1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/asm/kvm_host.h: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_HOST_H__ 12 #define __ARM64_KVM_HOST_H__ 13 14 #include <linux/arm-smccc.h> 15 #include <linux/bitmap.h> 16 #include <linux/types.h> 17 #include <linux/jump_label.h> 18 #include <linux/kvm_types.h> 19 #include <linux/maple_tree.h> 20 #include <linux/percpu.h> 21 #include <linux/psci.h> 22 #include <asm/arch_gicv3.h> 23 #include <asm/barrier.h> 24 #include <asm/cpufeature.h> 25 #include <asm/cputype.h> 26 #include <asm/daifflags.h> 27 #include <asm/fpsimd.h> 28 #include <asm/kvm.h> 29 #include <asm/kvm_asm.h> 30 31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED 32 33 #define KVM_HALT_POLL_NS_DEFAULT 500000 34 35 #include <kvm/arm_vgic.h> 36 #include <kvm/arm_arch_timer.h> 37 #include <kvm/arm_pmu.h> 38 39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS 40 41 #define KVM_VCPU_MAX_FEATURES 7 42 #define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1) 43 44 #define KVM_REQ_SLEEP \ 45 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 46 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) 47 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) 48 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) 49 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4) 50 #define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5) 51 #define KVM_REQ_SUSPEND KVM_ARCH_REQ(6) 52 53 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 54 KVM_DIRTY_LOG_INITIALLY_SET) 55 56 #define KVM_HAVE_MMU_RWLOCK 57 58 /* 59 * Mode of operation configurable with kvm-arm.mode early param. 60 * See Documentation/admin-guide/kernel-parameters.txt for more information. 61 */ 62 enum kvm_mode { 63 KVM_MODE_DEFAULT, 64 KVM_MODE_PROTECTED, 65 KVM_MODE_NV, 66 KVM_MODE_NONE, 67 }; 68 #ifdef CONFIG_KVM 69 enum kvm_mode kvm_get_mode(void); 70 #else 71 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; }; 72 #endif 73 74 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 75 76 extern unsigned int __ro_after_init kvm_sve_max_vl; 77 int __init kvm_arm_init_sve(void); 78 79 u32 __attribute_const__ kvm_target_cpu(void); 80 int kvm_reset_vcpu(struct kvm_vcpu *vcpu); 81 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu); 82 83 struct kvm_hyp_memcache { 84 phys_addr_t head; 85 unsigned long nr_pages; 86 }; 87 88 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc, 89 phys_addr_t *p, 90 phys_addr_t (*to_pa)(void *virt)) 91 { 92 *p = mc->head; 93 mc->head = to_pa(p); 94 mc->nr_pages++; 95 } 96 97 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc, 98 void *(*to_va)(phys_addr_t phys)) 99 { 100 phys_addr_t *p = to_va(mc->head); 101 102 if (!mc->nr_pages) 103 return NULL; 104 105 mc->head = *p; 106 mc->nr_pages--; 107 108 return p; 109 } 110 111 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc, 112 unsigned long min_pages, 113 void *(*alloc_fn)(void *arg), 114 phys_addr_t (*to_pa)(void *virt), 115 void *arg) 116 { 117 while (mc->nr_pages < min_pages) { 118 phys_addr_t *p = alloc_fn(arg); 119 120 if (!p) 121 return -ENOMEM; 122 push_hyp_memcache(mc, p, to_pa); 123 } 124 125 return 0; 126 } 127 128 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc, 129 void (*free_fn)(void *virt, void *arg), 130 void *(*to_va)(phys_addr_t phys), 131 void *arg) 132 { 133 while (mc->nr_pages) 134 free_fn(pop_hyp_memcache(mc, to_va), arg); 135 } 136 137 void free_hyp_memcache(struct kvm_hyp_memcache *mc); 138 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages); 139 140 struct kvm_vmid { 141 atomic64_t id; 142 }; 143 144 struct kvm_s2_mmu { 145 struct kvm_vmid vmid; 146 147 /* 148 * stage2 entry level table 149 * 150 * Two kvm_s2_mmu structures in the same VM can point to the same 151 * pgd here. This happens when running a guest using a 152 * translation regime that isn't affected by its own stage-2 153 * translation, such as a non-VHE hypervisor running at vEL2, or 154 * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the 155 * canonical stage-2 page tables. 