xref: /openbmc/linux/arch/arm64/include/asm/kvm_host.h (revision 835fd614)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/percpu.h>
20 #include <asm/arch_gicv3.h>
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/cputype.h>
24 #include <asm/daifflags.h>
25 #include <asm/fpsimd.h>
26 #include <asm/kvm.h>
27 #include <asm/kvm_asm.h>
28 #include <asm/thread_info.h>
29 
30 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
31 
32 #define KVM_USER_MEM_SLOTS 512
33 #define KVM_HALT_POLL_NS_DEFAULT 500000
34 
35 #include <kvm/arm_vgic.h>
36 #include <kvm/arm_arch_timer.h>
37 #include <kvm/arm_pmu.h>
38 
39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40 
41 #define KVM_VCPU_MAX_FEATURES 7
42 
43 #define KVM_REQ_SLEEP \
44 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
45 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
46 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
47 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
48 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
49 
50 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
51 				     KVM_DIRTY_LOG_INITIALLY_SET)
52 
53 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
54 
55 extern unsigned int kvm_sve_max_vl;
56 int kvm_arm_init_sve(void);
57 
58 int __attribute_const__ kvm_target_cpu(void);
59 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
60 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
61 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
62 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
63 
64 struct kvm_vmid {
65 	/* The VMID generation used for the virt. memory system */
66 	u64    vmid_gen;
67 	u32    vmid;
68 };
69 
70 struct kvm_s2_mmu {
71 	struct kvm_vmid vmid;
72 
73 	/*
74 	 * stage2 entry level table
75 	 *
76 	 * Two kvm_s2_mmu structures in the same VM can point to the same
77 	 * pgd here.  This happens when running a guest using a
78 	 * translation regime that isn't affected by its own stage-2
79 	 * translation, such as a non-VHE hypervisor running at vEL2, or
80 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
81 	 * canonical stage-2 page tables.
82 	 */
83 	phys_addr_t	pgd_phys;
84 	struct kvm_pgtable *pgt;
85 
86 	/* The last vcpu id that ran on each physical CPU */
87 	int __percpu *last_vcpu_ran;
88 
89 	struct kvm *kvm;
90 };
91 
92 struct kvm_arch {
93 	struct kvm_s2_mmu mmu;
94 
95 	/* VTCR_EL2 value for this VM */
96 	u64    vtcr;
97 
98 	/* The maximum number of vCPUs depends on the used GIC model */
99 	int max_vcpus;
100 
101 	/* Interrupt controller */
102 	struct vgic_dist	vgic;
103 
104 	/* Mandated version of PSCI */
105 	u32 psci_version;
106 
107 	/*
108 	 * If we encounter a data abort without valid instruction syndrome
109 	 * information, report this to user space.  User space can (and
110 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
111 	 * supported.
112 	 */
113 	bool return_nisv_io_abort_to_user;
114 
115 	/*
116 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
117 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
118 	 */
119 	unsigned long *pmu_filter;
120 	unsigned int pmuver;
121 };
122 
123 struct kvm_vcpu_fault_info {
124 	u32 esr_el2;		/* Hyp Syndrom Register */
125 	u64 far_el2;		/* Hyp Fault Address Register */
126 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
127 	u64 disr_el1;		/* Deferred [SError] Status Register */
128 };
129 
130 enum vcpu_sysreg {
131 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
132 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
