1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/asm/kvm_host.h: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_HOST_H__ 12 #define __ARM64_KVM_HOST_H__ 13 14 #include <linux/arm-smccc.h> 15 #include <linux/bitmap.h> 16 #include <linux/types.h> 17 #include <linux/jump_label.h> 18 #include <linux/kvm_types.h> 19 #include <linux/percpu.h> 20 #include <asm/arch_gicv3.h> 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/cputype.h> 24 #include <asm/daifflags.h> 25 #include <asm/fpsimd.h> 26 #include <asm/kvm.h> 27 #include <asm/kvm_asm.h> 28 #include <asm/thread_info.h> 29 30 #define __KVM_HAVE_ARCH_INTC_INITIALIZED 31 32 #define KVM_USER_MEM_SLOTS 512 33 #define KVM_HALT_POLL_NS_DEFAULT 500000 34 35 #include <kvm/arm_vgic.h> 36 #include <kvm/arm_arch_timer.h> 37 #include <kvm/arm_pmu.h> 38 39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS 40 41 #define KVM_VCPU_MAX_FEATURES 7 42 43 #define KVM_REQ_SLEEP \ 44 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 45 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) 46 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) 47 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) 48 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4) 49 50 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 51 KVM_DIRTY_LOG_INITIALLY_SET) 52 53 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 54 55 extern unsigned int kvm_sve_max_vl; 56 int kvm_arm_init_sve(void); 57 58 int __attribute_const__ kvm_target_cpu(void); 59 int kvm_reset_vcpu(struct kvm_vcpu *vcpu); 60 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu); 61 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext); 62 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start); 63 64 struct kvm_vmid { 65 /* The VMID generation used for the virt. memory system */ 66 u64 vmid_gen; 67 u32 vmid; 68 }; 69 70 struct kvm_s2_mmu { 71 struct kvm_vmid vmid; 72 73 /* 74 * stage2 entry level table 75 * 76 * Two kvm_s2_mmu structures in the same VM can point to the same 77 * pgd here. This happens when running a guest using a 78 * translation regime that isn't affected by its own stage-2 79 * translation, such as a non-VHE hypervisor running at vEL2, or 80 * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the 81 * canonical stage-2 page tables. 82 */ 83 phys_addr_t pgd_phys; 84 struct kvm_pgtable *pgt; 85 86 /* The last vcpu id that ran on each physical CPU */ 87 int __percpu *last_vcpu_ran; 88 89 struct kvm *kvm; 90 }; 91 92 struct kvm_arch { 93 struct kvm_s2_mmu mmu; 94 95 /* VTCR_EL2 value for this VM */ 96 u64 vtcr; 97 98 /* The maximum number of vCPUs depends on the used GIC model */ 99 int max_vcpus; 100 101 /* Interrupt controller */ 102 struct vgic_dist vgic; 103 104 /* Mandated version of PSCI */ 105 u32 psci_version; 106 107 /* 108 * If we encounter a data abort without valid instruction syndrome 109 * information, report this to user space. User space can (and 110 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is 111 * supported. 112 */ 113 bool return_nisv_io_abort_to_user; 114 115 /* 116 * VM-wide PMU filter, implemented as a bitmap and big enough for 117 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+). 118 */ 119 unsigned long *pmu_filter; 120 unsigned int pmuver; 121 122 u8 pfr0_csv2; 123 }; 124 125 struct kvm_vcpu_fault_info { 126 u32 esr_el2; /* Hyp Syndrom Register */ 127 u64 far_el2; /* Hyp Fault Address Register */ 128 u64 hpfar_el2; /* Hyp IPA Fault Address Register */ 129 u64 disr_el1; /* Deferred [SError] Status Register */ 130 }; 131 132 enum vcpu_sysreg { 133 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */ 134 MPIDR_EL1, /* MultiProcessor Affinity Register */ 135 CSSELR_EL1, /* Cache Size Selection Register */ 136 SCTLR_EL1, /* System Control Register */ 137 ACTLR_EL1, /* Auxiliary Control Register */ 138 CPACR_EL1, /* Coprocessor Access Control */ 139 ZCR_EL1, /* SVE Control */ 140 TTBR0_EL1, /* Translation Table Base Register 0 */ 141 TTBR1_EL1, /* Translation Table Base Register 1 */ 142 TCR_EL1, /* Translation Control Register */ 143 ESR_EL1, /* Exception Syndrome Register */ 144 AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ 145 AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ 146 FAR_EL1, /* Fault Address Register */ 147 MAIR_EL1, /* Memory Attribute Indirection Register */ 148 VBAR_EL1, /* Vector