xref: /openbmc/linux/arch/arm64/include/asm/kvm_host.h (revision 71a15258f3c92eb1c4ae98bbfca9459f4723d5d3)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30 
31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
32 
33 #define KVM_HALT_POLL_NS_DEFAULT 500000
34 
35 #include <kvm/arm_vgic.h>
36 #include <kvm/arm_arch_timer.h>
37 #include <kvm/arm_pmu.h>
38 
39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40 
41 #define KVM_VCPU_MAX_FEATURES 7
42 #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
43 
44 #define KVM_REQ_SLEEP \
45 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
46 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
47 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
48 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
49 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
50 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
51 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
52 #define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
53 
54 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
55 				     KVM_DIRTY_LOG_INITIALLY_SET)
56 
57 #define KVM_HAVE_MMU_RWLOCK
58 
59 /*
60  * Mode of operation configurable with kvm-arm.mode early param.
61  * See Documentation/admin-guide/kernel-parameters.txt for more information.
62  */
63 enum kvm_mode {
64 	KVM_MODE_DEFAULT,
65 	KVM_MODE_PROTECTED,
66 	KVM_MODE_NV,
67 	KVM_MODE_NONE,
68 };
69 #ifdef CONFIG_KVM
70 enum kvm_mode kvm_get_mode(void);
71 #else
72 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
73 #endif
74 
75 extern unsigned int __ro_after_init kvm_sve_max_vl;
76 int __init kvm_arm_init_sve(void);
77 
78 u32 __attribute_const__ kvm_target_cpu(void);
79 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
80 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
81 
82 struct kvm_hyp_memcache {
83 	phys_addr_t head;
84 	unsigned long nr_pages;
85 };
86 
87 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
88 				     phys_addr_t *p,
89 				     phys_addr_t (*to_pa)(void *virt))
90 {
91 	*p = mc->head;
92 	mc->head = to_pa(p);
93 	mc->nr_pages++;
94 }
95 
96 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
97 				     void *(*to_va)(phys_addr_t phys))
98 {
99 	phys_addr_t *p = to_va(mc->head);
100 
101 	if (!mc->nr_pages)
102 		return NULL;
103 
104 	mc->head = *p;
105 	mc->nr_pages--;
106 
107 	return p;
108 }
109 
110 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
111 				       unsigned long min_pages,
112 				       void *(*alloc_fn)(void *arg),
113 				       phys_addr_t (*to_pa)(void *virt),
114 				       void *arg)
115 {
116 	while (mc->nr_pages < min_pages) {
117 		phys_addr_t *p = alloc_fn(arg);
118 
119 		if (!p)
120 			return -ENOMEM;
121 		push_hyp_memcache(mc, p, to_pa);
122 	}
123 
124 	return 0;
125 }
126 
127 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
128 				       void (*free_fn)(void *virt, void *arg),
129 				       void *(*to_va)(phys_addr_t phys),
130 				       void *arg)
131 {
132 	while (mc->nr_pages)
133 		free_fn(pop_hyp_memcache(mc, to_va), arg);
134 }
135 
136 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
137 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
138 
139 struct kvm_vmid {
140 	atomic64_t id;
141 };
142 
143 struct kvm_s2_mmu {
144 	struct kvm_vmid vmid;
145 
146 	/*
147 	 * stage2 entry level table
148 	 *
149 	 * Two kvm_s2_mmu structures in the same VM can point to the same
150 	 * pgd here.  This happens when running a guest using a
151 	 * translation regime that isn't affected by its own stage-2
152 	 * translation, such as a non-VHE hypervisor running at vEL2, or
153 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
154 	 * canonical stage-2 page tables.
155 	 */
156 	phys_addr_t	pgd_phys;
157 	struct kvm_pgtable *pgt;
158 
159 	/* The last vcpu id that ran on each physical CPU */
160 	int __percpu *last_vcpu_ran;
161 
162 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
163 	/*
164 	 * Memory cache used to split
165 	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
166 	 * is used to allocate stage2 page tables while splitting huge
167 	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
168 	 * influences both the capacity of the split page cache, and
169 	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
170 	 * too high.
