1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/asm/kvm_host.h: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_HOST_H__ 12 #define __ARM64_KVM_HOST_H__ 13 14 #include <linux/arm-smccc.h> 15 #include <linux/bitmap.h> 16 #include <linux/types.h> 17 #include <linux/jump_label.h> 18 #include <linux/kvm_types.h> 19 #include <linux/percpu.h> 20 #include <linux/psci.h> 21 #include <asm/arch_gicv3.h> 22 #include <asm/barrier.h> 23 #include <asm/cpufeature.h> 24 #include <asm/cputype.h> 25 #include <asm/daifflags.h> 26 #include <asm/fpsimd.h> 27 #include <asm/kvm.h> 28 #include <asm/kvm_asm.h> 29 30 #define __KVM_HAVE_ARCH_INTC_INITIALIZED 31 32 #define KVM_HALT_POLL_NS_DEFAULT 500000 33 34 #include <kvm/arm_vgic.h> 35 #include <kvm/arm_arch_timer.h> 36 #include <kvm/arm_pmu.h> 37 38 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS 39 40 #define KVM_VCPU_MAX_FEATURES 7 41 42 #define KVM_REQ_SLEEP \ 43 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 44 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) 45 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) 46 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) 47 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4) 48 #define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5) 49 50 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 51 KVM_DIRTY_LOG_INITIALLY_SET) 52 53 /* 54 * Mode of operation configurable with kvm-arm.mode early param. 55 * See Documentation/admin-guide/kernel-parameters.txt for more information. 56 */ 57 enum kvm_mode { 58 KVM_MODE_DEFAULT, 59 KVM_MODE_PROTECTED, 60 KVM_MODE_NONE, 61 }; 62 enum kvm_mode kvm_get_mode(void); 63 64 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 65 66 extern unsigned int kvm_sve_max_vl; 67 int kvm_arm_init_sve(void); 68 69 u32 __attribute_const__ kvm_target_cpu(void); 70 int kvm_reset_vcpu(struct kvm_vcpu *vcpu); 71 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu); 72 73 struct kvm_vmid { 74 /* The VMID generation used for the virt. memory system */ 75 u64 vmid_gen; 76 u32 vmid; 77 }; 78 79 struct kvm_s2_mmu { 80 struct kvm_vmid vmid; 81 82 /* 83 * stage2 entry level table 84 * 85 * Two kvm_s2_mmu structures in the same VM can point to the same 86 * pgd here. This happens when running a guest using a 87 * translation regime that isn't affected by its own stage-2 88 * translation, such as a non-VHE hypervisor running at vEL2, or 89 * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the 90 * canonical stage-2 page tables. 91 */ 92 phys_addr_t pgd_phys; 93 struct kvm_pgtable *pgt; 94 95 /* The last vcpu id that ran on each physical CPU */ 96 int __percpu *last_vcpu_ran; 97 98 struct kvm_arch *arch; 99 }; 100 101 struct kvm_arch_memory_slot { 102 }; 103 104 struct kvm_arch { 105 struct kvm_s2_mmu mmu; 106 107 /* VTCR_EL2 value for this VM */ 108 u64 vtcr; 109 110 /* The maximum number of vCPUs depends on the used GIC model */ 111 int max_vcpus; 112 113 /* Interrupt controller */ 114 struct vgic_dist vgic; 115 116 /* Mandated version of PSCI */ 117 u32 psci_version; 118 119 /* 120 * If we encounter a data abort without valid instruction syndrome 121 * information, report this to user space. User space can (and 122 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is 123 * supported. 124 */ 125 bool return_nisv_io_abort_to_user; 126 127 /* 128 * VM-wide PMU filter, implemented as a bitmap and big enough for 129 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+). 130 */ 131 unsigned long *pmu_filter; 132 unsigned int pmuver; 133 134 u8 pfr0_csv2; 135 u8 pfr0_csv3; 136 137 /* Memory Tagging Extension enabled for the guest */ 138 bool mte_enabled; 139 }; 140 141 struct kvm_vcpu_fault_info { 142 u32 esr_el2; /* Hyp Syndrom Register */ 143 u64 far_el2; /* Hyp Fault Address Register */ 144 u64 hpfar_el2; /* Hyp IPA Fault Address Register */ 145 u64 disr_el1; /* Deferred [SError] Status Register */ 146 }; 147 148 enum vcpu_sysreg { 149 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */ 150 MPIDR_EL1, /* MultiProcessor Affinity Register */ 151 CSSELR_EL1, /* Cache Size Selection Register */ 152 SCTLR_EL1, /* System Control Register */ 153 ACTLR_EL1, /* Auxiliary Control Register */ 154 CPACR_EL1, /* Coprocessor Access Control */ 155 ZCR_EL1, /* SVE Control */ 156 TTBR0_EL1, /* Translation Table Base Register 0 */ 157 TTBR1_EL1, /* Translation Table Base Register 1 */ 158 TCR_EL1, /* Translation Control Register */ 159 ESR_EL1, /* Exception Syndrome Register */ 160 AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ 161 AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ 162 FAR_EL1, /* Fault Address Register */ 163 MAIR_EL1, /* Memory Attribute Indirection Register */ 164 VBAR_EL1, /* Vector Base Address Register */ 165 CONTEXTIDR_EL1, /* Context ID Register */ 166 TPIDR_EL0, /* Thread ID, User R/W */ 167 TPIDRRO_EL0, /* Thread ID, User R/O */ 168 TPIDR_EL1, /* Thread ID, Privileged */ 169 AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ 170 CNTKCTL_EL1, /* Timer Control Register (EL1) */ 171 PAR_EL1, /* Physical Address Register */ 172 MDSCR_EL1, /* Monitor Debug System Control Register */ 173 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ 174 DISR_EL1, /* Deferred Interrupt Status Register */ 175 176 /* Performance Monitors Registers */ 177 PMCR_EL0, /* Control Register */ 178 PMSELR_EL0, /* Event Counter Selection Register */ 179 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ 180 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, 181 PMCCNTR_EL0, /* Cycle Counter Register */ 182 PMEVTYPER0_EL0, /* Event Type Register (0-30) */ 183 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, 184 PMCCFILTR_EL0, /* Cycle Count Filter Register */ 185 PMCNTENSET_EL0, /* Count Enable Set Register */ 186 PMINTENSET_EL1, /* Interrupt Enable Set Register */ 187 PMOVSSET_EL0, /* Overflow Flag Status Set Register */ 188 PMUSERENR_EL0, /* User Enable Register */ 189 190 /* Pointer Authentication Registers in a strict increasing order. */ 191 APIAKEYLO_EL1, 192 APIAKEYHI_EL1, 193 APIBKEYLO_EL1, 194 APIBKEYHI_EL1, 195 APDAKEYLO_EL1, 196 APDAKEYHI_EL1, 197 APDBKEYLO_EL1, 198 APDBKEYHI_EL1, 199 APGAKEYLO_EL1, 200 APGAKEYHI_EL1, 201 202 ELR_EL1, 203 SP_EL1, 204 SPSR_EL1, 205 206 CNTVOFF_EL2, 207 CNTV_CVAL_EL0, 208 CNTV_CTL_EL0, 209 CNTP_CVAL_EL0, 210 CNTP_CTL_EL0, 211 212 /* Memory Tagging Extension registers */ 213 RGSR_EL1, /* Random Allocation Tag Seed Register */ 214 GCR_EL1, /* Tag Control Register */ 215 TFSR_EL1, /* Tag Fault Status Register (EL1) */ 216 TFSRE0_EL1, /* Tag Fault Status Register (EL0) */ 217 218 /* 32bit specific registers. Keep them at the end of the range */ 219 DACR32_EL2, /* Domain Access Control Register */ 220 IFSR32_EL2, /* Instruction Fault Status Register */ 221 FPEXC32_EL2, /* Floating-Point Exception Control Register */ 222 DBGVCR32_EL2, /* Debug Vector Catch Register */ 223 224 NR_SYS_REGS /* Nothing after this line! */ 225 }; 226 227 struct kvm_cpu_context { 228 struct user_pt_regs regs; /* sp = sp_el0 */ 229 230 u64 spsr_abt; 231 u64 spsr_und; 232 u64 spsr_irq; 233 u64 spsr_fiq; 234 235 struct user_fpsimd_state fp_regs; 236 237 u64 sys_regs[NR_SYS_REGS]; 238 239 struct kvm_vcpu *__hyp_running_vcpu; 240 }; 241 242 struct kvm_pmu_events { 243 u32 events_host; 244 u32 events_guest; 245 }; 246 247 struct kvm_host_data { 248 struct kvm_cpu_context host_ctxt; 249 struct kvm_pmu_events pmu_events; 250 }; 251 252 struct kvm_host_psci_config { 253 /* PSCI version used by host. */ 254 u32 version; 255 256 /* Function IDs used by host if version is v0.1. */ 257 struct psci_0_1_function_ids function_ids_0_1; 258 259 bool psci_0_1_cpu_suspend_implemented; 260 bool psci_0_1_cpu_on_implemented; 261 bool psci_0_1_cpu_off_implemented; 262 bool psci_0_1_migrate_implemented; 263 }; 264 265 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config); 266 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config) 267 268 extern s64 kvm_nvhe_sym(hyp_physvirt_offset); 269 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset) 270 271 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS]; 272 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map) 273 274 struct vcpu_reset_state { 275 unsigned long pc; 276 unsigned long r0; 277 bool be; 278 bool reset; 279 }; 280 281 struct kvm_vcpu_arch { 282 struct kvm_cpu_context ctxt; 283 void *sve_state; 284 unsigned int sve_max_vl; 285 286 /* Stage 2 paging state used by the hardware on next switch */ 287 struct kvm_s2_mmu *hw_mmu; 288 289 /* Values of trap registers for the guest. */ 290 u64 hcr_el2; 291 u64 mdcr_el2; 292 u64 cptr_el2; 293 294 /* Values of trap registers for the host before guest entry. */ 295 u64 mdcr_el2_host; 296 297 /* Exception Information */ 298 struct kvm_vcpu_fault_info fault; 299 300 /* Miscellaneous vcpu state flags */ 301 u64 flags; 302 303 /* 304 * We maintain more than a single set of debug registers to support 305 * debugging the guest from the host and to maintain separate host and 306 * guest state during world switches. vcpu_debug_state are the debug 307 * registers of the vcpu as the guest sees them. host_debug_state are 308 * the host registers which are saved and restored during 309 * world switches. external_debug_state contains the debug 310 * values we want to debug the guest. This is set via the 311 * KVM_SET_GUEST_DEBUG ioctl. 