Base Address Register */ 149 CONTEXTIDR_EL1, /* Context ID Register */ 150 TPIDR_EL0, /* Thread ID, User R/W */ 151 TPIDRRO_EL0, /* Thread ID, User R/O */ 152 TPIDR_EL1, /* Thread ID, Privileged */ 153 AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ 154 CNTKCTL_EL1, /* Timer Control Register (EL1) */ 155 PAR_EL1, /* Physical Address Register */ 156 MDSCR_EL1, /* Monitor Debug System Control Register */ 157 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ 158 DISR_EL1, /* Deferred Interrupt Status Register */ 159 160 /* Performance Monitors Registers */ 161 PMCR_EL0, /* Control Register */ 162 PMSELR_EL0, /* Event Counter Selection Register */ 163 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ 164 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, 165 PMCCNTR_EL0, /* Cycle Counter Register */ 166 PMEVTYPER0_EL0, /* Event Type Register (0-30) */ 167 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, 168 PMCCFILTR_EL0, /* Cycle Count Filter Register */ 169 PMCNTENSET_EL0, /* Count Enable Set Register */ 170 PMINTENSET_EL1, /* Interrupt Enable Set Register */ 171 PMOVSSET_EL0, /* Overflow Flag Status Set Register */ 172 PMSWINC_EL0, /* Software Increment Register */ 173 PMUSERENR_EL0, /* User Enable Register */ 174 175 /* Pointer Authentication Registers in a strict increasing order. */ 176 APIAKEYLO_EL1, 177 APIAKEYHI_EL1, 178 APIBKEYLO_EL1, 179 APIBKEYHI_EL1, 180 APDAKEYLO_EL1, 181 APDAKEYHI_EL1, 182 APDBKEYLO_EL1, 183 APDBKEYHI_EL1, 184 APGAKEYLO_EL1, 185 APGAKEYHI_EL1, 186 187 ELR_EL1, 188 SP_EL1, 189 SPSR_EL1, 190 191 CNTVOFF_EL2, 192 CNTV_CVAL_EL0, 193 CNTV_CTL_EL0, 194 CNTP_CVAL_EL0, 195 CNTP_CTL_EL0, 196 197 /* 32bit specific registers. Keep them at the end of the range */ 198 DACR32_EL2, /* Domain Access Control Register */ 199 IFSR32_EL2, /* Instruction Fault Status Register */ 200 FPEXC32_EL2, /* Floating-Point Exception Control Register */ 201 DBGVCR32_EL2, /* Debug Vector Catch Register */ 202 203 NR_SYS_REGS /* Nothing after this line! */ 204 }; 205 206 /* 32bit mapping */ 207 #define c0_MPIDR (MPIDR_EL1 * 2) /* MultiProcessor ID Register */ 208 #define c0_CSSELR (CSSELR_EL1 * 2)/* Cache Size Selection Register */ 209 #define c1_SCTLR (SCTLR_EL1 * 2) /* System Control Register */ 210 #define c1_ACTLR (ACTLR_EL1 * 2) /* Auxiliary Control Register */ 211 #define c1_CPACR (CPACR_EL1 * 2) /* Coprocessor Access Control */ 212 #define c2_TTBR0 (TTBR0_EL1 * 2) /* Translation Table Base Register 0 */ 213 #define c2_TTBR0_high (c2_TTBR0 + 1) /* TTBR0 top 32 bits */ 214 #define c2_TTBR1 (TTBR1_EL1 * 2) /* Translation Table Base Register 1 */ 215 #define c2_TTBR1_high (c2_TTBR1 + 1) /* TTBR1 top 32 bits */ 216 #define c2_TTBCR (TCR_EL1 * 2) /* Translation Table Base Control R. */ 217 #define c3_DACR (DACR32_EL2 * 2)/* Domain Access Control Register */ 218 #define c5_DFSR (ESR_EL1 * 2) /* Data Fault Status Register */ 219 #define c5_IFSR (IFSR32_EL2 * 2)/* Instruction Fault Status Register */ 220 #define c5_ADFSR (AFSR0_EL1 * 2) /* Auxiliary Data Fault Status R */ 221 #define c5_AIFSR (AFSR1_EL1 * 2) /* Auxiliary Instr Fault Status R */ 222 #define c6_DFAR (FAR_EL1 * 2) /* Data Fault Address Register */ 223 #define c6_IFAR (c6_DFAR + 1) /* Instruction Fault Address Register */ 224 #define c7_PAR (PAR_EL1 * 2) /* Physical Address Register */ 225 #define c7_PAR_high (c7_PAR + 1) /* PAR top 32 bits */ 226 #define c10_PRRR (MAIR_EL1 * 2) /* Primary Region Remap Register */ 227 #define c10_NMRR (c10_PRRR + 1) /* Normal Memory Remap Register */ 228 #define c12_VBAR (VBAR_EL1 * 2) /* Vector Base Address Register */ 229 #define c13_CID (CONTEXTIDR_EL1 * 2) /* Context ID Register */ 230 #define c13_TID_URW (TPIDR_EL0 * 2) /* Thread ID, User R/W */ 231 #define c13_TID_URO (TPIDRRO_EL0 * 2)/* Thread ID, User R/O */ 232 #define c13_TID_PRIV (TPIDR_EL1 * 2) /* Thread ID, Privileged */ 233 #define c10_AMAIR0 (AMAIR_EL1 * 2) /* Aux Memory Attr Indirection Reg */ 234 #define c10_AMAIR1 (c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */ 235 #define c14_CNTKCTL (CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */ 236 237 #define cp14_DBGDSCRext (MDSCR_EL1 * 2) 238 #define cp14_DBGBCR0 (DBGBCR0_EL1 * 2) 239 #define cp14_DBGBVR0 (DBGBVR0_EL1 * 2) 240 #define cp14_DBGBXVR0 (cp14_DBGBVR0 + 1) 241 #define cp14_DBGWCR0 (DBGWCR0_EL1 * 2) 242 #define cp14_DBGWVR0 (DBGWVR0_EL1 * 2) 243 #define cp14_DBGDCCINT (MDCCINT_EL1 * 2) 244 #define cp14_DBGVCR (DBGVCR32_EL2 * 2) 245 246 #define NR_COPRO_REGS (NR_SYS_REGS * 2) 247 248 struct kvm_cpu_context { 249 struct user_pt_regs regs; /* sp = sp_el0 */ 250 251 u64 spsr_abt; 252 u64 spsr_und; 253 u64 spsr_irq; 254 u64 spsr_fiq; 255 256 struct user_fpsimd_state fp_regs; 257 258 union { 259 u64 sys_regs[NR_SYS_REGS]; 260 u32 copro[NR_COPRO_REGS]; 261 }; 262 263 struct kvm_vcpu *__hyp_running_vcpu; 264 }; 265 266 struct kvm_pmu_events { 267 u32 events_host; 268 u32 events_guest; 269 }; 270 271 struct kvm_host_data { 272 struct kvm_cpu_context host_ctxt; 273 struct kvm_pmu_events pmu_events; 274 }; 275 276 struct vcpu_reset_state { 277 unsigned long pc; 278 unsigned long r0; 279 bool be; 280 bool reset; 281 }; 282 283 struct kvm_vcpu_arch { 284 struct kvm_cpu_context ctxt; 285 void *sve_state; 286 unsigned int sve_max_vl; 287 288 /* Stage 2 paging state used by the hardware on next switch */ 289 struct kvm_s2_mmu *hw_mmu; 290 291 /* HYP configuration */ 292 u64 hcr_el2; 293 u32 mdcr_el2; 294 295 /* Exception Information */ 296 struct kvm_vcpu_fault_info fault; 297 298 /* State of various workarounds, see kvm_asm.h for bit assignment */ 299 u64 workaround_flags; 300 301 /* Miscellaneous vcpu state flags */ 302 u64 flags; 303 304 /* 305 * We maintain more than a single set of debug registers to support 306 * debugging the guest from the host and to maintain separate host and 307 * guest state during world switches. vcpu_debug_state are the debug 308 * registers of the vcpu as the guest sees them. host_debug_state are 309 * the host registers which are saved and restored during 310 * world switches. external_debug_state contains the debug 311 * values we want to debug the guest. This is set via the 312 * KVM_SET_GUEST_DEBUG ioctl. 313 * 314 * debug_ptr points to the set of debug registers that should be loaded 315 * onto the hardware when running the guest. 316 */ 317 struct kvm_guest_debug_arch *debug_ptr; 318 struct kvm_guest_debug_arch vcpu_debug_state; 319 struct kvm_guest_debug_arch external_debug_state; 320 321 struct thread_info *host_thread_info; /* hyp VA */ 322 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ 323 324 struct { 325 /* {Break,watch}point registers */ 326 struct kvm_guest_debug_arch regs; 327 /* Statistical profiling extension */ 328 u64 pmscr_el1; 329 } host_debug_state; 330 331 /* VGIC state */ 332 struct vgic_cpu vgic_cpu; 333 struct arch_timer_cpu timer_cpu; 334 struct kvm_pmu pmu; 335 336 /* 337 * Anything that is not used directly from assembly code goes 338 * here. 339 */ 340 341 /* 342 * Guest registers we preserve during guest debugging. 343 * 344 * These shadow registers are updated by the kvm_handle_sys_reg 345 * trap handler if the guest accesses or updates them while we 346 * are using guest debug. 347 */ 348 struct { 349 u32 mdscr_el1; 350 } guest_debug_preserved; 351 352 /* vcpu power-off state */ 353 bool power_off; 354 355 /* Don't run the guest (internal implementation need) */ 356 bool pause; 357 358 /* Cache some mmu pages needed inside spinlock regions */ 359 struct kvm_mmu_memory_cache mmu_page_cache; 360 361 /* Target CPU and feature flags */ 362 int target; 363 DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); 364 365 /* Detect first run of a vcpu */ 366 bool has_run_once; 367 368 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ 369 u64 vsesr_el2; 370 371 /* Additional reset state */ 372 struct vcpu_reset_state reset_state; 373 374 /* True when deferrable sysregs are loaded on the physical CPU, 375 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */ 376 bool sysregs_loaded_on_cpu; 377 378 /* Guest PV state */ 379 struct { 380 u64 last_steal; 381 gpa_t base; 382 } steal; 383 }; 384 385 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ 386 #define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \ 387 sve_ffr_offset((vcpu)->arch.sve_max_vl))) 388 389 #define vcpu_sve_state_size(vcpu) ({ \ 390 size_t __size_ret; \ 391 unsigned int __vcpu_vq; \ 392 \ 393 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ 394 __size_ret = 0; \ 395 } else { \ 396 __vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl); \ 397 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ 398 } \ 399 \ 400 __size_ret; \ 401 }) 402 403 /* vcpu_arch flags field