171 	 *
172 	 * Protected by kvm->slots_lock.
173 	 */
174 	struct kvm_mmu_memory_cache split_page_cache;
175 	uint64_t split_page_chunk_size;
176 
177 	struct kvm_arch *arch;
178 };
179 
180 struct kvm_arch_memory_slot {
181 };
182 
183 /**
184  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
185  *
186  * @std_bmap: Bitmap of standard secure service calls
187  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
188  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
189  */
190 struct kvm_smccc_features {
191 	unsigned long std_bmap;
192 	unsigned long std_hyp_bmap;
193 	unsigned long vendor_hyp_bmap;
194 };
195 
196 typedef unsigned int pkvm_handle_t;
197 
198 struct kvm_protected_vm {
199 	pkvm_handle_t handle;
200 	struct kvm_hyp_memcache teardown_mc;
201 };
202 
203 struct kvm_arch {
204 	struct kvm_s2_mmu mmu;
205 
206 	/* VTCR_EL2 value for this VM */
207 	u64    vtcr;
208 
209 	/* Interrupt controller */
210 	struct vgic_dist	vgic;
211 
212 	/* Timers */
213 	struct arch_timer_vm_data timer_data;
214 
215 	/* Mandated version of PSCI */
216 	u32 psci_version;
217 
218 	/* Protects VM-scoped configuration data */
219 	struct mutex config_lock;
220 
221 	/*
222 	 * If we encounter a data abort without valid instruction syndrome
223 	 * information, report this to user space.  User space can (and
224 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
225 	 * supported.
226 	 */
227 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
228 	/* Memory Tagging Extension enabled for the guest */
229 #define KVM_ARCH_FLAG_MTE_ENABLED			1
230 	/* At least one vCPU has ran in the VM */
231 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
232 	/* The vCPU feature set for the VM is configured */
233 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
234 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
235 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
236 	/* VM counter offset */
237 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
238 	/* Timer PPIs made immutable */
239 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
240 	/* SMCCC filter initialized for the VM */
241 #define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED		7
242 	/* Initial ID reg values loaded */
243 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		8
244 	unsigned long flags;
245 
246 	/* VM-wide vCPU feature set */
247 	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
248 
249 	/*
250 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
251 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
252 	 */
253 	unsigned long *pmu_filter;
254 	struct arm_pmu *arm_pmu;
255 
256 	cpumask_var_t supported_cpus;
257 
258 	/* Hypercall features firmware registers' descriptor */
259 	struct kvm_smccc_features smccc_feat;
260 	struct maple_tree smccc_filter;
261 
262 	/*
263 	 * Emulated CPU ID registers per VM
264 	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
265 	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
266 	 *
267 	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
268 	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
269 	 */
270 #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
271 #define IDREG(kvm, id)		((kvm)->arch.id_regs[IDREG_IDX(id)])
272 #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
273 	u64 id_regs[KVM_ARM_ID_REG_NUM];
274 
275 	/*
276 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
277 	 * the associated pKVM instance in the hypervisor.
