1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/asm/kvm_host.h: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_HOST_H__ 12 #define __ARM64_KVM_HOST_H__ 13 14 #include <linux/arm-smccc.h> 15 #include <linux/bitmap.h> 16 #include <linux/types.h> 17 #include <linux/jump_label.h> 18 #include <linux/kvm_types.h> 19 #include <linux/percpu.h> 20 #include <linux/psci.h> 21 #include <asm/arch_gicv3.h> 22 #include <asm/barrier.h> 23 #include <asm/cpufeature.h> 24 #include <asm/cputype.h> 25 #include <asm/daifflags.h> 26 #include <asm/fpsimd.h> 27 #include <asm/kvm.h> 28 #include <asm/kvm_asm.h> 29 #include <asm/thread_info.h> 30 31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED 32 33 #define KVM_HALT_POLL_NS_DEFAULT 500000 34 35 #include <kvm/arm_vgic.h> 36 #include <kvm/arm_arch_timer.h> 37 #include <kvm/arm_pmu.h> 38 39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS 40 41 #define KVM_VCPU_MAX_FEATURES 7 42 43 #define KVM_REQ_SLEEP \ 44 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 45 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) 46 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) 47 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) 48 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4) 49 #define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5) 50 51 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 52 KVM_DIRTY_LOG_INITIALLY_SET) 53 54 /* 55 * Mode of operation configurable with kvm-arm.mode early param. 56 * See Documentation/admin-guide/kernel-parameters.txt for more information. 57 */ 58 enum kvm_mode { 59 KVM_MODE_DEFAULT, 60 KVM_MODE_PROTECTED, 61 KVM_MODE_NONE, 62 }; 63 enum kvm_mode kvm_get_mode(void); 64 65 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 66 67 extern unsigned int kvm_sve_max_vl; 68 int kvm_arm_init_sve(void); 69 70 u32 __attribute_const__ kvm_target_cpu(void); 71 int kvm_reset_vcpu(struct kvm_vcpu *vcpu); 72 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu); 73 74 struct kvm_vmid { 75 /* The VMID generation used for the virt. memory system */ 76 u64 vmid_gen; 77 u32 vmid; 78 }; 79 80 struct kvm_s2_mmu { 81 struct kvm_vmid vmid; 82 83 /* 84 * stage2 entry level table 85 * 86 * Two kvm_s2_mmu structures in the same VM can point to the same 87 * pgd here. This happens when running a guest using a 88 * translation regime that isn't affected by its own stage-2 89 * translation, such as a non-VHE hypervisor running at vEL2, or 90 * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the 91 * canonical stage-2 page tables. 92 */ 93 phys_addr_t pgd_phys; 94 struct kvm_pgtable *pgt; 95 96 /* The last vcpu id that ran on each physical CPU */ 97 int __percpu *last_vcpu_ran; 98 99 struct kvm_arch *arch; 100 }; 101 102 struct kvm_arch_memory_slot { 103 }; 104 105 struct kvm_arch { 106 struct kvm_s2_mmu mmu; 107 108 /* VTCR_EL2 value for this VM */ 109 u64 vtcr; 110 111 /* The maximum number of vCPUs depends on the used GIC model */ 112 int max_vcpus; 113 114 /* Interrupt controller */ 115 struct vgic_dist vgic; 116 117 /* Mandated version of PSCI */ 118 u32 psci_version; 119 120 /* 121 * If we encounter a data abort without valid instruction syndrome 122 * information, report this to user space. User space can (and 123 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is 124 * supported. 125 */ 126 bool return_nisv_io_abort_to_user; 127 128 /* 129 * VM-wide PMU filter, implemented as a bitmap and big enough for 130 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+). 131 */ 132 unsigned long *pmu_filter; 133 unsigned int pmuver; 134 135 u8 pfr0_csv2; 136 u8 pfr0_csv3; 137 138 /* Memory Tagging Extension enabled for the guest */ 139 bool mte_enabled; 140 }; 141 142 struct kvm_vcpu_fault_info { 143 u32 esr_el2; /* Hyp Syndrom Register */ 144 u64 far_el2; /* Hyp Fault Address Register */ 145 u64 hpfar_el2; /* Hyp IPA Fault Address Register */ 146 u64 disr_el1; /* Deferred [SError] Status Register */ 147 }; 148 149 enum vcpu_sysreg { 150 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */ 151 MPIDR_EL1, /* MultiProcessor Affinity Register */ 152 CSSELR_EL1, /* Cache Size Selection Register */ 153 SCTLR_EL1, /* System Control Register */ 154 ACTLR_EL1, /* Auxiliary Control Register */ 155 CPACR_EL1, /* Coprocessor Access Control */ 156 ZCR_EL1, /* SVE Control */ 157 TTBR0_EL1, /* Translation Table Base Register 0 */ 158 TTBR1_EL1, /* Translation Table Base Register 1 */ 159 TCR_EL1, /* Translation Control Register */ 160 ESR_EL1, /* Exception Syndrome