133 	CSSELR_EL1,	/* Cache Size Selection Register */
134 	SCTLR_EL1,	/* System Control Register */
135 	ACTLR_EL1,	/* Auxiliary Control Register */
136 	CPACR_EL1,	/* Coprocessor Access Control */
137 	ZCR_EL1,	/* SVE Control */
138 	TTBR0_EL1,	/* Translation Table Base Register 0 */
139 	TTBR1_EL1,	/* Translation Table Base Register 1 */
140 	TCR_EL1,	/* Translation Control Register */
141 	ESR_EL1,	/* Exception Syndrome Register */
142 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
143 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
144 	FAR_EL1,	/* Fault Address Register */
145 	MAIR_EL1,	/* Memory Attribute Indirection Register */
146 	VBAR_EL1,	/* Vector Base Address Register */
147 	CONTEXTIDR_EL1,	/* Context ID Register */
148 	TPIDR_EL0,	/* Thread ID, User R/W */
149 	TPIDRRO_EL0,	/* Thread ID, User R/O */
150 	TPIDR_EL1,	/* Thread ID, Privileged */
151 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
152 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
153 	PAR_EL1,	/* Physical Address Register */
154 	MDSCR_EL1,	/* Monitor Debug System Control Register */
155 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
156 	DISR_EL1,	/* Deferred Interrupt Status Register */
157 
158 	/* Performance Monitors Registers */
159 	PMCR_EL0,	/* Control Register */
160 	PMSELR_EL0,	/* Event Counter Selection Register */
161 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
162 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
163 	PMCCNTR_EL0,	/* Cycle Counter Register */
164 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
165 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
166 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
167 	PMCNTENSET_EL0,	/* Count Enable Set Register */
168 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
169 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
170 	PMSWINC_EL0,	/* Software Increment Register */
171 	PMUSERENR_EL0,	/* User Enable Register */
172 
173 	/* Pointer Authentication Registers in a strict increasing order. */
174 	APIAKEYLO_EL1,
175 	APIAKEYHI_EL1,
176 	APIBKEYLO_EL1,
177 	APIBKEYHI_EL1,
178 	APDAKEYLO_EL1,
179 	APDAKEYHI_EL1,
180 	APDBKEYLO_EL1,
181 	APDBKEYHI_EL1,
182 	APGAKEYLO_EL1,
183 	APGAKEYHI_EL1,
184 
185 	ELR_EL1,
186 	SP_EL1,
187 	SPSR_EL1,
188 
189 	CNTVOFF_EL2,
190 	CNTV_CVAL_EL0,
191 	CNTV_CTL_EL0,
192 	CNTP_CVAL_EL0,
193 	CNTP_CTL_EL0,
194 
195 	/* 32bit specific registers. Keep them at the end of the range */
196 	DACR32_EL2,	/* Domain Access Control Register */
197 	IFSR32_EL2,	/* Instruction Fault Status Register */
198 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
199 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
200 
201 	NR_SYS_REGS	/* Nothing after this line! */
202 };
203 
204 /* 32bit mapping */
205 #define c0_MPIDR	(MPIDR_EL1 * 2)	/* MultiProcessor ID Register */
206 #define c0_CSSELR	(CSSELR_EL1 * 2)/* Cache Size Selection Register */
207 #define c1_SCTLR	(SCTLR_EL1 * 2)	/* System Control Register */
208 #define c1_ACTLR	(ACTLR_EL1 * 2)	/* Auxiliary Control Register */
209 #define c1_CPACR	(CPACR_EL1 * 2)	/* Coprocessor Access Control */
210 #define c2_TTBR0	(TTBR0_EL1 * 2)	/* Translation Table Base Register 0 */
211 #define c2_TTBR0_high	(c2_TTBR0 + 1)	/* TTBR0 top 32 bits */
212 #define c2_TTBR1	(TTBR1_EL1 * 2)	/* Translation Table Base Register 1 */
213 #define c2_TTBR1_high	(c2_TTBR1 + 1)	/* TTBR1 top 32 bits */
214 #define c2_TTBCR	(TCR_EL1 * 2)	/* Translation Table Base Control R. */
215 #define c3_DACR		(DACR32_EL2 * 2)/* Domain Access Control Register */