312 * 313 * debug_ptr points to the set of debug registers that should be loaded 314 * onto the hardware when running the guest. 315 */ 316 struct kvm_guest_debug_arch *debug_ptr; 317 struct kvm_guest_debug_arch vcpu_debug_state; 318 struct kvm_guest_debug_arch external_debug_state; 319 320 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ 321 struct task_struct *parent_task; 322 323 struct { 324 /* {Break,watch}point registers */ 325 struct kvm_guest_debug_arch regs; 326 /* Statistical profiling extension */ 327 u64 pmscr_el1; 328 /* Self-hosted trace */ 329 u64 trfcr_el1; 330 } host_debug_state; 331 332 /* VGIC state */ 333 struct vgic_cpu vgic_cpu; 334 struct arch_timer_cpu timer_cpu; 335 struct kvm_pmu pmu; 336 337 /* 338 * Anything that is not used directly from assembly code goes 339 * here. 340 */ 341 342 /* 343 * Guest registers we preserve during guest debugging. 344 * 345 * These shadow registers are updated by the kvm_handle_sys_reg 346 * trap handler if the guest accesses or updates them while we 347 * are using guest debug. 348 */ 349 struct { 350 u32 mdscr_el1; 351 } guest_debug_preserved; 352 353 /* vcpu power-off state */ 354 bool power_off; 355 356 /* Don't run the guest (internal implementation need) */ 357 bool pause; 358 359 /* Cache some mmu pages needed inside spinlock regions */ 360 struct kvm_mmu_memory_cache mmu_page_cache; 361 362 /* Target CPU and feature flags */ 363 int target; 364 DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); 365 366 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ 367 u64 vsesr_el2; 368 369 /* Additional reset state */ 370 struct vcpu_reset_state reset_state; 371 372 /* True when deferrable sysregs are loaded on the physical CPU, 373 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */ 374 bool sysregs_loaded_on_cpu; 375 376 /* Guest PV state */ 377 struct { 378 u64 last_steal; 379 gpa_t base; 380 } steal; 381 }; 382 383 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ 384 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \ 385 sve_ffr_offset((vcpu)->arch.sve_max_vl)) 386 387 #define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl) 388 389 #define vcpu_sve_state_size(vcpu) ({ \ 390 size_t __size_ret; \ 391 unsigned int __vcpu_vq; \ 392 \ 393 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ 394 __size_ret = 0; \ 395 } else { \ 396 __vcpu_vq = vcpu_sve_max_vq(vcpu); \ 397 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ 398 } \ 399 \ 400 __size_ret; \ 401 }) 402 403 /* vcpu_arch flags field values: */ 404 #define KVM_ARM64_DEBUG_DIRTY (1 << 0) 405 #define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */ 406 #define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */ 407 #define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */ 408 #define KVM_ARM64_GUEST_HAS_SVE (1 << 5) /* SVE exposed to guest */ 409 #define KVM_ARM64_VCPU_SVE_FINALIZED (1 << 6) /* SVE config completed */ 410 #define KVM_ARM64_GUEST_HAS_PTRAUTH (1 << 7) /* PTRAUTH exposed to guest */ 411 #define KVM_ARM64_PENDING_EXCEPTION (1 << 8) /* Exception pending */ 412 /* 413 * Overlaps with KVM_ARM64_EXCEPT_MASK on purpose so that it can't be 414 * set together with an exception... 415 */ 416 #define KVM_ARM64_INCREMENT_PC (1 << 9) /* Increment PC */ 417 #define KVM_ARM64_EXCEPT_MASK (7 << 9) /* Target EL/MODE */ 418 /* 419 * When KVM_ARM64_PENDING_EXCEPTION is set, KVM_ARM64_EXCEPT_MASK can 420 * take the following values: 421 * 422 * For AArch32 EL1: 423 */ 424 #define KVM_ARM64_EXCEPT_AA32_UND (0 << 9) 425 #define KVM_ARM64_EXCEPT_AA32_IABT (1 << 9) 426 #define KVM_ARM64_EXCEPT_AA32_DABT (2 << 9) 427 /* For AArch64: */ 428 #define KVM_ARM64_EXCEPT_AA64_ELx_SYNC (0 << 9) 429 #define KVM_ARM64_EXCEPT_AA64_ELx_IRQ (1 << 9) 430 #define KVM_ARM64_EXCEPT_AA64_ELx_FIQ (2 << 9) 431 #define KVM_ARM64_EXCEPT_AA64_ELx_SERR (3 << 9) 432 #define KVM_ARM64_EXCEPT_AA64_EL1 (0 << 11) 433 #define KVM_ARM64_EXCEPT_AA64_EL2 (1 << 11) 434 435 #define KVM_ARM64_DEBUG_STATE_SAVE_SPE (1 << 12) /* Save SPE context if active */ 436 #define KVM_ARM64_DEBUG_STATE_SAVE_TRBE (1 << 13) /* Save TRBE context if active */ 437 #define KVM_ARM64_FP_FOREIGN_FPSTATE (1 << 14) 438 439 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \ 440 KVM_GUESTDBG_USE_SW_BP | \ 441 KVM_GUESTDBG_USE_HW | \ 442 KVM_GUESTDBG_SINGLESTEP) 443 444 #define vcpu_has_sve(vcpu) (system_supports_sve() && \ 445 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE)) 446 447 #ifdef CONFIG_ARM64_PTR_AUTH 448 #define vcpu_has_ptrauth(vcpu) \ 449 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \ 450 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \ 451 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH) 452 #else 453 #define vcpu_has_ptrauth(vcpu) false 454 #endif 455 456 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs) 457 458 /* 459 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the 460 * memory backed version of a register, and not the one most recently 461 * accessed by a running VCPU. For example, for userspace access or 462 * for system registers that are never context switched, but only 463 * emulated. 464 */ 465 #define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)]) 466 467 #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r)) 468 469 #define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r))) 470 471 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); 472 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); 473 474 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val) 475 { 476 /* 477 * *** VHE ONLY *** 478 * 479 * System registers listed in the switch are not saved on every 480 * exit from the guest but are only saved on vcpu_put. 481 * 482 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 483 * should never be listed below, because the guest cannot modify its 484 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's 485 * thread when emulating cross-VCPU communication. 486 */ 487 if (!has_vhe()) 488 return false; 489 490 switch (reg) { 491 case CSSELR_EL1: *val = read_sysreg_s(SYS_CSSELR_EL1); break; 492 case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break; 493 case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break; 494 case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break; 495 case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break; 496 case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break; 497 case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break; 498 case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break; 499 case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break; 500 case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break; 501 case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break; 502 case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break; 503 case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break; 504 case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break; 505 case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break; 506 case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break; 507 case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break; 508 case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break; 509 case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break; 510 case PAR_EL1: *val = read_sysreg_par(); break; 511 case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break; 512 case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break; 513 case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break; 514 default: return false; 515 } 516 517 return true; 518 } 519 520 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg) 521 { 522 /* 523 * *** VHE ONLY *** 524 * 525 * System registers listed in the switch are not restored on every 526 * entry to the guest but are only restored on vcpu_load. 527 * 528 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 529 * should never be listed below, because the MPIDR should only be set 530 * once, before running the VCPU, and never changed later. 531 */ 532 if (!has_vhe()) 533 return false; 534 535 switch (reg) { 536 case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); break; 537 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break; 538 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break; 539 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break; 540 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break; 541 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break; 542 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break; 543 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break; 544 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break; 545 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break; 546 