Register */ 161 AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ 162 AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ 163 FAR_EL1, /* Fault Address Register */ 164 MAIR_EL1, /* Memory Attribute Indirection Register */ 165 VBAR_EL1, /* Vector Base Address Register */ 166 CONTEXTIDR_EL1, /* Context ID Register */ 167 TPIDR_EL0, /* Thread ID, User R/W */ 168 TPIDRRO_EL0, /* Thread ID, User R/O */ 169 TPIDR_EL1, /* Thread ID, Privileged */ 170 AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ 171 CNTKCTL_EL1, /* Timer Control Register (EL1) */ 172 PAR_EL1, /* Physical Address Register */ 173 MDSCR_EL1, /* Monitor Debug System Control Register */ 174 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ 175 DISR_EL1, /* Deferred Interrupt Status Register */ 176 177 /* Performance Monitors Registers */ 178 PMCR_EL0, /* Control Register */ 179 PMSELR_EL0, /* Event Counter Selection Register */ 180 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ 181 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, 182 PMCCNTR_EL0, /* Cycle Counter Register */ 183 PMEVTYPER0_EL0, /* Event Type Register (0-30) */ 184 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, 185 PMCCFILTR_EL0, /* Cycle Count Filter Register */ 186 PMCNTENSET_EL0, /* Count Enable Set Register */ 187 PMINTENSET_EL1, /* Interrupt Enable Set Register */ 188 PMOVSSET_EL0, /* Overflow Flag Status Set Register */ 189 PMUSERENR_EL0, /* User Enable Register */ 190 191 /* Pointer Authentication Registers in a strict increasing order. */ 192 APIAKEYLO_EL1, 193 APIAKEYHI_EL1, 194 APIBKEYLO_EL1, 195 APIBKEYHI_EL1, 196 APDAKEYLO_EL1, 197 APDAKEYHI_EL1, 198 APDBKEYLO_EL1, 199 APDBKEYHI_EL1, 200 APGAKEYLO_EL1, 201 APGAKEYHI_EL1, 202 203 ELR_EL1, 204 SP_EL1, 205 SPSR_EL1, 206 207 CNTVOFF_EL2, 208 CNTV_CVAL_EL0, 209 CNTV_CTL_EL0, 210 CNTP_CVAL_EL0, 211 CNTP_CTL_EL0, 212 213 /* Memory Tagging Extension registers */ 214 RGSR_EL1, /* Random Allocation Tag Seed Register */ 215 GCR_EL1, /* Tag Control Register */ 216 TFSR_EL1, /* Tag Fault Status Register (EL1) */ 217 TFSRE0_EL1, /* Tag Fault Status Register (EL0) */ 218 219 /* 32bit specific registers. Keep them at the end of the range */ 220 DACR32_EL2, /* Domain Access Control Register */ 221 IFSR32_EL2, /* Instruction Fault Status Register */ 222 FPEXC32_EL2, /* Floating-Point Exception Control Register */ 223 DBGVCR32_EL2, /* Debug Vector Catch Register */ 224 225 NR_SYS_REGS /* Nothing after this line! */ 226 }; 227 228 struct kvm_cpu_context { 229 struct user_pt_regs regs; /* sp = sp_el0 */ 230 231 u64 spsr_abt; 232 u64 spsr_und; 233 u64 spsr_irq; 234 u64 spsr_fiq; 235 236 struct user_fpsimd_state fp_regs; 237 238 u64 sys_regs[NR_SYS_REGS]; 239 240 struct kvm_vcpu *__hyp_running_vcpu; 241 }; 242 243 struct kvm_pmu_events { 244 u32 events_host; 245 u32 events_guest; 246 }; 247 248 struct kvm_host_data { 249 struct kvm_cpu_context host_ctxt; 250 struct kvm_pmu_events pmu_events; 251 }; 252 253 struct kvm_host_psci_config { 254 /* PSCI version used by host. */ 255 u32 version; 256 257 /* Function IDs used by host if version is v0.1. */ 258 struct psci_0_1_function_ids function_ids_0_1; 259 260 bool psci_0_1_cpu_suspend_implemented; 261 bool psci_0_1_cpu_on_implemented; 262 bool psci_0_1_cpu_off_implemented; 263 bool psci_0_1_migrate_implemented; 264 }; 265 266 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config); 267 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config) 268 269 extern s64 kvm_nvhe_sym(hyp_physvirt_offset); 270 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset) 271 272 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS]; 273 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map) 274 275 struct vcpu_reset_state { 276 unsigned long pc; 277 unsigned long r0; 278 bool be; 279 bool reset; 280 }; 281 282 struct kvm_vcpu_arch { 283 struct kvm_cpu_context ctxt; 284 void *sve_state; 285 unsigned int sve_max_vl; 286 287 /* Stage 2 paging state used by the hardware on next switch */ 288 struct kvm_s2_mmu *hw_mmu; 289 290 /* Values of trap registers for the guest. */ 291 u64 hcr_el2; 292 u64 mdcr_el2; 293 u64 cptr_el2; 294 295 /* Values of trap registers for the host before guest entry. */ 296 u64 mdcr_el2_host; 297 298 /* Exception Information */ 299 struct kvm_vcpu_fault_info fault; 300 301 /* State of various workarounds, see kvm_asm.h for bit assignment */ 302 u64 workaround_flags; 303 304 /* Miscellaneous vcpu state flags */ 305 u64 flags; 306 307 /* 308 * We maintain more than a single set of debug registers to support 309 * debugging the guest from the host and to maintain separate host and 310 * guest state during world switches. vcpu_debug_state are the debug 311 * registers of the vcpu as the guest sees them. host_debug_state are 312 * the host registers which are saved and restored during 313 * world switches. external_debug_state contains the debug 314 * values we want to debug the guest. This is set via the 315 * KVM_SET_GUEST_DEBUG ioctl. 