278 	 */
279 	struct kvm_protected_vm pkvm;
280 };
281 
282 struct kvm_vcpu_fault_info {
283 	u64 esr_el2;		/* Hyp Syndrom Register */
284 	u64 far_el2;		/* Hyp Fault Address Register */
285 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
286 	u64 disr_el1;		/* Deferred [SError] Status Register */
287 };
288 
289 enum vcpu_sysreg {
290 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
291 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
292 	CLIDR_EL1,	/* Cache Level ID Register */
293 	CSSELR_EL1,	/* Cache Size Selection Register */
294 	SCTLR_EL1,	/* System Control Register */
295 	ACTLR_EL1,	/* Auxiliary Control Register */
296 	CPACR_EL1,	/* Coprocessor Access Control */
297 	ZCR_EL1,	/* SVE Control */
298 	TTBR0_EL1,	/* Translation Table Base Register 0 */
299 	TTBR1_EL1,	/* Translation Table Base Register 1 */
300 	TCR_EL1,	/* Translation Control Register */
301 	TCR2_EL1,	/* Extended Translation Control Register */
302 	ESR_EL1,	/* Exception Syndrome Register */
303 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
304 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
305 	FAR_EL1,	/* Fault Address Register */
306 	MAIR_EL1,	/* Memory Attribute Indirection Register */
307 	VBAR_EL1,	/* Vector Base Address Register */
308 	CONTEXTIDR_EL1,	/* Context ID Register */
309 	TPIDR_EL0,	/* Thread ID, User R/W */
310 	TPIDRRO_EL0,	/* Thread ID, User R/O */
311 	TPIDR_EL1,	/* Thread ID, Privileged */
312 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
313 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
314 	PAR_EL1,	/* Physical Address Register */
315 	MDSCR_EL1,	/* Monitor Debug System Control Register */
316 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
317 	OSLSR_EL1,	/* OS Lock Status Register */
318 	DISR_EL1,	/* Deferred Interrupt Status Register */
319 
320 	/* Performance Monitors Registers */
321 	PMCR_EL0,	/* Control Register */
322 	PMSELR_EL0,	/* Event Counter Selection Register */
323 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
324 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
325 	PMCCNTR_EL0,	/* Cycle Counter Register */
326 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
327 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
328 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
329 	PMCNTENSET_EL0,	/* Count Enable Set Register */
330 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
331 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
332 	PMUSERENR_EL0,	/* User Enable Register */
333 
334 	/* Pointer Authentication Registers in a strict increasing order. */
335 	APIAKEYLO_EL1,
336 	APIAKEYHI_EL1,
337 	APIBKEYLO_EL1,
338 	APIBKEYHI_EL1,
339 	APDAKEYLO_EL1,
340 	APDAKEYHI_EL1,
341 	APDBKEYLO_EL1,
342 	APDBKEYHI_EL1,
343 	APGAKEYLO_EL1,
344 	APGAKEYHI_EL1,
345 
346 	ELR_EL1,
347 	SP_EL1,
348 	SPSR_EL1,
349 
350 	CNTVOFF_EL2,
351 	CNTV_CVAL_EL0,
352 	CNTV_CTL_EL0,
353 	CNTP_CVAL_EL0,
354 	CNTP_CTL_EL0,
355 
356 	/* Memory Tagging Extension registers */
357 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
358 	GCR_EL1,	/* Tag Control Register */
359 	TFSR_EL1,	/* Tag Fault Status Register (EL1) */
360 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
361 
362 	/* Permission Indirection Extension registers */
363 	PIR_EL1,       /* Permission Indirection Register 1 (EL1) */
364 	PIRE0_EL1,     /*  Permission Indirection Register 0 (EL1) */
365 
366 	/* 32bit specific registers. */
367 	DACR32_EL2,	/* Domain Access Control Register */
368 	IFSR32_EL2,	/* Instruction Fault Status Register */
369 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
370 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
371 
372 	/* EL2 registers */
373 	VPIDR_EL2,	/* Virtualization Processor ID Register */
374 	VMPIDR_EL2,	/* Virtualization Multiprocessor ID Register */
375 	SCTLR_EL2,	/* System Control Register (EL2) */
376 	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
377 	HCR_EL2,	/* Hypervisor Configuration Register */
378 	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
379 	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
380 	HSTR_EL2,	/* Hypervisor System Trap Register */
381 	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
382 	HCRX_EL2,	/* Extended Hypervisor Configuration Register */