216 #define c5_DFSR		(ESR_EL1 * 2)	/* Data Fault Status Register */
217 #define c5_IFSR		(IFSR32_EL2 * 2)/* Instruction Fault Status Register */
218 #define c5_ADFSR	(AFSR0_EL1 * 2)	/* Auxiliary Data Fault Status R */
219 #define c5_AIFSR	(AFSR1_EL1 * 2)	/* Auxiliary Instr Fault Status R */
220 #define c6_DFAR		(FAR_EL1 * 2)	/* Data Fault Address Register */
221 #define c6_IFAR		(c6_DFAR + 1)	/* Instruction Fault Address Register */
222 #define c7_PAR		(PAR_EL1 * 2)	/* Physical Address Register */
223 #define c7_PAR_high	(c7_PAR + 1)	/* PAR top 32 bits */
224 #define c10_PRRR	(MAIR_EL1 * 2)	/* Primary Region Remap Register */
225 #define c10_NMRR	(c10_PRRR + 1)	/* Normal Memory Remap Register */
226 #define c12_VBAR	(VBAR_EL1 * 2)	/* Vector Base Address Register */
227 #define c13_CID		(CONTEXTIDR_EL1 * 2)	/* Context ID Register */
228 #define c13_TID_URW	(TPIDR_EL0 * 2)	/* Thread ID, User R/W */
229 #define c13_TID_URO	(TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
230 #define c13_TID_PRIV	(TPIDR_EL1 * 2)	/* Thread ID, Privileged */
231 #define c10_AMAIR0	(AMAIR_EL1 * 2)	/* Aux Memory Attr Indirection Reg */
232 #define c10_AMAIR1	(c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
233 #define c14_CNTKCTL	(CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
234 
235 #define cp14_DBGDSCRext	(MDSCR_EL1 * 2)
236 #define cp14_DBGBCR0	(DBGBCR0_EL1 * 2)
237 #define cp14_DBGBVR0	(DBGBVR0_EL1 * 2)
238 #define cp14_DBGBXVR0	(cp14_DBGBVR0 + 1)
239 #define cp14_DBGWCR0	(DBGWCR0_EL1 * 2)
240 #define cp14_DBGWVR0	(DBGWVR0_EL1 * 2)
241 #define cp14_DBGDCCINT	(MDCCINT_EL1 * 2)
242 
243 #define NR_COPRO_REGS	(NR_SYS_REGS * 2)
244 
245 struct kvm_cpu_context {
246 	struct user_pt_regs regs;	/* sp = sp_el0 */
247 
248 	u64	spsr_abt;
249 	u64	spsr_und;
250 	u64	spsr_irq;
251 	u64	spsr_fiq;
252 
253 	struct user_fpsimd_state fp_regs;
254 
255 	union {
256 		u64 sys_regs[NR_SYS_REGS];
257 		u32 copro[NR_COPRO_REGS];
258 	};
259 
260 	struct kvm_vcpu *__hyp_running_vcpu;
261 };
262 
263 struct kvm_pmu_events {
264 	u32 events_host;
265 	u32 events_guest;
266 };
267 
268 struct kvm_host_data {
269 	struct kvm_cpu_context host_ctxt;
270 	struct kvm_pmu_events pmu_events;
271 };
272 
273 struct vcpu_reset_state {
274 	unsigned long	pc;
275 	unsigned long	r0;
276 	bool		be;
277 	bool		reset;
278 };
279 
280 struct kvm_vcpu_arch {
281 	struct kvm_cpu_context ctxt;
282 	void *sve_state;
283 	unsigned int sve_max_vl;
284 
285 	/* Stage 2 paging state used by the hardware on next switch */
286 	struct kvm_s2_mmu *hw_mmu;
287 
288 	/* HYP configuration */
289 	u64 hcr_el2;
290 	u32 mdcr_el2;
291 
292 	/* Exception Information */
293 	struct kvm_vcpu_fault_info fault;
294 
295 	/* State of various workarounds, see kvm_asm.h for bit assignment */
296 	u64 workaround_flags;
297 
298 	/* Miscellaneous vcpu state flags */
299 	u64 flags;
300 
301 	/*
302 	 * We maintain more than a single set of debug registers to support
303 	 * debugging the guest from the host and to maintain separate host and
304 	 * guest state during world switches. vcpu_debug_state are the debug
305 	 * registers of the vcpu as the guest sees them.  host_debug_state are
306 	 * the host registers which are saved and restored during
307 	 * world switches. external_debug_state contains the debug
308 	 * values we want to debug the guest. This is set via the
309 	 * KVM_SET_GUEST_DEBUG ioctl.
310 	 *
311 	 * debug_ptr points to the set of debug registers that should be loaded
312 	 * onto the hardware when running the guest.