316 * 317 * debug_ptr points to the set of debug registers that should be loaded 318 * onto the hardware when running the guest. 319 */ 320 struct kvm_guest_debug_arch *debug_ptr; 321 struct kvm_guest_debug_arch vcpu_debug_state; 322 struct kvm_guest_debug_arch external_debug_state; 323 324 struct thread_info *host_thread_info; /* hyp VA */ 325 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ 326 327 struct { 328 /* {Break,watch}point registers */ 329 struct kvm_guest_debug_arch regs; 330 /* Statistical profiling extension */ 331 u64 pmscr_el1; 332 /* Self-hosted trace */ 333 u64 trfcr_el1; 334 } host_debug_state; 335 336 /* VGIC state */ 337 struct vgic_cpu vgic_cpu; 338 struct arch_timer_cpu timer_cpu; 339 struct kvm_pmu pmu; 340 341 /* 342 * Anything that is not used directly from assembly code goes 343 * here. 344 */ 345 346 /* 347 * Guest registers we preserve during guest debugging. 348 * 349 * These shadow registers are updated by the kvm_handle_sys_reg 350 * trap handler if the guest accesses or updates them while we 351 * are using guest debug. 352 */ 353 struct { 354 u32 mdscr_el1; 355 } guest_debug_preserved; 356 357 /* vcpu power-off state */ 358 bool power_off; 359 360 /* Don't run the guest (internal implementation need) */ 361 bool pause; 362 363 /* Cache some mmu pages needed inside spinlock regions */ 364 struct kvm_mmu_memory_cache mmu_page_cache; 365 366 /* Target CPU and feature flags */ 367 int target; 368 DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); 369 370 /* Detect first run of a vcpu */ 371 bool has_run_once; 372 373 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ 374 u64 vsesr_el2; 375 376 /* Additional reset state */ 377 struct vcpu_reset_state reset_state; 378 379 /* True when deferrable sysregs are loaded on the physical CPU, 380 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */ 381 bool sysregs_loaded_on_cpu; 382 383 /* Guest PV state */ 384 struct { 385 u64 last_steal; 386 gpa_t base; 387 } steal; 388 }; 389 390 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ 391 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \ 392 sve_ffr_offset((vcpu)->arch.sve_max_vl)) 393 394 #define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl) 395 396 #define vcpu_sve_state_size(vcpu) ({ \ 397 size_t __size_ret; \ 398 unsigned int __vcpu_vq; \ 399 \ 400 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ 401 __size_ret = 0; \ 402 } else { \ 403 __vcpu_vq = vcpu_sve_max_vq(vcpu); \ 404 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ 405 } \ 406 \ 407 __size_ret; \ 408 }) 409 410 /* vcpu_arch flags field values: */ 411 #define KVM_ARM64_DEBUG_DIRTY (1 << 0) 412 #define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */ 413 #define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */ 414 #define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */ 415 #define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */ 416 #define KVM_ARM64_GUEST_HAS_SVE (1 << 5) /* SVE exposed to guest */ 417 #define KVM_ARM64_VCPU_SVE_FINALIZED (1 << 6) /* SVE config completed */ 418 #define KVM_ARM64_GUEST_HAS_PTRAUTH (1 << 7) /* PTRAUTH exposed to guest */ 419 #define KVM_ARM64_PENDING_EXCEPTION (1 << 8) /* Exception pending */ 420 #define KVM_ARM64_EXCEPT_MASK (7 << 9) /* Target EL/MODE */ 421 #define KVM_ARM64_DEBUG_STATE_SAVE_SPE (1 << 12) /* Save SPE context if active */ 422 #define KVM_ARM64_DEBUG_STATE_SAVE_TRBE (1 << 13) /* Save TRBE context if active */ 423 424 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \ 425 KVM_GUESTDBG_USE_SW_BP | \ 426 KVM_GUESTDBG_USE_HW | \ 427 KVM_GUESTDBG_SINGLESTEP) 428 /* 429 * When KVM_ARM64_PENDING_EXCEPTION is set, KVM_ARM64_EXCEPT_MASK can 430 * take the following values: 431 * 432 * For AArch32 EL1: 433 */ 434 #define KVM_ARM64_EXCEPT_AA32_UND (0 << 9) 435 #define KVM_ARM64_EXCEPT_AA32_IABT (1 << 9) 436 #define KVM_ARM64_EXCEPT_AA32_DABT (2 << 9) 437 /* For AArch64: */ 438 #define KVM_ARM64_EXCEPT_AA64_ELx_SYNC (0 << 9) 439 #define KVM_ARM64_EXCEPT_AA64_ELx_IRQ (1 << 9) 440 #define KVM_ARM64_EXCEPT_AA64_ELx_FIQ (2 << 9) 441 #define KVM_ARM64_EXCEPT_AA64_ELx_SERR (3 << 9) 442 #define KVM_ARM64_EXCEPT_AA64_EL1 (0 << 11) 443 #define KVM_ARM64_EXCEPT_AA64_EL2 (1 << 11) 444 445 /* 446 * Overlaps with KVM_ARM64_EXCEPT_MASK on purpose so that it can't be 447 * set together with an exception... 