383 	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
384 	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
385 	TCR_EL2,	/* Translation Control Register (EL2) */
386 	VTTBR_EL2,	/* Virtualization Translation Table Base Register */
387 	VTCR_EL2,	/* Virtualization Translation Control Register */
388 	SPSR_EL2,	/* EL2 saved program status register */
389 	ELR_EL2,	/* EL2 exception link register */
390 	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
391 	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
392 	ESR_EL2,	/* Exception Syndrome Register (EL2) */
393 	FAR_EL2,	/* Fault Address Register (EL2) */
394 	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
395 	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
396 	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
397 	VBAR_EL2,	/* Vector Base Address Register (EL2) */
398 	RVBAR_EL2,	/* Reset Vector Base Address Register */
399 	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
400 	TPIDR_EL2,	/* EL2 Software Thread ID Register */
401 	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
402 	SP_EL2,		/* EL2 Stack Pointer */
403 	HFGRTR_EL2,
404 	HFGWTR_EL2,
405 	HFGITR_EL2,
406 	HDFGRTR_EL2,
407 	HDFGWTR_EL2,
408 	CNTHP_CTL_EL2,
409 	CNTHP_CVAL_EL2,
410 	CNTHV_CTL_EL2,
411 	CNTHV_CVAL_EL2,
412 
413 	NR_SYS_REGS	/* Nothing after this line! */
414 };
415 
416 struct kvm_cpu_context {
417 	struct user_pt_regs regs;	/* sp = sp_el0 */
418 
419 	u64	spsr_abt;
420 	u64	spsr_und;
421 	u64	spsr_irq;
422 	u64	spsr_fiq;
423 
424 	struct user_fpsimd_state fp_regs;
425 
426 	u64 sys_regs[NR_SYS_REGS];
427 
428 	struct kvm_vcpu *__hyp_running_vcpu;
429 };
430 
431 struct kvm_host_data {
432 	struct kvm_cpu_context host_ctxt;
433 };
434 
435 struct kvm_host_psci_config {
436 	/* PSCI version used by host. */
437 	u32 version;
438 	u32 smccc_version;
439 
440 	/* Function IDs used by host if version is v0.1. */
441 	struct psci_0_1_function_ids function_ids_0_1;
442 
443 	bool psci_0_1_cpu_suspend_implemented;
444 	bool psci_0_1_cpu_on_implemented;
445 	bool psci_0_1_cpu_off_implemented;
446 	bool psci_0_1_migrate_implemented;
447 };
448 
449 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
450 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
451 
452 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
453 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
454 
455 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
456 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
457 
458 struct vcpu_reset_state {
459 	unsigned long	pc;
460 	unsigned long	r0;
461 	bool		be;
462 	bool		reset;
463 };
464 
465 struct kvm_vcpu_arch {
466 	struct kvm_cpu_context ctxt;
467 
468 	/*
469 	 * Guest floating point state
470 	 *
471 	 * The architecture has two main floating point extensions,
472 	 * the original FPSIMD and SVE.  These have overlapping
473 	 * register views, with the FPSIMD V registers occupying the
474 	 * low 128 bits of the SVE Z registers.  When the core
475 	 * floating point code saves the register state of a task it
476 	 * records which view it saved in fp_type.
477 	 */
478 	void *sve_state;
479 	enum fp_type fp_type;
480 	unsigned int sve_max_vl;
481 	u64 svcr;
482 
483 	/* Stage 2 paging state used by the hardware on next switch */
484 	struct kvm_s2_mmu *hw_mmu;
485 
486 	/* Values of trap registers for the guest. */
487 	u64 hcr_el2;
488 	u64 mdcr_el2;
489 	u64 cptr_el2;
490 
491 	/* Values of trap registers for the host before guest entry. */
492 	u64 mdcr_el2_host;
493 
494 	/* Exception Information */
495 	struct kvm_vcpu_fault_info fault;
496 
497 	/* Ownership of the FP regs */
498 	enum {
499 		FP_STATE_FREE,
500 		FP_STATE_HOST_OWNED,
501 		FP_STATE_GUEST_OWNED,
502 	} fp_state;
503 
504 	/* Configuration flags, set once and for all before the vcpu can run */
505 	u8 cflags;
506 
507 	/* Input flags to the hypervisor code, potentially cleared after use */
508 	u8 iflags;
509 
510 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
511 	u8 sflags;
512 
513 	/*
514 	 * Don't run the guest (internal implementation need).
515 	 *
516 	 * Contrary to the flags above, this is set/cleared outside of
517 	 * a vcpu context, and thus cannot be mixed with the flags
518 	 * themselves (or the flag accesses need to be made atomic).
