1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/asm/kvm_host.h: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_HOST_H__ 12 #define __ARM64_KVM_HOST_H__ 13 14 #include <linux/arm-smccc.h> 15 #include <linux/bitmap.h> 16 #include <linux/types.h> 17 #include <linux/jump_label.h> 18 #include <linux/kvm_types.h> 19 #include <linux/maple_tree.h> 20 #include <linux/percpu.h> 21 #include <linux/psci.h> 22 #include <asm/arch_gicv3.h> 23 #include <asm/barrier.h> 24 #include <asm/cpufeature.h> 25 #include <asm/cputype.h> 26 #include <asm/daifflags.h> 27 #include <asm/fpsimd.h> 28 #include <asm/kvm.h> 29 #include <asm/kvm_asm.h> 30 31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED 32 33 #define KVM_HALT_POLL_NS_DEFAULT 500000 34 35 #include <kvm/arm_vgic.h> 36 #include <kvm/arm_arch_timer.h> 37 #include <kvm/arm_pmu.h> 38 39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS 40 41 #define KVM_VCPU_MAX_FEATURES 7 42 #define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1) 43 44 #define KVM_REQ_SLEEP \ 45 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 46 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) 47 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) 48 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) 49 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4) 50 #define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5) 51 #define KVM_REQ_SUSPEND KVM_ARCH_REQ(6) 52 #define KVM_REQ_RESYNC_PMU_EL0 KVM_ARCH_REQ(7) 53 54 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 55 KVM_DIRTY_LOG_INITIALLY_SET) 56 57 #define KVM_HAVE_MMU_RWLOCK 58 59 /* 60 * Mode of operation configurable with kvm-arm.mode early param. 61 * See Documentation/admin-guide/kernel-parameters.txt for more information. 62 */ 63 enum kvm_mode { 64 KVM_MODE_DEFAULT, 65 KVM_MODE_PROTECTED, 66 KVM_MODE_NV, 67 KVM_MODE_NONE, 68 }; 69 #ifdef CONFIG_KVM 70 enum kvm_mode kvm_get_mode(void); 71 #else 72 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; }; 73 #endif 74 75 extern unsigned int __ro_after_init kvm_sve_max_vl; 76 int __init kvm_arm_init_sve(void); 77 78 u32 __attribute_const__ kvm_target_cpu(void); 79 int kvm_reset_vcpu(struct kvm_vcpu *vcpu); 80 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu); 81 82 struct kvm_hyp_memcache { 83 phys_addr_t head; 84 unsigned long nr_pages; 85 }; 86 87 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc, 88 phys_addr_t *p, 89 phys_addr_t (*to_pa)(void *virt)) 90 { 91 *p = mc->head; 92 mc->head = to_pa(p); 93 mc->nr_pages++; 94 } 95 96 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc, 97 void *(*to_va)(phys_addr_t phys)) 98 { 99 phys_addr_t *p = to_va(mc->head); 100 101 if (!mc->nr_pages) 102 return NULL; 103 104 mc->head = *p; 105 mc->nr_pages--; 106 107 return p; 108 } 109 110 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc, 111 unsigned long min_pages, 112 void *(*alloc_fn)(void *arg), 113 phys_addr_t (*to_pa)(void *virt), 114 void *arg) 115 { 116 while (mc->nr_pages < min_pages) { 117 phys_addr_t *p = alloc_fn(arg); 118 119 if (!p) 120 return -ENOMEM; 121 push_hyp_memcache(mc, p, to_pa); 122 } 123 124 return 0; 125 } 126 127 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc, 128 void (*free_fn)(void *virt, void *arg), 129 void *(*to_va)(phys_addr_t phys), 130 void *arg) 131 { 132 while (mc->nr_pages) 133 free_fn(pop_hyp_memcache(mc, to_va), arg); 134 } 135 136 void free_hyp_memcache(struct kvm_hyp_memcache *mc); 137 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages); 138 139 struct kvm_vmid { 140 atomic64_t id; 141 }; 142 143 struct kvm_s2_mmu { 144 struct kvm_vmid vmid; 145 146 /* 147 * stage2 entry level table 148 * 149 * Two kvm_s2_mmu structures in the same VM can point to the same 150 * pgd here. This happens when running a guest using a 151 * translation regime that isn't affected by its own stage-2 152 * translation, such as a non-VHE hypervisor running at vEL2, or 153 * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the 154 * canonical stage-2 page tables. 155 */ 156 phys_addr_t pgd_phys; 157 struct kvm_pgtable *pgt; 158 159 /* The last vcpu id that ran on each physical CPU */ 160 int __percpu *last_vcpu_ran; 161 162 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0 163 /* 164 * Memory cache used to split 165 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It 166 * is used to allocate stage2 page tables while splitting huge 167 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE 168 * influences both the capacity of the split page cache, and 169 * how often KVM reschedules. Be wary of raising CHUNK_SIZE 170 * too high. 171 * 172 * Protected by kvm->slots_lock. 173 */ 174 struct kvm_mmu_memory_cache split_page_cache; 175 uint64_t split_page_chunk_size; 176 177 struct kvm_arch *arch; 178 }; 179 180 struct kvm_arch_memory_slot { 181 }; 182 183 /** 184 * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests 185 * 186 * @std_bmap: Bitmap of standard secure service calls 187 * @std_hyp_bmap: Bitmap of standard hypervisor service calls 188 * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls 189 */ 190 struct kvm_smccc_features { 191 unsigned long std_bmap; 192 unsigned long std_hyp_bmap; 193 unsigned long vendor_hyp_bmap; 194 }; 195 196 typedef unsigned int pkvm_handle_t; 197 198 struct kvm_protected_vm { 199 pkvm_handle_t handle; 200 struct kvm_hyp_memcache teardown_mc; 201 }; 202 203 struct kvm_arch { 204 struct kvm_s2_mmu mmu; 205 206 /* VTCR_EL2 value for this VM */ 207 u64 vtcr; 208 209 /* Interrupt controller */ 210 struct vgic_dist vgic; 211 212 /* Timers */ 213 struct arch_timer_vm_data timer_data; 214 215 /* Mandated version of PSCI */ 216 u32 psci_version; 217 218 /* Protects VM-scoped configuration data */ 219 struct mutex config_lock; 220 221 /* 222 * If we encounter a data abort without valid instruction syndrome 223 * information, report this to user space. User space can (and 224 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is 225 * supported. 226 */ 227 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER 0 228 /* Memory Tagging Extension enabled for the guest */ 229 #define KVM_ARCH_FLAG_MTE_ENABLED 1 230 /* At least one vCPU has ran in the VM */ 231 #define KVM_ARCH_FLAG_HAS_RAN_ONCE 2 232 /* The vCPU feature set for the VM is configured */ 233 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED 3 234 /* PSCI SYSTEM_SUSPEND enabled for the guest */ 235 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 4 236 /* VM counter offset */ 237 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET 5 238 /* Timer PPIs made immutable */ 239 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE 6 240 /* SMCCC filter initialized for the VM */ 241 #define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED 7 242 /* Initial ID reg values loaded */ 243 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED 8 244 unsigned long flags; 245 246 /* VM-wide vCPU feature set */ 247 DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES); 248 249 /* 250 * VM-wide PMU filter, implemented as a bitmap and big enough for 251 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+). 252 */ 253 unsigned long *pmu_filter; 254 struct arm_pmu *arm_pmu; 255 256 cpumask_var_t supported_cpus; 257 258 /* Hypercall features firmware registers' descriptor */ 259 struct kvm_smccc_features smccc_feat; 260 struct maple_tree smccc_filter; 261 262 /* 263 * Emulated CPU ID registers per VM 264 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it 265 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8. 266 * 267 * These emulated idregs are VM-wide, but accessed from the context of a vCPU. 268 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock. 269 */ 270 #define IDREG_IDX(id) (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id)) 271 #define IDREG(kvm, id) ((kvm)->arch.id_regs[IDREG_IDX(id)]) 272 #define KVM_ARM_ID_REG_NUM (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1) 273 u64 id_regs[KVM_ARM_ID_REG_NUM]; 274 275 /* 276 * For an untrusted host VM, 'pkvm.handle' is used to lookup 277 * the associated pKVM instance in the hypervisor. 278 */ 279 struct kvm_protected_vm pkvm; 280 }; 281 282 struct kvm_vcpu_fault_info { 283 u64 esr_el2; /* Hyp Syndrom Register */ 284 u64 far_el2; /* Hyp Fault Address Register */ 285 u64 hpfar_el2; /* Hyp IPA Fault Address Register */ 286 u64 disr_el1; /* Deferred [SError] Status Register */ 287 }; 288 289 enum vcpu_sysreg { 290 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */ 291 MPIDR_EL1, /* MultiProcessor Affinity Register */ 292 CLIDR_EL1, /* Cache Level ID Register */ 293 CSSELR_EL1, /* Cache Size Selection Register */ 294 SCTLR_EL1, /* System Control Register */ 295 ACTLR_EL1, /* Auxiliary Control Register */ 296 CPACR_EL1, /* Coprocessor Access Control */ 297 ZCR_EL1, /* SVE Control */ 298 TTBR0_EL1, /* Translation Table Base Register 0 */ 299 TTBR1_EL1, /* Translation Table Base Register 1 */ 300 TCR_EL1, /* Translation Control Register */ 301 TCR2_EL1, /* Extended Translation Control Register */ 302 ESR_EL1, /* Exception Syndrome Register */ 303 AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ 304 AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ 305 FAR_EL1, /* Fault Address Register */ 306 MAIR_EL1, /* Memory Attribute Indirection Register */ 307 VBAR_EL1, /* Vector Base Address Register */ 308 CONTEXTIDR_EL1, /* Context ID Register */ 309 TPIDR_EL0, /* Thread ID, User R/W */ 310 TPIDRRO_EL0, /* Thread ID, User R/O */ 311 TPIDR_EL1, /* Thread ID, Privileged */ 312 AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ 313 CNTKCTL_EL1, /* Timer Control Register (EL1) */ 314 PAR_EL1, /* Physical Address Register */ 315 MDSCR_EL1, /* Monitor Debug System Control Register */ 316 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ 317 OSLSR_EL1, /* OS Lock Status Register */ 318 