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break; 547 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break; 548 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break; 549 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break; 550 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break; 551 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break; 552 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break; 553 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break; 554 case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break; 555 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break; 556 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break; 557 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break; 558 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break; 559 default: return false; 560 } 561 562 return true; 563 } 564 565 struct kvm_vm_stat { 566 struct kvm_vm_stat_generic generic; 567 }; 568 569 struct kvm_vcpu_stat { 570 struct kvm_vcpu_stat_generic generic; 571 u64 hvc_exit_stat; 572 u64 wfe_exit_stat; 573 u64 wfi_exit_stat; 574 u64 mmio_exit_user; 575 u64 mmio_exit_kernel; 576 u64 signal_exits; 577 u64 exits; 578 }; 579 580 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); 581 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); 582 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); 583 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 584 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 585 586 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu); 587 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices); 588 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *); 589 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *); 590 591 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 592 struct kvm_vcpu_events *events); 593 594 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 595 struct kvm_vcpu_events *events); 596 597 #define KVM_ARCH_WANT_MMU_NOTIFIER 598 599 void kvm_arm_halt_guest(struct kvm *kvm); 600 void kvm_arm_resume_guest(struct kvm *kvm); 601 602 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid) 603 604 #ifndef __KVM_NVHE_HYPERVISOR__ 605 #define kvm_call_hyp_nvhe(f, ...) \ 606 ({ \ 607 struct arm_smccc_res res; \ 608 \ 609 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \ 610 ##__VA_ARGS__, &res); \ 611 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \ 612 \ 613 res.a1; \ 614 }) 615 616 /* 617 * The couple of isb() below are there to guarantee the same behaviour 618 * on VHE as on !VHE, where the eret to EL1 acts as a context 619 * synchronization event. 620 */ 621 #define kvm_call_hyp(f, ...) \ 622 do { \ 623 if (has_vhe()) { \ 624 f(__VA_ARGS__); \ 625 isb(); \ 626 } else { \ 627 kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 628 } \ 629 } while(0) 630 631 #define kvm_call_hyp_ret(f, ...) \ 632 ({ \ 633 typeof(f(__VA_ARGS__)) ret; \ 634 \ 635 if (has_vhe()) { \ 636 ret = f(__VA_ARGS__); \ 637 isb(); \ 638 } else { \ 639 ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 640 } \ 641 \ 642 ret; \ 643 }) 644 #else /* __KVM_NVHE_HYPERVISOR__ */ 645 #define kvm_call_hyp(f, ...) f(__VA_ARGS__) 646 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__) 647 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__) 648 #endif /* __KVM_NVHE_HYPERVISOR__ */ 649 650 void force_vm_exit(const cpumask_t *mask); 651 652 int handle_exit(struct kvm_vcpu *vcpu, int exception_index); 653 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index); 654 655 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu); 656 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu); 657 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu); 658 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu); 659 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu); 660 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu); 661 662 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu); 663 664 void kvm_sys_reg_table_init(void); 665 666 /* MMIO helpers */ 667 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); 668 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len); 669 670 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu); 671 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa); 672 673 /* 674 * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event, 675 * arrived in guest context. For arm64, any event that arrives while a vCPU is 676 * loaded is considered to be "in guest". 