519 	 */
520 	bool pause;
521 
522 	/*
523 	 * We maintain more than a single set of debug registers to support
524 	 * debugging the guest from the host and to maintain separate host and
525 	 * guest state during world switches. vcpu_debug_state are the debug
526 	 * registers of the vcpu as the guest sees them.  host_debug_state are
527 	 * the host registers which are saved and restored during
528 	 * world switches. external_debug_state contains the debug
529 	 * values we want to debug the guest. This is set via the
530 	 * KVM_SET_GUEST_DEBUG ioctl.
531 	 *
532 	 * debug_ptr points to the set of debug registers that should be loaded
533 	 * onto the hardware when running the guest.
534 	 */
535 	struct kvm_guest_debug_arch *debug_ptr;
536 	struct kvm_guest_debug_arch vcpu_debug_state;
537 	struct kvm_guest_debug_arch external_debug_state;
538 
539 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
540 	struct task_struct *parent_task;
541 
542 	struct {
543 		/* {Break,watch}point registers */
544 		struct kvm_guest_debug_arch regs;
545 		/* Statistical profiling extension */
546 		u64 pmscr_el1;
547 		/* Self-hosted trace */
548 		u64 trfcr_el1;
549 	} host_debug_state;
550 
551 	/* VGIC state */
552 	struct vgic_cpu vgic_cpu;
553 	struct arch_timer_cpu timer_cpu;
554 	struct kvm_pmu pmu;
555 
556 	/*
557 	 * Guest registers we preserve during guest debugging.
558 	 *
559 	 * These shadow registers are updated by the kvm_handle_sys_reg
560 	 * trap handler if the guest accesses or updates them while we
561 	 * are using guest debug.
562 	 */
563 	struct {
564 		u32	mdscr_el1;
565 		bool	pstate_ss;
566 	} guest_debug_preserved;
567 
568 	/* vcpu power state */
569 	struct kvm_mp_state mp_state;
570 	spinlock_t mp_state_lock;
571 
572 	/* Cache some mmu pages needed inside spinlock regions */
573 	struct kvm_mmu_memory_cache mmu_page_cache;
574 
575 	/* feature flags */
576 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
577 
578 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
579 	u64 vsesr_el2;
580 
581 	/* Additional reset state */
582 	struct vcpu_reset_state	reset_state;
583 
584 	/* Guest PV state */
585 	struct {
586 		u64 last_steal;
587 		gpa_t base;
588 	} steal;
589 
590 	/* Per-vcpu CCSIDR override or NULL */
591 	u32 *ccsidr;
592 };
593 
594 /*
595  * Each 'flag' is composed of a comma-separated triplet:
596  *
597  * - the flag-set it belongs to in the vcpu->arch structure
598  * - the value for that flag
599  * - the mask for that flag
600  *
601  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
602  * unpack_vcpu_flag() extract the flag value from the triplet for
603  * direct use outside of the flag accessors.
604  */
605 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
606 
607 #define __unpack_flag(_set, _f, _m)	_f
608 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
609 
610 #define __build_check_flag(v, flagset, f, m)			\
611 	do {							\
612 		typeof(v->arch.flagset) *_fset;			\
613 								\
614 		/* Check that the flags fit in the mask */	\
615 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
616 		/* Check that the flags fit in the type */	\
617 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
618 	} while (0)
619 
620 #define __vcpu_get_flag(v, flagset, f, m)			\
621 	({							\
622 		__build_check_flag(v, flagset, f, m);		\
623 								\
624 		READ_ONCE(v->arch.flagset) & (m);		\
625 	})
626 
627 /*
628  * Note that the set/clear accessors must be preempt-safe in order to
629  * avoid nesting them with load/put which also manipulate flags...