values: */ 404 #define KVM_ARM64_DEBUG_DIRTY (1 << 0) 405 #define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */ 406 #define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */ 407 #define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */ 408 #define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */ 409 #define KVM_ARM64_GUEST_HAS_SVE (1 << 5) /* SVE exposed to guest */ 410 #define KVM_ARM64_VCPU_SVE_FINALIZED (1 << 6) /* SVE config completed */ 411 #define KVM_ARM64_GUEST_HAS_PTRAUTH (1 << 7) /* PTRAUTH exposed to guest */ 412 413 #define vcpu_has_sve(vcpu) (system_supports_sve() && \ 414 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE)) 415 416 #ifdef CONFIG_ARM64_PTR_AUTH 417 #define vcpu_has_ptrauth(vcpu) \ 418 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \ 419 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \ 420 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH) 421 #else 422 #define vcpu_has_ptrauth(vcpu) false 423 #endif 424 425 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs) 426 427 /* 428 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the 429 * memory backed version of a register, and not the one most recently 430 * accessed by a running VCPU. For example, for userspace access or 431 * for system registers that are never context switched, but only 432 * emulated. 433 */ 434 #define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)]) 435 436 #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r)) 437 438 #define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r))) 439 440 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); 441 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); 442 443 /* 444 * CP14 and CP15 live in the same array, as they are backed by the 445 * same system registers. 446 */ 447 #define CPx_BIAS IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) 448 449 #define vcpu_cp14(v,r) ((v)->arch.ctxt.copro[(r) ^ CPx_BIAS]) 450 #define vcpu_cp15(v,r) ((v)->arch.ctxt.copro[(r) ^ CPx_BIAS]) 451 452 struct kvm_vm_stat { 453 ulong remote_tlb_flush; 454 }; 455 456 struct kvm_vcpu_stat { 457 u64 halt_successful_poll; 458 u64 halt_attempted_poll; 459 u64 halt_poll_success_ns; 460 u64 halt_poll_fail_ns; 461 u64 halt_poll_invalid; 462 u64 halt_wakeup; 463 u64 hvc_exit_stat; 464 u64 wfe_exit_stat; 465 u64 wfi_exit_stat; 466 u64 mmio_exit_user; 467 u64 mmio_exit_kernel; 468 u64 exits; 469 }; 470 471 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); 472 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); 473 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); 474 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 475 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 476 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 477 struct kvm_vcpu_events *events); 478 479 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 480 struct kvm_vcpu_events *events); 481 482 #define KVM_ARCH_WANT_MMU_NOTIFIER 483 int kvm_unmap_hva_range(struct kvm *kvm, 484 unsigned long start, unsigned long end, unsigned flags); 485 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); 486 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); 487 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); 488 489 void kvm_arm_halt_guest(struct kvm *kvm); 490 void kvm_arm_resume_guest(struct kvm *kvm); 491 492 #define kvm_call_hyp_nvhe(f, ...) \ 493 ({ \ 494 struct arm_smccc_res res; \ 495 \ 496 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \ 497 ##__VA_ARGS__, &res); \ 498 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \ 499 \ 500 res.a1; \ 501 }) 502 503 /* 504 * The couple of isb() below are there to guarantee the same behaviour 505 * on VHE as on !VHE, where the eret to EL1 acts as a context 506 * synchronization event. 