DISR_EL1, /* Deferred Interrupt Status Register */ 319 320 /* Performance Monitors Registers */ 321 PMCR_EL0, /* Control Register */ 322 PMSELR_EL0, /* Event Counter Selection Register */ 323 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ 324 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, 325 PMCCNTR_EL0, /* Cycle Counter Register */ 326 PMEVTYPER0_EL0, /* Event Type Register (0-30) */ 327 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, 328 PMCCFILTR_EL0, /* Cycle Count Filter Register */ 329 PMCNTENSET_EL0, /* Count Enable Set Register */ 330 PMINTENSET_EL1, /* Interrupt Enable Set Register */ 331 PMOVSSET_EL0, /* Overflow Flag Status Set Register */ 332 PMUSERENR_EL0, /* User Enable Register */ 333 334 /* Pointer Authentication Registers in a strict increasing order. */ 335 APIAKEYLO_EL1, 336 APIAKEYHI_EL1, 337 APIBKEYLO_EL1, 338 APIBKEYHI_EL1, 339 APDAKEYLO_EL1, 340 APDAKEYHI_EL1, 341 APDBKEYLO_EL1, 342 APDBKEYHI_EL1, 343 APGAKEYLO_EL1, 344 APGAKEYHI_EL1, 345 346 ELR_EL1, 347 SP_EL1, 348 SPSR_EL1, 349 350 CNTVOFF_EL2, 351 CNTV_CVAL_EL0, 352 CNTV_CTL_EL0, 353 CNTP_CVAL_EL0, 354 CNTP_CTL_EL0, 355 356 /* Memory Tagging Extension registers */ 357 RGSR_EL1, /* Random Allocation Tag Seed Register */ 358 GCR_EL1, /* Tag Control Register */ 359 TFSR_EL1, /* Tag Fault Status Register (EL1) */ 360 TFSRE0_EL1, /* Tag Fault Status Register (EL0) */ 361 362 /* Permission Indirection Extension registers */ 363 PIR_EL1, /* Permission Indirection Register 1 (EL1) */ 364 PIRE0_EL1, /* Permission Indirection Register 0 (EL1) */ 365 366 /* 32bit specific registers. */ 367 DACR32_EL2, /* Domain Access Control Register */ 368 IFSR32_EL2, /* Instruction Fault Status Register */ 369 FPEXC32_EL2, /* Floating-Point Exception Control Register */ 370 DBGVCR32_EL2, /* Debug Vector Catch Register */ 371 372 /* EL2 registers */ 373 VPIDR_EL2, /* Virtualization Processor ID Register */ 374 VMPIDR_EL2, /* Virtualization Multiprocessor ID Register */ 375 SCTLR_EL2, /* System Control Register (EL2) */ 376 ACTLR_EL2, /* Auxiliary Control Register (EL2) */ 377 HCR_EL2, /* Hypervisor Configuration Register */ 378 MDCR_EL2, /* Monitor Debug Configuration Register (EL2) */ 379 CPTR_EL2, /* Architectural Feature Trap Register (EL2) */ 380 HSTR_EL2, /* Hypervisor System Trap Register */ 381 HACR_EL2, /* Hypervisor Auxiliary Control Register */ 382 HCRX_EL2, /* Extended Hypervisor Configuration Register */ 383 TTBR0_EL2, /* Translation Table Base Register 0 (EL2) */ 384 TTBR1_EL2, /* Translation Table Base Register 1 (EL2) */ 385 TCR_EL2, /* Translation Control Register (EL2) */ 386 VTTBR_EL2, /* Virtualization Translation Table Base Register */ 387 VTCR_EL2, /* Virtualization Translation Control Register */ 388 SPSR_EL2, /* EL2 saved program status register */ 389 ELR_EL2, /* EL2 exception link register */ 390 AFSR0_EL2, /* Auxiliary Fault Status Register 0 (EL2) */ 391 AFSR1_EL2, /* Auxiliary Fault Status Register 1 (EL2) */ 392 ESR_EL2, /* Exception Syndrome Register (EL2) */ 393 FAR_EL2, /* Fault Address Register (EL2) */ 394 HPFAR_EL2, /* Hypervisor IPA Fault Address Register */ 395 MAIR_EL2, /* Memory Attribute Indirection Register (EL2) */ 396 AMAIR_EL2, /* Auxiliary Memory Attribute Indirection Register (EL2) */ 397 VBAR_EL2, /* Vector Base Address Register (EL2) */ 398 RVBAR_EL2, /* Reset Vector Base Address Register */ 399 CONTEXTIDR_EL2, /* Context ID Register (EL2) */ 400 TPIDR_EL2, /* EL2 Software Thread ID Register */ 401 CNTHCTL_EL2, /* Counter-timer Hypervisor Control register */ 402 SP_EL2, /* EL2 Stack Pointer */ 403 HFGRTR_EL2, 404 HFGWTR_EL2, 405 HFGITR_EL2, 406 HDFGRTR_EL2, 407 HDFGWTR_EL2, 408 CNTHP_CTL_EL2, 409 CNTHP_CVAL_EL2, 410 CNTHV_CTL_EL2, 411 CNTHV_CVAL_EL2, 412 413 NR_SYS_REGS /* Nothing after this line! */ 414 }; 415 416 struct kvm_cpu_context { 417 struct user_pt_regs regs; /* sp = sp_el0 */ 418 419 u64 spsr_abt; 420 u64 spsr_und; 421 u64 spsr_irq; 422 u64 spsr_fiq; 423 424 struct user_fpsimd_state fp_regs; 425 426 u64 sys_regs[NR_SYS_REGS]; 427 428 struct kvm_vcpu *__hyp_running_vcpu; 429 }; 430 431 struct kvm_host_data { 432 struct kvm_cpu_context host_ctxt; 433 }; 434 435 struct kvm_host_psci_config { 436 /* PSCI version used by host. */ 437 u32 version; 438 u32 smccc_version; 439 440 /* Function IDs used by host if version is v0.1. */ 441 struct psci_0_1_function_ids function_ids_0_1; 442 443 bool psci_0_1_cpu_suspend_implemented; 444 bool psci_0_1_cpu_on_implemented; 445 bool psci_0_1_cpu_off_implemented; 446 bool psci_0_1_migrate_implemented; 447 }; 448 449 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config); 450 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config) 451 452 extern s64 kvm_nvhe_sym(hyp_physvirt_offset); 453 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset) 454 455 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS]; 456 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map) 