630  */
631 #ifdef __KVM_NVHE_HYPERVISOR__
632 /* the nVHE hypervisor is always non-preemptible */
633 #define __vcpu_flags_preempt_disable()
634 #define __vcpu_flags_preempt_enable()
635 #else
636 #define __vcpu_flags_preempt_disable()	preempt_disable()
637 #define __vcpu_flags_preempt_enable()	preempt_enable()
638 #endif
639 
640 #define __vcpu_set_flag(v, flagset, f, m)			\
641 	do {							\
642 		typeof(v->arch.flagset) *fset;			\
643 								\
644 		__build_check_flag(v, flagset, f, m);		\
645 								\
646 		fset = &v->arch.flagset;			\
647 		__vcpu_flags_preempt_disable();			\
648 		if (HWEIGHT(m) > 1)				\
649 			*fset &= ~(m);				\
650 		*fset |= (f);					\
651 		__vcpu_flags_preempt_enable();			\
652 	} while (0)
653 
654 #define __vcpu_clear_flag(v, flagset, f, m)			\
655 	do {							\
656 		typeof(v->arch.flagset) *fset;			\
657 								\
658 		__build_check_flag(v, flagset, f, m);		\
659 								\
660 		fset = &v->arch.flagset;			\
661 		__vcpu_flags_preempt_disable();			\
662 		*fset &= ~(m);					\
663 		__vcpu_flags_preempt_enable();			\
664 	} while (0)
665 
666 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
667 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
668 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
669 
670 /* SVE exposed to guest */
671 #define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
672 /* SVE config completed */
673 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
674 /* PTRAUTH exposed to guest */
675 #define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
676 /* KVM_ARM_VCPU_INIT completed */
677 #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(3))
678 
679 /* Exception pending */
680 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
681 /*
682  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
683  * be set together with an exception...
684  */
685 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
686 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
687 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
688 
689 /* Helpers to encode exceptions with minimum fuss */
690 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
691 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
692 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
693 
694 /*
695  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
696  * values:
697  *
698  * For AArch32 EL1:
699  */
700 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
701 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
702 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
703 /* For AArch64: */
704 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
705 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
706 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
707 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
708 /* For AArch64 with NV: */
709 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
710 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
711 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
712 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
713 /* Guest debug is live */
714 #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
715 /* Save SPE context if active  */
716 #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
717 /* Save TRBE context if active  */
718 #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
719 /* vcpu running in HYP context */
720 #define VCPU_HYP_CONTEXT	__vcpu_single_flag(iflags, BIT(7))
721 
722 /* SVE enabled for host EL0 */
723 #define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
724 /* SME enabled for EL0 */
725 #define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
726 /* Physical CPU not in supported_cpus */
727 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
728 /* WFIT instruction trapped */
729 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
730 /* vcpu system registers loaded on physical CPU */
731 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
732 /* Software step state is Active-pending */
733 #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
734 /* PMUSERENR for the guest EL0 is on physical CPU */
735 #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(6))
736 /* WFI instruction trapped */
737 #define IN_WFI			__vcpu_single_flag(sflags, BIT(7))
738 
739 
740 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
741 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
742 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
743 
744 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
745 
746 #define vcpu_sve_state_size(vcpu) ({					\
747 	size_t __size_ret;						\
748 	unsigned int __vcpu_vq;						\
749 									\
750 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
751 		__size_ret = 0;						\
752 	} else {							\
753 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
754 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
755 	}								\
756 									\
757 	__size_ret;							\
758 })
759 
760 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
761 				 KVM_GUESTDBG_USE_SW_BP | \
762 				 KVM_GUESTDBG_USE_HW | \
763 				 KVM_GUESTDBG_SINGLESTEP)
764 
765 #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
766 			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
767 
768 #ifdef CONFIG_ARM64_PTR_AUTH
769 #define vcpu_has_ptrauth(vcpu)						\
770 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
771 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
772 	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
773 #else
774 #define vcpu_has_ptrauth(vcpu)		false
775 #endif
776 
777 #define vcpu_on_unsupported_cpu(vcpu)					\
778 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
779 
780 #define vcpu_set_on_unsupported_cpu(vcpu)				\
781 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
782 
783 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
784 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
785 
786 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
787 
788 /*
789  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
790  * memory backed version of a register, and not the one most recently
791  * accessed by a running VCPU.  For example, for userspace access or
792  * for system registers that are never context switched, but only
793  * emulated.