507 */ 508 #define kvm_call_hyp(f, ...) \ 509 do { \ 510 if (has_vhe()) { \ 511 f(__VA_ARGS__); \ 512 isb(); \ 513 } else { \ 514 kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 515 } \ 516 } while(0) 517 518 #define kvm_call_hyp_ret(f, ...) \ 519 ({ \ 520 typeof(f(__VA_ARGS__)) ret; \ 521 \ 522 if (has_vhe()) { \ 523 ret = f(__VA_ARGS__); \ 524 isb(); \ 525 } else { \ 526 ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 527 } \ 528 \ 529 ret; \ 530 }) 531 532 void force_vm_exit(const cpumask_t *mask); 533 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot); 534 535 int handle_exit(struct kvm_vcpu *vcpu, int exception_index); 536 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index); 537 538 /* MMIO helpers */ 539 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); 540 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len); 541 542 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu); 543 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa); 544 545 int kvm_perf_init(void); 546 int kvm_perf_teardown(void); 547 548 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); 549 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); 550 void kvm_update_stolen_time(struct kvm_vcpu *vcpu); 551 552 bool kvm_arm_pvtime_supported(void); 553 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, 554 struct kvm_device_attr *attr); 555 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, 556 struct kvm_device_attr *attr); 557 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, 558 struct kvm_device_attr *attr); 559 560 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) 561 { 562 vcpu_arch->steal.base = GPA_INVALID; 563 } 564 565 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) 566 { 567 return (vcpu_arch->steal.base != GPA_INVALID); 568 } 569 570 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); 571 572 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); 573 574 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data); 575 576 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) 577 { 578 /* The host's MPIDR is immutable, so let's set it up at boot time */ 579 ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr(); 580 } 581 582 static inline bool kvm_arch_requires_vhe(void) 583 { 584 /* 585 * The Arm architecture specifies that implementation of SVE 586 * requires VHE also to be implemented. The KVM code for arm64 587 * relies on this when SVE is present: 588 */ 589 if (system_supports_sve()) 590 return true; 591 592 return false; 593 } 594 595 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu); 596 597 static inline void kvm_arch_hardware_unsetup(void) {} 598 static inline void kvm_arch_sync_events(struct kvm *kvm) {} 599 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} 600 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} 601 602 void kvm_arm_init_debug(void); 603 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); 604 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); 605 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); 606 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 607 struct kvm_device_attr *attr); 608 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 609 struct kvm_device_attr *attr); 610 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 611 struct kvm_device_attr *attr); 612 613 /* Guest/host FPSIMD coordination helpers */ 614 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); 615 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); 616 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); 617 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); 618 619 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) 620 { 621 return (!has_vhe() && attr->exclude_host); 622 } 623 624 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */ 625 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 626 { 627 return kvm_arch_vcpu_run_map_fp(vcpu); 628 } 629 630 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); 631 void kvm_clr_pmu_events(u32 clr); 632 633 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu); 634 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu); 635 #else 636 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} 637 static inline void kvm_clr_pmu_events(u32 clr) {} 638 #endif 639 640 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu); 641 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu); 642 643 int kvm_set_ipa_limit(void); 644 645 #define __KVM_HAVE_ARCH_VM_ALLOC 646 struct kvm *kvm_arch_alloc_vm(void); 647 void kvm_arch_free_vm(struct kvm *kvm); 648 649 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type); 650 651 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); 652 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); 653 654 #define kvm_arm_vcpu_sve_finalized(vcpu) \ 655 ((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED) 656 657 #endif /* __ARM64_KVM_HOST_H__ */ 658