156 */ 157 phys_addr_t pgd_phys; 158 struct kvm_pgtable *pgt; 159 160 /* The last vcpu id that ran on each physical CPU */ 161 int __percpu *last_vcpu_ran; 162 163 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0 164 /* 165 * Memory cache used to split 166 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It 167 * is used to allocate stage2 page tables while splitting huge 168 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE 169 * influences both the capacity of the split page cache, and 170 * how often KVM reschedules. Be wary of raising CHUNK_SIZE 171 * too high. 172 * 173 * Protected by kvm->slots_lock. 174 */ 175 struct kvm_mmu_memory_cache split_page_cache; 176 uint64_t split_page_chunk_size; 177 178 struct kvm_arch *arch; 179 }; 180 181 struct kvm_arch_memory_slot { 182 }; 183 184 /** 185 * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests 186 * 187 * @std_bmap: Bitmap of standard secure service calls 188 * @std_hyp_bmap: Bitmap of standard hypervisor service calls 189 * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls 190 */ 191 struct kvm_smccc_features { 192 unsigned long std_bmap; 193 unsigned long std_hyp_bmap; 194 unsigned long vendor_hyp_bmap; 195 }; 196 197 typedef unsigned int pkvm_handle_t; 198 199 struct kvm_protected_vm { 200 pkvm_handle_t handle; 201 struct kvm_hyp_memcache teardown_mc; 202 }; 203 204 struct kvm_arch { 205 struct kvm_s2_mmu mmu; 206 207 /* VTCR_EL2 value for this VM */ 208 u64 vtcr; 209 210 /* Interrupt controller */ 211 struct vgic_dist vgic; 212 213 /* Timers */ 214 struct arch_timer_vm_data timer_data; 215 216 /* Mandated version of PSCI */ 217 u32 psci_version; 218 219 /* Protects VM-scoped configuration data */ 220 struct mutex config_lock; 221 222 /* 223 * If we encounter a data abort without valid instruction syndrome 224 * information, report this to user space. User space can (and 225 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is 226 * supported. 227 */ 228 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER 0 229 /* Memory Tagging Extension enabled for the guest */ 230 #define KVM_ARCH_FLAG_MTE_ENABLED 1 231 /* At least one vCPU has ran in the VM */ 232 #define KVM_ARCH_FLAG_HAS_RAN_ONCE 2 233 /* The vCPU feature set for the VM is configured */ 234 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED 3 235 /* PSCI SYSTEM_SUSPEND enabled for the guest */ 236 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 4 237 /* VM counter offset */ 238 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET 5 239 /* Timer PPIs made immutable */ 240 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE 6 241 /* SMCCC filter initialized for the VM */ 242 #define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED 7 243 /* Initial ID reg values loaded */ 244 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED 8 245 unsigned long flags; 246 247 /* VM-wide vCPU feature set */ 248 DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES); 249 250 /* 251 * VM-wide PMU filter, implemented as a bitmap and big enough for 252 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+). 253 */ 254 unsigned long *pmu_filter; 255 struct arm_pmu *arm_pmu; 256 257 cpumask_var_t supported_cpus; 258 259 /* Hypercall features firmware registers' descriptor */ 260 struct kvm_smccc_features smccc_feat; 261 struct maple_tree smccc_filter; 262 263 /* 264 * Emulated CPU ID registers per VM 265 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it 266 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8. 