794  */
795 #define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])
796 
797 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
798 
799 #define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
800 
801 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
802 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
803 
804 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
805 {
806 	/*
807 	 * *** VHE ONLY ***
808 	 *
809 	 * System registers listed in the switch are not saved on every
810 	 * exit from the guest but are only saved on vcpu_put.
811 	 *
812 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
813 	 * should never be listed below, because the guest cannot modify its
814 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
815 	 * thread when emulating cross-VCPU communication.
816 	 */
817 	if (!has_vhe())
818 		return false;
819 
820 	switch (reg) {
821 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
822 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
823 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
824 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
825 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
826 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
827 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
828 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
829 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
830 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
831 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
832 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
833 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
834 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
835 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
836 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
837 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
838 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
839 	case PAR_EL1:		*val = read_sysreg_par();		break;
840 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
841 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
842 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
843 	default:		return false;
844 	}
845 
846 	return true;
847 }
848 
849 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
850 {
851 	/*
852 	 * *** VHE ONLY ***
853 	 *
854 	 * System registers listed in the switch are not restored on every
855 	 * entry to the guest but are only restored on vcpu_load.
856 	 *
857 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
858 	 * should never be listed below, because the MPIDR should only be set
859 	 * once, before running the VCPU, and never changed later.
860 	 */
861 	if (!has_vhe())
862 		return false;
863 
864 	switch (reg) {
865 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
866 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
867 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
868 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
869 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
870 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
871 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
872 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
873 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
874 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
875 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
876 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
877 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
878 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
879 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
880 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
881 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
882 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
883 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
884 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
885 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
886 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
887 	default:		return false;
888 	}
889 
890 	return true;
891 }
892 
893 struct kvm_vm_stat {
894 	struct kvm_vm_stat_generic generic;
895 };
896 
897 struct kvm_vcpu_stat {
898 	struct kvm_vcpu_stat_generic generic;
899 	u64 hvc_exit_stat;
900 	u64 wfe_exit_stat;
901 	u64 wfi_exit_stat;
902 	u64 mmio_exit_user;
903 	u64 mmio_exit_kernel;
904 	u64 signal_exits;
905 	u64 exits;
906 };
907 
908 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
909 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
910 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
911 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
912 
913 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
914 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
915 
916 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
917 			      struct kvm_vcpu_events *events);
918 
919 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
920 			      struct kvm_vcpu_events *events);
921 
922 #define KVM_ARCH_WANT_MMU_NOTIFIER
923 
924 void kvm_arm_halt_guest(struct kvm *kvm);
925 void kvm_arm_resume_guest(struct kvm *kvm);
926 
927 #define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
928 
929 #ifndef __KVM_NVHE_HYPERVISOR__
930 #define kvm_call_hyp_nvhe(f, ...)						\
931 	({								\
932 		struct arm_smccc_res res;				\
933 									\
934 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
935 				  ##__VA_ARGS__, &res);			\
936 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
937 									\
938 		res.a1;							\
939 	})
940 
941 /*
942  * The couple of isb() below are there to guarantee the same behaviour
943  * on VHE as on !VHE, where the eret to EL1 acts as a context
944  * synchronization event.
945  */
946 #define kvm_call_hyp(f, ...)						\
947 	do {								\
948 		if (has_vhe()) {					\
949 			f(__VA_ARGS__);					\
950 			isb();						\
951 		} else {						\
952 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
953 		}							\
954 	} while(0)
955 
956 #define kvm_call_hyp_ret(f, ...)					\
957 	({								\
958 		typeof(f(__VA_ARGS__)) ret;				\
959 									\
960 		if (has_vhe()) {					\
961 			ret = f(__VA_ARGS__);				\
962 			isb();						\
963 		} else {						\
964 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
965 		}							\
966 									\
967 		ret;							\
968 	})
969 #else /* __KVM_NVHE_HYPERVISOR__ */
970 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
971 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
972 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
973 #endif /* __KVM_NVHE_HYPERVISOR__ */
974 
975 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
976 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
977 
978 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
979 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
980 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
981 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
982 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
983 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
984 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
985 
986 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
987 
988 int __init kvm_sys_reg_table_init(void);
989 int __init populate_nv_trap_config(void);
990 
991 bool lock_all_vcpus(struct kvm *kvm);
992 void unlock_all_vcpus(struct kvm *kvm);
993 
994 /* MMIO helpers */
995 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
996 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
997 
998 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
999 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1000 
1001 /*
1002  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1003  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1004  * loaded is considered to be "in guest".