448 */ 449 #define KVM_ARM64_INCREMENT_PC (1 << 9) /* Increment PC */ 450 451 #define vcpu_has_sve(vcpu) (system_supports_sve() && \ 452 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE)) 453 454 #ifdef CONFIG_ARM64_PTR_AUTH 455 #define vcpu_has_ptrauth(vcpu) \ 456 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \ 457 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \ 458 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH) 459 #else 460 #define vcpu_has_ptrauth(vcpu) false 461 #endif 462 463 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs) 464 465 /* 466 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the 467 * memory backed version of a register, and not the one most recently 468 * accessed by a running VCPU. For example, for userspace access or 469 * for system registers that are never context switched, but only 470 * emulated. 471 */ 472 #define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)]) 473 474 #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r)) 475 476 #define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r))) 477 478 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); 479 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); 480 481 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val) 482 { 483 /* 484 * *** VHE ONLY *** 485 * 486 * System registers listed in the switch are not saved on every 487 * exit from the guest but are only saved on vcpu_put. 488 * 489 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 490 * should never be listed below, because the guest cannot modify its 491 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's 492 * thread when emulating cross-VCPU communication. 493 */ 494 if (!has_vhe()) 495 return false; 496 497 switch (reg) { 498 case CSSELR_EL1: *val = read_sysreg_s(SYS_CSSELR_EL1); break; 499 case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break; 500 case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break; 501 case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break; 502 case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break; 503 case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break; 504 case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break; 505 case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break; 506 case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break; 507 case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break; 508 case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break; 509 case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break; 510 case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break; 511 case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break; 512 case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break; 513 case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break; 514 case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break; 515 case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break; 516 case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break; 517 case PAR_EL1: *val = read_sysreg_par(); break; 518 case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break; 519 case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break; 520 case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break; 521 default: return false; 522 } 523 524 return true; 525 } 526 527 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg) 528 { 529 /* 530 * *** VHE ONLY *** 531 * 532 * System registers listed in the switch are not restored on every 533 * entry to the guest but are only restored on vcpu_load. 534 * 535 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 536 * should never be listed below, because the MPIDR should only be set 537 * once, before running the VCPU, and never changed later. 