457 458 struct vcpu_reset_state { 459 unsigned long pc; 460 unsigned long r0; 461 bool be; 462 bool reset; 463 }; 464 465 struct kvm_vcpu_arch { 466 struct kvm_cpu_context ctxt; 467 468 /* 469 * Guest floating point state 470 * 471 * The architecture has two main floating point extensions, 472 * the original FPSIMD and SVE. These have overlapping 473 * register views, with the FPSIMD V registers occupying the 474 * low 128 bits of the SVE Z registers. When the core 475 * floating point code saves the register state of a task it 476 * records which view it saved in fp_type. 477 */ 478 void *sve_state; 479 enum fp_type fp_type; 480 unsigned int sve_max_vl; 481 u64 svcr; 482 483 /* Stage 2 paging state used by the hardware on next switch */ 484 struct kvm_s2_mmu *hw_mmu; 485 486 /* Values of trap registers for the guest. */ 487 u64 hcr_el2; 488 u64 mdcr_el2; 489 u64 cptr_el2; 490 491 /* Values of trap registers for the host before guest entry. */ 492 u64 mdcr_el2_host; 493 494 /* Exception Information */ 495 struct kvm_vcpu_fault_info fault; 496 497 /* Ownership of the FP regs */ 498 enum { 499 FP_STATE_FREE, 500 FP_STATE_HOST_OWNED, 501 FP_STATE_GUEST_OWNED, 502 } fp_state; 503 504 /* Configuration flags, set once and for all before the vcpu can run */ 505 u8 cflags; 506 507 /* Input flags to the hypervisor code, potentially cleared after use */ 508 u8 iflags; 509 510 /* State flags for kernel bookkeeping, unused by the hypervisor code */ 511 u8 sflags; 512 513 /* 514 * Don't run the guest (internal implementation need). 515 * 516 * Contrary to the flags above, this is set/cleared outside of 517 * a vcpu context, and thus cannot be mixed with the flags 518 * themselves (or the flag accesses need to be made atomic). 519 */ 520 bool pause; 521 522 /* 523 * We maintain more than a single set of debug registers to support 524 * debugging the guest from the host and to maintain separate host and 525 * guest state during world switches. vcpu_debug_state are the debug 526 * registers of the vcpu as the guest sees them. host_debug_state are 527 * the host registers which are saved and restored during 528 * world switches. external_debug_state contains the debug 529 * values we want to debug the guest. This is set via the 530 * KVM_SET_GUEST_DEBUG ioctl. 531 * 532 * debug_ptr points to the set of debug registers that should be loaded 533 * onto the hardware when running the guest. 534 */ 535 struct kvm_guest_debug_arch *debug_ptr; 536 struct kvm_guest_debug_arch vcpu_debug_state; 537 struct kvm_guest_debug_arch external_debug_state; 538 539 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ 540 struct task_struct *parent_task; 541 542 struct { 543 /* {Break,watch}point registers */ 544 struct kvm_guest_debug_arch regs; 545 /* Statistical profiling extension */ 546 u64 pmscr_el1; 547 /* Self-hosted trace */ 548 u64 trfcr_el1; 549 } host_debug_state; 550 551 /* VGIC state */ 552 struct vgic_cpu vgic_cpu; 553 struct arch_timer_cpu timer_cpu; 554 struct kvm_pmu pmu; 555 556 /* 557 * Guest registers we preserve during guest debugging. 558 * 559 * These shadow registers are updated by the kvm_handle_sys_reg 560 * trap handler if the guest accesses or updates them while we 561 * are using guest debug. 562 */ 563 struct { 564 u32 mdscr_el1; 565 bool pstate_ss; 566 } guest_debug_preserved; 567 568 /* vcpu power state */ 569 struct kvm_mp_state mp_state; 570 spinlock_t mp_state_lock; 571 572 /* Cache some mmu pages needed inside spinlock regions */ 573 struct kvm_mmu_memory_cache mmu_page_cache; 574 575 /* feature flags */ 576 DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); 577 578 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ 579 u64 vsesr_el2; 580 581 /* Additional reset state */ 582 struct vcpu_reset_state reset_state; 583 584 /* Guest PV state */ 585 struct { 586 u64 last_steal; 587 gpa_t base; 588 } steal; 589 590 /* Per-vcpu CCSIDR override or NULL */ 591 u32 *ccsidr; 592 }; 593 594 /* 595 * Each 'flag' is composed of a comma-separated triplet: 596 * 597 * - the flag-set it belongs to in the vcpu->arch structure 598 * - the value for that flag 599 * - the mask for that flag 600 * 601 * __vcpu_single_flag() builds such a triplet for a single-bit flag. 602 * unpack_vcpu_flag() extract the flag value from the triplet for 603 * direct use outside of the flag accessors. 604 */ 605 #define __vcpu_single_flag(_set, _f) _set, (_f), (_f) 606 607 #define __unpack_flag(_set, _f, _m) _f 608 #define unpack_vcpu_flag(...) __unpack_flag(__VA_ARGS__) 609 610 #define __build_check_flag(v, flagset, f, m) \ 611 do { \ 612 typeof(v->arch.flagset) *_fset; \ 613 \ 614 /* Check that the flags fit in the mask */ \ 615 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \ 616 /* Check that the flags fit in the type */ \ 617 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \ 618 } while (0) 619 620 #define __vcpu_get_flag(v, flagset, f, m) \ 621 ({ \ 622 __build_check_flag(v, flagset, f, m); \ 623 \ 624 READ_ONCE(v->arch.flagset) & (m); \ 625 }) 626 627 /* 628 * Note that the set/clear accessors must be preempt-safe in order to 629 * avoid nesting them with load/put which also manipulate flags... 