1005  */
1006 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1007 {
1008 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1009 }
1010 
1011 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1012 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1013 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1014 
1015 bool kvm_arm_pvtime_supported(void);
1016 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1017 			    struct kvm_device_attr *attr);
1018 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1019 			    struct kvm_device_attr *attr);
1020 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1021 			    struct kvm_device_attr *attr);
1022 
1023 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1024 int __init kvm_arm_vmid_alloc_init(void);
1025 void __init kvm_arm_vmid_alloc_free(void);
1026 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1027 void kvm_arm_vmid_clear_active(void);
1028 
1029 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1030 {
1031 	vcpu_arch->steal.base = INVALID_GPA;
1032 }
1033 
1034 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1035 {
1036 	return (vcpu_arch->steal.base != INVALID_GPA);
1037 }
1038 
1039 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1040 
1041 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1042 
1043 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1044 
1045 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1046 {
1047 	/* The host's MPIDR is immutable, so let's set it up at boot time */
1048 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1049 }
1050 
1051 static inline bool kvm_system_needs_idmapped_vectors(void)
1052 {
1053 	return cpus_have_const_cap(ARM64_SPECTRE_V3A);
1054 }
1055 
1056 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1057 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
1058 
1059 void kvm_arm_init_debug(void);
1060 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1061 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1062 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1063 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1064 
1065 #define kvm_vcpu_os_lock_enabled(vcpu)		\
1066 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1067 
1068 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1069 			       struct kvm_device_attr *attr);
1070 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1071 			       struct kvm_device_attr *attr);
1072 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1073 			       struct kvm_device_attr *attr);
1074 
1075 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1076 			       struct kvm_arm_copy_mte_tags *copy_tags);
1077 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1078 				    struct kvm_arm_counter_offset *offset);
1079 
1080 /* Guest/host FPSIMD coordination helpers */
1081 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1082 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1083 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1084 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1085 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1086 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
1087 
1088 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1089 {
1090 	return (!has_vhe() && attr->exclude_host);
1091 }
1092 
1093 /* Flags for host debug state */
1094 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1095 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1096 
1097 #ifdef CONFIG_KVM
1098 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
1099 void kvm_clr_pmu_events(u32 clr);
1100 bool kvm_set_pmuserenr(u64 val);
1101 #else
1102 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
1103 static inline void kvm_clr_pmu_events(u32 clr) {}
1104 static inline bool kvm_set_pmuserenr(u64 val)
1105 {
1106 	return false;
1107 }
1108 #endif
1109 
1110 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
1111 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
1112 
1113 int __init kvm_set_ipa_limit(void);
1114 
1115 #define __KVM_HAVE_ARCH_VM_ALLOC
1116 struct kvm *kvm_arch_alloc_vm(void);
1117 
1118 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1119 
1120 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1121 
1122 static inline bool kvm_vm_is_protected(struct kvm *kvm)
1123 {
1124 	return false;
1125 }
1126 
1127 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1128 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1129 
1130 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1131 
1132 #define kvm_has_mte(kvm)					\
1133 	(system_supports_mte() &&				\
1134 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1135 
1136 #define kvm_supports_32bit_el0()				\
1137 	(system_supports_32bit_el0() &&				\
1138 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1139 
1140 #define kvm_vm_has_ran_once(kvm)					\
1141 	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1142 
1143 int kvm_trng_call(struct kvm_vcpu *vcpu);
1144 #ifdef CONFIG_KVM
1145 extern phys_addr_t hyp_mem_base;
1146 extern phys_addr_t hyp_mem_size;
1147 void __init kvm_hyp_reserve(void);
1148 #else
1149 static inline void kvm_hyp_reserve(void) { }
1150 #endif
1151 
1152 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1153 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1154 
1155 #endif /* __ARM64_KVM_HOST_H__ */
1156