538 */ 539 if (!has_vhe()) 540 return false; 541 542 switch (reg) { 543 case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); break; 544 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break; 545 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break; 546 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break; 547 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break; 548 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break; 549 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break; 550 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break; 551 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break; 552 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break; 553 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break; 554 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break; 555 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break; 556 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break; 557 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break; 558 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break; 559 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break; 560 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break; 561 case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break; 562 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break; 563 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break; 564 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break; 565 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break; 566 default: return false; 567 } 568 569 return true; 570 } 571 572 struct kvm_vm_stat { 573 struct kvm_vm_stat_generic generic; 574 }; 575 576 struct kvm_vcpu_stat { 577 struct kvm_vcpu_stat_generic generic; 578 u64 hvc_exit_stat; 579 u64 wfe_exit_stat; 580 u64 wfi_exit_stat; 581 u64 mmio_exit_user; 582 u64 mmio_exit_kernel; 583 u64 signal_exits; 584 u64 exits; 585 }; 586 587 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); 588 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); 589 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); 590 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 591 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 592 593 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu); 594 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices); 595 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *); 596 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *); 597 598 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 599 struct kvm_vcpu_events *events); 600 601 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 602 struct kvm_vcpu_events *events); 603 604 #define KVM_ARCH_WANT_MMU_NOTIFIER 605 606 void kvm_arm_halt_guest(struct kvm *kvm); 607 void kvm_arm_resume_guest(struct kvm *kvm); 608 609 #ifndef __KVM_NVHE_HYPERVISOR__ 610 #define kvm_call_hyp_nvhe(f, ...) \ 611 ({ \ 612 struct arm_smccc_res res; \ 613 \ 614 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \ 615 ##__VA_ARGS__, &res); \ 616 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \ 617 \ 618 res.a1; \ 619 }) 620 621 /* 622 * The couple of isb() below are there to guarantee the same behaviour 623 * on VHE as on !VHE, where the eret to EL1 acts as a context 624 * synchronization event. 625 */ 626 #define kvm_call_hyp(f, ...) \ 627 do { \ 628 if (has_vhe()) { \ 629 f(__VA_ARGS__); \ 630 isb(); \ 631 } else { \ 632 kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 633 } \ 634 } while(0) 635 636 #define kvm_call_hyp_ret(f, ...) \ 637 ({ \ 638 typeof(f(__VA_ARGS__)) ret; \ 639 \ 640 if (has_vhe()) { \ 641 ret = f(__VA_ARGS__); \ 642 isb(); \ 643 } else { \ 644 ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 645 } \ 646 \ 647 ret; \ 648 }) 649 #else /* __KVM_NVHE_HYPERVISOR__ */ 650 #define kvm_call_hyp(f, ...) f(__VA_ARGS__) 651 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__) 652 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__) 653 #endif /* __KVM_NVHE_HYPERVISOR__ */ 654 655 void force_vm_exit(const cpumask_t *mask); 656 657 int handle_exit(struct kvm_vcpu *vcpu, int exception_index); 658 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index); 659 660 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu); 661 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu); 662 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu); 663 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu); 664 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu); 665 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu); 666 667 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu); 668 669 void kvm_sys_reg_table_init(void); 670 671 /* MMIO helpers */ 672 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); 673 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len); 674 675 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu); 676 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa); 