630 */ 631 #ifdef __KVM_NVHE_HYPERVISOR__ 632 /* the nVHE hypervisor is always non-preemptible */ 633 #define __vcpu_flags_preempt_disable() 634 #define __vcpu_flags_preempt_enable() 635 #else 636 #define __vcpu_flags_preempt_disable() preempt_disable() 637 #define __vcpu_flags_preempt_enable() preempt_enable() 638 #endif 639 640 #define __vcpu_set_flag(v, flagset, f, m) \ 641 do { \ 642 typeof(v->arch.flagset) *fset; \ 643 \ 644 __build_check_flag(v, flagset, f, m); \ 645 \ 646 fset = &v->arch.flagset; \ 647 __vcpu_flags_preempt_disable(); \ 648 if (HWEIGHT(m) > 1) \ 649 *fset &= ~(m); \ 650 *fset |= (f); \ 651 __vcpu_flags_preempt_enable(); \ 652 } while (0) 653 654 #define __vcpu_clear_flag(v, flagset, f, m) \ 655 do { \ 656 typeof(v->arch.flagset) *fset; \ 657 \ 658 __build_check_flag(v, flagset, f, m); \ 659 \ 660 fset = &v->arch.flagset; \ 661 __vcpu_flags_preempt_disable(); \ 662 *fset &= ~(m); \ 663 __vcpu_flags_preempt_enable(); \ 664 } while (0) 665 666 #define vcpu_get_flag(v, ...) __vcpu_get_flag((v), __VA_ARGS__) 667 #define vcpu_set_flag(v, ...) __vcpu_set_flag((v), __VA_ARGS__) 668 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__) 669 670 /* SVE exposed to guest */ 671 #define GUEST_HAS_SVE __vcpu_single_flag(cflags, BIT(0)) 672 /* SVE config completed */ 673 #define VCPU_SVE_FINALIZED __vcpu_single_flag(cflags, BIT(1)) 674 /* PTRAUTH exposed to guest */ 675 #define GUEST_HAS_PTRAUTH __vcpu_single_flag(cflags, BIT(2)) 676 /* KVM_ARM_VCPU_INIT completed */ 677 #define VCPU_INITIALIZED __vcpu_single_flag(cflags, BIT(3)) 678 679 /* Exception pending */ 680 #define PENDING_EXCEPTION __vcpu_single_flag(iflags, BIT(0)) 681 /* 682 * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't 683 * be set together with an exception... 684 */ 685 #define INCREMENT_PC __vcpu_single_flag(iflags, BIT(1)) 686 /* Target EL/MODE (not a single flag, but let's abuse the macro) */ 687 #define EXCEPT_MASK __vcpu_single_flag(iflags, GENMASK(3, 1)) 688 689 /* Helpers to encode exceptions with minimum fuss */ 690 #define __EXCEPT_MASK_VAL unpack_vcpu_flag(EXCEPT_MASK) 691 #define __EXCEPT_SHIFT __builtin_ctzl(__EXCEPT_MASK_VAL) 692 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL 693 694 /* 695 * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following 696 * values: 697 * 698 * For AArch32 EL1: 699 */ 700 #define EXCEPT_AA32_UND __vcpu_except_flags(0) 701 #define EXCEPT_AA32_IABT __vcpu_except_flags(1) 702 #define EXCEPT_AA32_DABT __vcpu_except_flags(2) 703 /* For AArch64: */ 704 #define EXCEPT_AA64_EL1_SYNC __vcpu_except_flags(0) 705 #define EXCEPT_AA64_EL1_IRQ __vcpu_except_flags(1) 706 #define EXCEPT_AA64_EL1_FIQ __vcpu_except_flags(2) 707 #define EXCEPT_AA64_EL1_SERR __vcpu_except_flags(3) 708 /* For AArch64 with NV: */ 709 #define EXCEPT_AA64_EL2_SYNC __vcpu_except_flags(4) 710 #define EXCEPT_AA64_EL2_IRQ __vcpu_except_flags(5) 711 #define EXCEPT_AA64_EL2_FIQ __vcpu_except_flags(6) 712 #define EXCEPT_AA64_EL2_SERR __vcpu_except_flags(7) 713 /* Guest debug is live */ 714 #define DEBUG_DIRTY __vcpu_single_flag(iflags, BIT(4)) 715 /* Save SPE context if active */ 716 #define DEBUG_STATE_SAVE_SPE __vcpu_single_flag(iflags, BIT(5)) 717 /* Save TRBE context if active */ 718 #define DEBUG_STATE_SAVE_TRBE __vcpu_single_flag(iflags, BIT(6)) 719 /* vcpu running in HYP context */ 720 #define VCPU_HYP_CONTEXT __vcpu_single_flag(iflags, BIT(7)) 721 722 /* SVE enabled for host EL0 */ 723 #define HOST_SVE_ENABLED __vcpu_single_flag(sflags, BIT(0)) 724 /* SME enabled for EL0 */ 725 #define HOST_SME_ENABLED __vcpu_single_flag(sflags, BIT(1)) 726 /* Physical CPU not in supported_cpus */ 727 #define ON_UNSUPPORTED_CPU __vcpu_single_flag(sflags, BIT(2)) 728 /* WFIT instruction trapped */ 729 #define IN_WFIT __vcpu_single_flag(sflags, BIT(3)) 730 /* vcpu system registers loaded on physical CPU */ 731 #define SYSREGS_ON_CPU __vcpu_single_flag(sflags, BIT(4)) 732 /* Software step state is Active-pending */ 733 #define DBG_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(5)) 734 /* PMUSERENR for the guest EL0 is on physical CPU */ 735 #define PMUSERENR_ON_CPU __vcpu_single_flag(sflags, BIT(6)) 736 /* WFI instruction trapped */ 737 #define IN_WFI __vcpu_single_flag(sflags, BIT(7)) 738 739 740 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ 741 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \ 742 sve_ffr_offset((vcpu)->arch.sve_max_vl)) 743 744 #define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl) 745 746 #define vcpu_sve_state_size(vcpu) ({ \ 747 size_t __size_ret; \ 748 unsigned int __vcpu_vq; \ 749 \ 750 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ 751 __size_ret = 0; \ 752 } else { \ 753 __vcpu_vq = vcpu_sve_max_vq(vcpu); \ 754 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ 755 } \ 756 \ 757 __size_ret; \ 758 }) 759 760 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \ 761 KVM_GUESTDBG_USE_SW_BP | \ 762 KVM_GUESTDBG_USE_HW | \ 763 KVM_GUESTDBG_SINGLESTEP) 764 765 #define vcpu_has_sve(vcpu) (system_supports_sve() && \ 766 vcpu_get_flag(vcpu, GUEST_HAS_SVE)) 767 768 #ifdef CONFIG_ARM64_PTR_AUTH 769 #define vcpu_has_ptrauth(vcpu) \ 770 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \ 771 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \ 772 vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH)) 773 #else 774 #define vcpu_has_ptrauth(vcpu) false 775 #endif 776 777 #define vcpu_on_unsupported_cpu(vcpu) \ 778 vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU) 779 780 #define vcpu_set_on_unsupported_cpu(vcpu) \ 781 vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU) 782 783 #define vcpu_clear_on_unsupported_cpu(vcpu) \ 784 vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU) 785 786 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs) 787 788 /* 789 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the 790 * memory backed version of a register, and not the one most recently 791 * accessed by a running VCPU. For example, for userspace access or 792 * for system registers that are never context switched, but only 793 * emulated. 794 */ 795 #define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)]) 796 797 #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r)) 798 799 #define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r))) 800 801 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); 802 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); 803 804 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val) 805 { 806 /* 807 * *** VHE ONLY *** 808 * 809 * System registers listed in the switch are not saved on every 810 * exit from the guest but are only saved on vcpu_put. 811 * 812 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 813 * should never be listed below, because the guest cannot modify its 814 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's 815 * thread when emulating cross-VCPU communication. 816 */ 817 if (!has_vhe()) 818 return false; 819 820 switch (reg) { 821 case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break; 822 case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break; 823 case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break; 824 case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break; 825 case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break; 826 case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break; 827 case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break; 828 case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break; 829 case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break; 830 case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break; 831 case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break; 832 case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break; 833 case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break; 834 case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break; 835 case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break; 836 case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break; 837 case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break; 838 case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break; 839 case PAR_EL1: *val = read_sysreg_par(); break; 840 case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break; 841 case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break; 842 case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break; 843 default: return false; 844 } 845 846 return true; 847 } 848 849 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg) 850 { 851 /* 852 * *** VHE ONLY *** 853 * 854 * System registers listed in the switch are not restored on every 855 * entry to the guest but are only restored on vcpu_load. 856 * 857 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 858 * should never be listed below, because the MPIDR should only be set 859 * once, before running the VCPU, and never changed later. 