677 */ 678 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu) 679 { 680 return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu; 681 } 682 683 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); 684 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); 685 void kvm_update_stolen_time(struct kvm_vcpu *vcpu); 686 687 bool kvm_arm_pvtime_supported(void); 688 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, 689 struct kvm_device_attr *attr); 690 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, 691 struct kvm_device_attr *attr); 692 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, 693 struct kvm_device_attr *attr); 694 695 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) 696 { 697 vcpu_arch->steal.base = GPA_INVALID; 698 } 699 700 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) 701 { 702 return (vcpu_arch->steal.base != GPA_INVALID); 703 } 704 705 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); 706 707 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); 708 709 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data); 710 711 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) 712 { 713 /* The host's MPIDR is immutable, so let's set it up at boot time */ 714 ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr(); 715 } 716 717 static inline bool kvm_system_needs_idmapped_vectors(void) 718 { 719 return cpus_have_const_cap(ARM64_SPECTRE_V3A); 720 } 721 722 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu); 723 724 static inline void kvm_arch_hardware_unsetup(void) {} 725 static inline void kvm_arch_sync_events(struct kvm *kvm) {} 726 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} 727 728 void kvm_arm_init_debug(void); 729 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu); 730 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); 731 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); 732 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); 733 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 734 struct kvm_device_attr *attr); 735 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 736 struct kvm_device_attr *attr); 737 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 738 struct kvm_device_attr *attr); 739 740 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, 741 struct kvm_arm_copy_mte_tags *copy_tags); 742 743 /* Guest/host FPSIMD coordination helpers */ 744 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); 745 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); 746 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu); 747 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); 748 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); 749 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu); 750 751 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) 752 { 753 return (!has_vhe() && attr->exclude_host); 754 } 755 756 /* Flags for host debug state */ 757 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu); 758 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu); 759 760 #ifdef CONFIG_KVM 761 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); 762 void kvm_clr_pmu_events(u32 clr); 763 764 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu); 765 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu); 766 #else 767 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} 768 static inline void kvm_clr_pmu_events(u32 clr) {} 769 #endif 770 771 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu); 772 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu); 773 774 int kvm_set_ipa_limit(void); 775 776 #define __KVM_HAVE_ARCH_VM_ALLOC 777 struct kvm *kvm_arch_alloc_vm(void); 778 779 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type); 780 781 static inline bool kvm_vm_is_protected(struct kvm *kvm) 782 { 783 return false; 784 } 785 786 void kvm_init_protected_traps(struct kvm_vcpu *vcpu); 787 788 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); 789 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); 790 791 #define kvm_arm_vcpu_sve_finalized(vcpu) \ 792 ((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED) 793 794 #define kvm_has_mte(kvm) (system_supports_mte() && (kvm)->arch.mte_enabled) 795 #define kvm_vcpu_has_pmu(vcpu) \ 796 (test_bit(KVM_ARM_VCPU_PMU_V3, (vcpu)->arch.features)) 797 798 int kvm_trng_call(struct kvm_vcpu *vcpu); 799 #ifdef CONFIG_KVM 800 extern phys_addr_t hyp_mem_base; 801 extern phys_addr_t hyp_mem_size; 802 void __init kvm_hyp_reserve(void); 803 #else 804 static inline void kvm_hyp_reserve(void) { } 805 #endif 806 807 #endif /* __ARM64_KVM_HOST_H__ */ 808