313 	 */
314 	struct kvm_guest_debug_arch *debug_ptr;
315 	struct kvm_guest_debug_arch vcpu_debug_state;
316 	struct kvm_guest_debug_arch external_debug_state;
317 
318 	struct thread_info *host_thread_info;	/* hyp VA */
319 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
320 
321 	struct {
322 		/* {Break,watch}point registers */
323 		struct kvm_guest_debug_arch regs;
324 		/* Statistical profiling extension */
325 		u64 pmscr_el1;
326 	} host_debug_state;
327 
328 	/* VGIC state */
329 	struct vgic_cpu vgic_cpu;
330 	struct arch_timer_cpu timer_cpu;
331 	struct kvm_pmu pmu;
332 
333 	/*
334 	 * Anything that is not used directly from assembly code goes
335 	 * here.
336 	 */
337 
338 	/*
339 	 * Guest registers we preserve during guest debugging.
340 	 *
341 	 * These shadow registers are updated by the kvm_handle_sys_reg
342 	 * trap handler if the guest accesses or updates them while we
343 	 * are using guest debug.
344 	 */
345 	struct {
346 		u32	mdscr_el1;
347 	} guest_debug_preserved;
348 
349 	/* vcpu power-off state */
350 	bool power_off;
351 
352 	/* Don't run the guest (internal implementation need) */
353 	bool pause;
354 
355 	/* Cache some mmu pages needed inside spinlock regions */
356 	struct kvm_mmu_memory_cache mmu_page_cache;
357 
358 	/* Target CPU and feature flags */
359 	int target;
360 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
361 
362 	/* Detect first run of a vcpu */
363 	bool has_run_once;
364 
365 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
366 	u64 vsesr_el2;
367 
368 	/* Additional reset state */
369 	struct vcpu_reset_state	reset_state;
370 
371 	/* True when deferrable sysregs are loaded on the physical CPU,
372 	 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
373 	bool sysregs_loaded_on_cpu;
374 
375 	/* Guest PV state */
376 	struct {
377 		u64 last_steal;
378 		gpa_t base;
379 	} steal;
380 };
381 
382 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
383 #define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
384 				      sve_ffr_offset((vcpu)->arch.sve_max_vl)))
385 
386 #define vcpu_sve_state_size(vcpu) ({					\
387 	size_t __size_ret;						\
388 	unsigned int __vcpu_vq;						\
389 									\
390 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
391 		__size_ret = 0;						\
392 	} else {							\
393 		__vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl);	\
394 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
395 	}								\
396 									\
397 	__size_ret;							\
398 })
399 
400 /* vcpu_arch flags field values: */
401 #define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
402 #define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
403 #define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
404 #define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
405 #define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
406 #define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
407 #define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
408 #define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
409 
410 #define vcpu_has_sve(vcpu) (system_supports_sve() && \
411 			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
412 
413 #ifdef CONFIG_ARM64_PTR_AUTH
414 #define vcpu_has_ptrauth(vcpu)						\
415 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
416 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
417 	 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)
418 #else
419 #define vcpu_has_ptrauth(vcpu)		false
420 #endif
421 
422 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
423 
424 /*
425  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
426  * memory backed version of a register, and not the one most recently
427  * accessed by a running VCPU.  For example, for userspace access or
428  * for system registers that are never context switched, but only
429  * emulated.
430  */
431 #define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])
432 
433 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
434 
435 #define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
436 
437 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
438 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
439 
440 /*
441  * CP14 and CP15 live in the same array, as they are backed by the
442  * same system registers.
443  */
444 #define CPx_BIAS		IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)
445 
446 #define vcpu_cp14(v,r)		((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
447 #define vcpu_cp15(v,r)		((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
448 
449 struct kvm_vm_stat {
450 	ulong remote_tlb_flush;
451 };
452 
453 struct kvm_vcpu_stat {
454 	u64 halt_successful_poll;
455 	u64 halt_attempted_poll;
456 	u64 halt_poll_success_ns;
457 	u64 halt_poll_fail_ns;
458 	u64 halt_poll_invalid;
459 	u64 halt_wakeup;
460 	u64 hvc_exit_stat;
461 	u64 wfe_exit_stat;
462 	u64 wfi_exit_stat;
463 	u64 mmio_exit_user;
464 	u64 mmio_exit_kernel;
465 	u64 exits;
466 };
467 
468 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
469 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
470 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
471 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
472 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
473 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
474 			      struct kvm_vcpu_events *events);
475 
476 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
477 			      struct kvm_vcpu_events *events);
478 
479 #define KVM_ARCH_WANT_MMU_NOTIFIER
480 int kvm_unmap_hva_range(struct kvm *kvm,
481 			unsigned long start, unsigned long end, unsigned flags);
482 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
483 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
484 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
485 
486 void kvm_arm_halt_guest(struct kvm *kvm);
487 void kvm_arm_resume_guest(struct kvm *kvm);
488 
489 #define kvm_call_hyp_nvhe(f, ...)						\
490 	({								\
491 		struct arm_smccc_res res;				\
492 									\
493 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
494 				  ##__VA_ARGS__, &res);			\
495 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
496 									\
497 		res.a1;							\
498 	})
499 
500 /*
501  * The couple of isb() below are there to guarantee the same behaviour
502  * on VHE as on !VHE, where the eret to EL1 acts as a context
503  * synchronization event.