860 */ 861 if (!has_vhe()) 862 return false; 863 864 switch (reg) { 865 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break; 866 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break; 867 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break; 868 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break; 869 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break; 870 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break; 871 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break; 872 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break; 873 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break; 874 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break; 875 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break; 876 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break; 877 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break; 878 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break; 879 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break; 880 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break; 881 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break; 882 case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break; 883 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break; 884 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break; 885 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break; 886 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break; 887 default: return false; 888 } 889 890 return true; 891 } 892 893 struct kvm_vm_stat { 894 struct kvm_vm_stat_generic generic; 895 }; 896 897 struct kvm_vcpu_stat { 898 struct kvm_vcpu_stat_generic generic; 899 u64 hvc_exit_stat; 900 u64 wfe_exit_stat; 901 u64 wfi_exit_stat; 902 u64 mmio_exit_user; 903 u64 mmio_exit_kernel; 904 u64 signal_exits; 905 u64 exits; 906 }; 907 908 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); 909 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); 910 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 911 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 912 913 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu); 914 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices); 915 916 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 917 struct kvm_vcpu_events *events); 918 919 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 920 struct kvm_vcpu_events *events); 921 922 #define KVM_ARCH_WANT_MMU_NOTIFIER 923 924 void kvm_arm_halt_guest(struct kvm *kvm); 925 void kvm_arm_resume_guest(struct kvm *kvm); 926 927 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid) 928 929 #ifndef __KVM_NVHE_HYPERVISOR__ 930 #define kvm_call_hyp_nvhe(f, ...) \ 931 ({ \ 932 struct arm_smccc_res res; \ 933 \ 934 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \ 935 ##__VA_ARGS__, &res); \ 936 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \ 937 \ 938 res.a1; \ 939 }) 940 941 /* 942 * The couple of isb() below are there to guarantee the same behaviour 943 * on VHE as on !VHE, where the eret to EL1 acts as a context 944 * synchronization event. 945 */ 946 #define kvm_call_hyp(f, ...) \ 947 do { \ 948 if (has_vhe()) { \ 949 f(__VA_ARGS__); \ 950 isb(); \ 951 } else { \ 952 kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 953 } \ 954 } while(0) 955 956 #define kvm_call_hyp_ret(f, ...) \ 957 ({ \ 958 typeof(f(__VA_ARGS__)) ret; \ 959 \ 960 if (has_vhe()) { \ 961 ret = f(__VA_ARGS__); \ 962 isb(); \ 963 } else { \ 964 ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 965 } \ 966 \ 967 ret; \ 968 }) 969 #else /* __KVM_NVHE_HYPERVISOR__ */ 970 #define kvm_call_hyp(f, ...) f(__VA_ARGS__) 971 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__) 972 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__) 973 #endif /* __KVM_NVHE_HYPERVISOR__ */ 974 975 int handle_exit(struct kvm_vcpu *vcpu, int exception_index); 976 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index); 977 978 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu); 979 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu); 980 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu); 981 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu); 982 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu); 983 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu); 984 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu); 985 986 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu); 987 988 int __init kvm_sys_reg_table_init(void); 989 int __init populate_nv_trap_config(void); 990 991 bool lock_all_vcpus(struct kvm *kvm); 992 void unlock_all_vcpus(struct kvm *kvm); 993 994 /* MMIO helpers */ 995 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); 996 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len); 997 998 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu); 999 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa); 1000 1001 /* 1002 * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event, 1003 * arrived in guest context. For arm64, any event that arrives while a vCPU is 1004 * loaded is considered to be "in guest". 