437  * same system registers.
438  */
439 #define CPx_BIAS		IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)
440 
441 #define vcpu_cp14(v,r)		((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
442 #define vcpu_cp15(v,r)		((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
443 
444 struct kvm_vm_stat {
445 	ulong remote_tlb_flush;
446 };
447 
448 struct kvm_vcpu_stat {
449 	u64 halt_successful_poll;
450 	u64 halt_attempted_poll;
451 	u64 halt_poll_success_ns;
452 	u64 halt_poll_fail_ns;
453 	u64 halt_poll_invalid;
454 	u64 halt_wakeup;
455 	u64 hvc_exit_stat;
456 	u64 wfe_exit_stat;
457 	u64 wfi_exit_stat;
458 	u64 mmio_exit_user;
459 	u64 mmio_exit_kernel;
460 	u64 exits;
461 };
462 
463 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
464 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
465 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
466 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
467 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
468 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
469 			      struct kvm_vcpu_events *events);
470 
471 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
472 			      struct kvm_vcpu_events *events);
473 
474 #define KVM_ARCH_WANT_MMU_NOTIFIER
475 int kvm_unmap_hva_range(struct kvm *kvm,
476 			unsigned long start, unsigned long end);
477 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
478 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
479 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
480 
481 void kvm_arm_halt_guest(struct kvm *kvm);
482 void kvm_arm_resume_guest(struct kvm *kvm);
483 
484 u64 __kvm_call_hyp(void *hypfn, ...);
485 
486 #define kvm_call_hyp_nvhe(f, ...)					\
487 	do {								\
488 		DECLARE_KVM_NVHE_SYM(f);				\
489 		__kvm_call_hyp(kvm_ksym_ref_nvhe(f), ##__VA_ARGS__);	\
490 	} while(0)
491 
492 #define kvm_call_hyp_nvhe_ret(f, ...)					\
493 	({								\
494 		DECLARE_KVM_NVHE_SYM(f);				\
495 		__kvm_call_hyp(kvm_ksym_ref_nvhe(f), ##__VA_ARGS__);	\
496 	})
497 
498 /*
499  * The couple of isb() below are there to guarantee the same behaviour
500  * on VHE as on !VHE, where the eret to EL1 acts as a context
501  * synchronization event.
502  */
503 #define kvm_call_hyp(f, ...)						\
504 	do {								\
505 		if (has_vhe()) {					\
506 			f(__VA_ARGS__);					\
507 			isb();						\
508 		} else {						\
509 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
510 		}							\
511 	} while(0)
512 
513 #define kvm_call_hyp_ret(f, ...)					\
514 	({								\
515 		typeof(f(__VA_ARGS__)) ret;				\
516 									\
517 		if (has_vhe()) {					\
518 			ret = f(__VA_ARGS__);				\
519 			isb();						\
520 		} else {						\
521 			ret = kvm_call_hyp_nvhe_ret(f, ##__VA_ARGS__);	\
522 		}							\
523 									\
524 		ret;							\
525 	})
526 
527 void force_vm_exit(const cpumask_t *mask);
528 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
529 
530 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
531 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
532 
533 /* MMIO helpers */
534 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
535 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
536 
537 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
538 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
539 
540 int kvm_perf_init(void);
541 int kvm_perf_teardown(void);
542 
543 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
544 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
545 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
546 
547 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
548 			    struct kvm_device_attr *attr);
549 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
550 			    struct kvm_device_attr *attr);
551 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
552 			    struct kvm_device_attr *attr);
553 
554 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
555 {
556 	vcpu_arch->steal.base = GPA_INVALID;
557 }
558 
559 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
560 {
561 	return (vcpu_arch->steal.base != GPA_INVALID);
562 }
563 
564 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
565 
566 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
567 
568 DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data);
569 
570 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
571 {
572 	/* The host's MPIDR is immutable, so let's set it up at boot time */
573 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
574 }
575 
576 static inline bool kvm_arch_requires_vhe(void)
577 {
578 	/*
579 	 * The Arm architecture specifies that implementation of SVE
580 	 * requires VHE also to be implemented.  The KVM code for arm64
581 	 * relies on this when SVE is present:
582 	 */
583 	if (system_supports_sve())
584 		return true;
585 
586 	return false;
587 }
588 
589 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
590 
591 static inline void kvm_arch_hardware_unsetup(void) {}
592 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
593 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
594 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
595 
596 void kvm_arm_init_debug(void);
597 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
598 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
599 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
600 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
601 			       struct kvm_device_attr *attr);
602 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
603 			       struct kvm_device_attr *attr);
604 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
605 			       struct kvm_device_attr *attr);
606 
607 /* Guest/host FPSIMD coordination helpers */
608 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
609 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
610 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
611 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
612 
613 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
614 {
615 	return (!has_vhe() && attr->exclude_host);
616 }
617 
618 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
619 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
620 {
621 	return kvm_arch_vcpu_run_map_fp(vcpu);
622 }
623 
624 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
625 void kvm_clr_pmu_events(u32 clr);
626 
627 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
628 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
629 #else
630 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
631 static inline void kvm_clr_pmu_events(u32 clr) {}
632 #endif
633 
634 #define KVM_BP_HARDEN_UNKNOWN		-1
635 #define KVM_BP_HARDEN_WA_NEEDED		0
636 #define KVM_BP_HARDEN_NOT_REQUIRED	1
637 
638 static inline int kvm_arm_harden_branch_predictor(void)
639 {
640 	switch (get_spectre_v2_workaround_state()) {
641 	case ARM64_BP_HARDEN_WA_NEEDED:
642 		return KVM_BP_HARDEN_WA_NEEDED;
643 	case ARM64_BP_HARDEN_NOT_REQUIRED:
644 		return KVM_BP_HARDEN_NOT_REQUIRED;
645 	case ARM64_BP_HARDEN_UNKNOWN:
646 	default:
647 		return KVM_BP_HARDEN_UNKNOWN;
648 	}
649 }
650 
651 #define KVM_SSBD_UNKNOWN		-1
652 #define KVM_SSBD_FORCE_DISABLE		0
653 #define KVM_SSBD_KERNEL		1
654 #define KVM_SSBD_FORCE_ENABLE		2
655 #define KVM_SSBD_MITIGATED		3
656 
657 static inline int kvm_arm_have_ssbd(void)
658 {
659 	switch (arm64_get_ssbd_state()) {
660 	case ARM64_SSBD_FORCE_DISABLE:
661 		return KVM_SSBD_FORCE_DISABLE;
662 	case ARM64_SSBD_KERNEL:
663 		return KVM_SSBD_KERNEL;
664 	case ARM64_SSBD_FORCE_ENABLE:
665 		return KVM_SSBD_FORCE_ENABLE;
666 	case ARM64_SSBD_MITIGATED:
667 		return KVM_SSBD_MITIGATED;
668 	case ARM64_SSBD_UNKNOWN:
669 	default:
670 		return KVM_SSBD_UNKNOWN;
671 	}
672 }
673 
674 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
675 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
676 
677 int kvm_set_ipa_limit(void);
678 
679 #define __KVM_HAVE_ARCH_VM_ALLOC
680 struct kvm *kvm_arch_alloc_vm(void);
681 void kvm_arch_free_vm(struct kvm *kvm);
682 
683 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
684 
685 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
686 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
687 
688 #define kvm_arm_vcpu_sve_finalized(vcpu) \
689 	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
690 
691 #endif /* __ARM64_KVM_HOST_H__ */
692