504  */
505 #define kvm_call_hyp(f, ...)						\
506 	do {								\
507 		if (has_vhe()) {					\
508 			f(__VA_ARGS__);					\
509 			isb();						\
510 		} else {						\
511 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
512 		}							\
513 	} while(0)
514 
515 #define kvm_call_hyp_ret(f, ...)					\
516 	({								\
517 		typeof(f(__VA_ARGS__)) ret;				\
518 									\
519 		if (has_vhe()) {					\
520 			ret = f(__VA_ARGS__);				\
521 			isb();						\
522 		} else {						\
523 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
524 		}							\
525 									\
526 		ret;							\
527 	})
528 
529 void force_vm_exit(const cpumask_t *mask);
530 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
531 
532 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
533 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
534 
535 /* MMIO helpers */
536 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
537 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
538 
539 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
540 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
541 
542 int kvm_perf_init(void);
543 int kvm_perf_teardown(void);
544 
545 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
546 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
547 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
548 
549 bool kvm_arm_pvtime_supported(void);
550 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
551 			    struct kvm_device_attr *attr);
552 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
553 			    struct kvm_device_attr *attr);
554 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
555 			    struct kvm_device_attr *attr);
556 
557 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
558 {
559 	vcpu_arch->steal.base = GPA_INVALID;
560 }
561 
562 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
563 {
564 	return (vcpu_arch->steal.base != GPA_INVALID);
565 }
566 
567 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
568 
569 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
570 
571 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
572 
573 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
574 {
575 	/* The host's MPIDR is immutable, so let's set it up at boot time */
576 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
577 }
578 
579 static inline bool kvm_arch_requires_vhe(void)
580 {
581 	/*
582 	 * The Arm architecture specifies that implementation of SVE
583 	 * requires VHE also to be implemented.  The KVM code for arm64
584 	 * relies on this when SVE is present:
585 	 */
586 	if (system_supports_sve())
587 		return true;
588 
589 	return false;
590 }
591 
592 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
593 
594 static inline void kvm_arch_hardware_unsetup(void) {}
595 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
596 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
597 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
598 
599 void kvm_arm_init_debug(void);
600 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
601 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
602 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
603 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
604 			       struct kvm_device_attr *attr);
605 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
606 			       struct kvm_device_attr *attr);
607 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
608 			       struct kvm_device_attr *attr);
609 
610 /* Guest/host FPSIMD coordination helpers */
611 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
612 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
613 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
614 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
615 
616 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
617 {
618 	return (!has_vhe() && attr->exclude_host);
619 }
620 
621 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
622 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
623 {
624 	return kvm_arch_vcpu_run_map_fp(vcpu);
625 }
626 
627 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
628 void kvm_clr_pmu_events(u32 clr);
629 
630 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
631 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
632 #else
633 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
634 static inline void kvm_clr_pmu_events(u32 clr) {}
635 #endif
636 
637 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
638 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
639 
640 int kvm_set_ipa_limit(void);
641 
642 #define __KVM_HAVE_ARCH_VM_ALLOC
643 struct kvm *kvm_arch_alloc_vm(void);
644 void kvm_arch_free_vm(struct kvm *kvm);
645 
646 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
647 
648 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
649 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
650 
651 #define kvm_arm_vcpu_sve_finalized(vcpu) \
652 	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
653 
654 #endif /* __ARM64_KVM_HOST_H__ */
655