1005 */ 1006 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu) 1007 { 1008 return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu; 1009 } 1010 1011 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); 1012 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); 1013 void kvm_update_stolen_time(struct kvm_vcpu *vcpu); 1014 1015 bool kvm_arm_pvtime_supported(void); 1016 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, 1017 struct kvm_device_attr *attr); 1018 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, 1019 struct kvm_device_attr *attr); 1020 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, 1021 struct kvm_device_attr *attr); 1022 1023 extern unsigned int __ro_after_init kvm_arm_vmid_bits; 1024 int __init kvm_arm_vmid_alloc_init(void); 1025 void __init kvm_arm_vmid_alloc_free(void); 1026 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid); 1027 void kvm_arm_vmid_clear_active(void); 1028 1029 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) 1030 { 1031 vcpu_arch->steal.base = INVALID_GPA; 1032 } 1033 1034 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) 1035 { 1036 return (vcpu_arch->steal.base != INVALID_GPA); 1037 } 1038 1039 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); 1040 1041 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); 1042 1043 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data); 1044 1045 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) 1046 { 1047 /* The host's MPIDR is immutable, so let's set it up at boot time */ 1048 ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr(); 1049 } 1050 1051 static inline bool kvm_system_needs_idmapped_vectors(void) 1052 { 1053 return cpus_have_const_cap(ARM64_SPECTRE_V3A); 1054 } 1055 1056 static inline void kvm_arch_sync_events(struct kvm *kvm) {} 1057 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} 1058 1059 void kvm_arm_init_debug(void); 1060 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu); 1061 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); 1062 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); 1063 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); 1064 1065 #define kvm_vcpu_os_lock_enabled(vcpu) \ 1066 (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK)) 1067 1068 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 1069 struct kvm_device_attr *attr); 1070 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 1071 struct kvm_device_attr *attr); 1072 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 1073 struct kvm_device_attr *attr); 1074 1075 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, 1076 struct kvm_arm_copy_mte_tags *copy_tags); 1077 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm, 1078 struct kvm_arm_counter_offset *offset); 1079 1080 /* Guest/host FPSIMD coordination helpers */ 1081 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); 1082 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); 1083 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu); 1084 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); 1085 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); 1086 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu); 1087 1088 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) 1089 { 1090 return (!has_vhe() && attr->exclude_host); 1091 } 1092 1093 /* Flags for host debug state */ 1094 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu); 1095 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu); 1096 1097 #ifdef CONFIG_KVM 1098 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); 1099 void kvm_clr_pmu_events(u32 clr); 1100 bool kvm_set_pmuserenr(u64 val); 1101 #else 1102 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} 1103 static inline void kvm_clr_pmu_events(u32 clr) {} 1104 static inline bool kvm_set_pmuserenr(u64 val) 1105 { 1106 return false; 1107 } 1108 #endif 1109 1110 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu); 1111 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu); 1112 1113 int __init kvm_set_ipa_limit(void); 1114 1115 #define __KVM_HAVE_ARCH_VM_ALLOC 1116 struct kvm *kvm_arch_alloc_vm(void); 1117 1118 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1119 1120 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1121 1122 static inline bool kvm_vm_is_protected(struct kvm *kvm) 1123 { 1124 return false; 1125 } 1126 1127 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); 1128 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); 1129 1130 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED) 1131 1132 #define kvm_has_mte(kvm) \ 1133 (system_supports_mte() && \ 1134 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags)) 1135 1136 #define kvm_supports_32bit_el0() \ 1137 (system_supports_32bit_el0() && \ 1138 !static_branch_unlikely(&arm64_mismatched_32bit_el0)) 1139 1140 #define kvm_vm_has_ran_once(kvm) \ 1141 (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags)) 1142 1143 int kvm_trng_call(struct kvm_vcpu *vcpu); 1144 #ifdef CONFIG_KVM 1145 extern phys_addr_t hyp_mem_base; 1146 extern phys_addr_t hyp_mem_size; 1147 void __init kvm_hyp_reserve(void); 1148 #else 1149 static inline void kvm_hyp_reserve(void) { } 1150 #endif 1151 1152 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu); 1153 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu); 1154 1155 #endif /* __ARM64_KVM_HOST_H__ */ 1156