677 678 int kvm_perf_init(void); 679 int kvm_perf_teardown(void); 680 681 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); 682 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); 683 void kvm_update_stolen_time(struct kvm_vcpu *vcpu); 684 685 bool kvm_arm_pvtime_supported(void); 686 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, 687 struct kvm_device_attr *attr); 688 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, 689 struct kvm_device_attr *attr); 690 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, 691 struct kvm_device_attr *attr); 692 693 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) 694 { 695 vcpu_arch->steal.base = GPA_INVALID; 696 } 697 698 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) 699 { 700 return (vcpu_arch->steal.base != GPA_INVALID); 701 } 702 703 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); 704 705 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); 706 707 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data); 708 709 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) 710 { 711 /* The host's MPIDR is immutable, so let's set it up at boot time */ 712 ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr(); 713 } 714 715 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu); 716 717 static inline void kvm_arch_hardware_unsetup(void) {} 718 static inline void kvm_arch_sync_events(struct kvm *kvm) {} 719 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} 720 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} 721 722 void kvm_arm_init_debug(void); 723 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu); 724 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); 725 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); 726 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); 727 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 728 struct kvm_device_attr *attr); 729 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 730 struct kvm_device_attr *attr); 731 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 732 struct kvm_device_attr *attr); 733 734 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, 735 struct kvm_arm_copy_mte_tags *copy_tags); 736 737 /* Guest/host FPSIMD coordination helpers */ 738 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); 739 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); 740 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); 741 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); 742 743 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) 744 { 745 return (!has_vhe() && attr->exclude_host); 746 } 747 748 /* Flags for host debug state */ 749 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu); 750 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu); 751 752 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */ 753 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 754 { 755 return kvm_arch_vcpu_run_map_fp(vcpu); 756 } 757 758 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); 759 void kvm_clr_pmu_events(u32 clr); 760 761 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu); 762 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu); 763 #else 764 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} 765 static inline void kvm_clr_pmu_events(u32 clr) {} 766 #endif 767 768 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu); 769 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu); 770 771 int kvm_set_ipa_limit(void); 772 773 #define __KVM_HAVE_ARCH_VM_ALLOC 774 struct kvm *kvm_arch_alloc_vm(void); 775 776 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type); 777 778 static inline bool kvm_vm_is_protected(struct kvm *kvm) 779 { 780 return false; 781 } 782 783 void kvm_init_protected_traps(struct kvm_vcpu *vcpu); 784 785 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); 786 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); 787 788 #define kvm_arm_vcpu_sve_finalized(vcpu) \ 789 ((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED) 790 791 #define kvm_has_mte(kvm) (system_supports_mte() && (kvm)->arch.mte_enabled) 792 #define kvm_vcpu_has_pmu(vcpu) \ 793 (test_bit(KVM_ARM_VCPU_PMU_V3, (vcpu)->arch.features)) 794 795 int kvm_trng_call(struct kvm_vcpu *vcpu); 796 #ifdef CONFIG_KVM 797 extern phys_addr_t hyp_mem_base; 798 extern phys_addr_t hyp_mem_size; 799 void __init kvm_hyp_reserve(void); 800 #else 801 static inline void kvm_hyp_reserve(void) { } 802 #endif 803 804 #endif /* __ARM64_KVM_HOST_H__ */ 805