267 * 268 * These emulated idregs are VM-wide, but accessed from the context of a vCPU. 269 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock. 270 */ 271 #define IDREG_IDX(id) (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id)) 272 #define IDREG(kvm, id) ((kvm)->arch.id_regs[IDREG_IDX(id)]) 273 #define KVM_ARM_ID_REG_NUM (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1) 274 u64 id_regs[KVM_ARM_ID_REG_NUM]; 275 276 /* 277 * For an untrusted host VM, 'pkvm.handle' is used to lookup 278 * the associated pKVM instance in the hypervisor. 279 */ 280 struct kvm_protected_vm pkvm; 281 }; 282 283 struct kvm_vcpu_fault_info { 284 u64 esr_el2; /* Hyp Syndrom Register */ 285 u64 far_el2; /* Hyp Fault Address Register */ 286 u64 hpfar_el2; /* Hyp IPA Fault Address Register */ 287 u64 disr_el1; /* Deferred [SError] Status Register */ 288 }; 289 290 enum vcpu_sysreg { 291 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */ 292 MPIDR_EL1, /* MultiProcessor Affinity Register */ 293 CLIDR_EL1, /* Cache Level ID Register */ 294 CSSELR_EL1, /* Cache Size Selection Register */ 295 SCTLR_EL1, /* System Control Register */ 296 ACTLR_EL1, /* Auxiliary Control Register */ 297 CPACR_EL1, /* Coprocessor Access Control */ 298 ZCR_EL1, /* SVE Control */ 299 TTBR0_EL1, /* Translation Table Base Register 0 */ 300 TTBR1_EL1, /* Translation Table Base Register 1 */ 301 TCR_EL1, /* Translation Control Register */ 302 TCR2_EL1, /* Extended Translation Control Register */ 303 ESR_EL1, /* Exception Syndrome Register */ 304 AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ 305 AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ 306 FAR_EL1, /* Fault Address Register */ 307 MAIR_EL1, /* Memory Attribute Indirection Register */ 308 VBAR_EL1, /* Vector Base Address Register */ 309 CONTEXTIDR_EL1, /* Context ID Register */ 310 TPIDR_EL0, /* Thread ID, User R/W */ 311 TPIDRRO_EL0, /* Thread ID, User R/O */ 312 TPIDR_EL1, /* Thread ID, Privileged */ 313 AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ 314 CNTKCTL_EL1, /* Timer Control Register (EL1) */ 315 PAR_EL1, /* Physical Address Register */ 316 MDSCR_EL1, /* Monitor Debug System Control Register */ 317 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ 318 OSLSR_EL1, /* OS Lock Status Register */ 319 DISR_EL1, /* Deferred Interrupt Status Register */ 320 321 /* Performance Monitors Registers */ 322 PMCR_EL0, /* Control Register */ 323 PMSELR_EL0, /* Event Counter Selection Register */ 324 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ 325 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, 326 PMCCNTR_EL0, /* Cycle Counter Register */ 327 PMEVTYPER0_EL0, /* Event Type Register (0-30) */ 328 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, 329 PMCCFILTR_EL0, /* Cycle Count Filter Register */ 330 PMCNTENSET_EL0, /* Count Enable Set Register */ 331 PMINTENSET_EL1, /* Interrupt Enable Set Register */ 332 PMOVSSET_EL0, /* Overflow Flag Status Set Register */ 333 PMUSERENR_EL0, /* User Enable Register */ 334 335 /* Pointer Authentication Registers in a strict increasing order. */ 336 APIAKEYLO_EL1, 337 APIAKEYHI_EL1, 338 APIBKEYLO_EL1, 339 APIBKEYHI_EL1, 340 APDAKEYLO_EL1, 341 APDAKEYHI_EL1, 342 APDBKEYLO_EL1, 343 APDBKEYHI_EL1, 344 APGAKEYLO_EL1, 345 APGAKEYHI_EL1, 346 347 ELR_EL1, 348 SP_EL1, 349 SPSR_EL1, 350 351 CNTVOFF_EL2, 352 CNTV_CVAL_EL0, 353 CNTV_CTL_EL0, 354 CNTP_CVAL_EL0, 355 CNTP_CTL_EL0, 356 357 /* Memory Tagging Extension registers */ 358 RGSR_EL1, /* Random Allocation Tag Seed Register */ 359 GCR_EL1, /* Tag Control Register */ 360 TFSR_EL1, /* Tag Fault Status Register (EL1) */ 361 TFSRE0_EL1, /* Tag Fault Status Register (EL0) */ 362 363 /* Permission Indirection Extension registers */ 364 PIR_EL1, /* Permission Indirection Register 1 (EL1) */ 365 PIRE0_EL1, /* Permission Indirection Register 0 (EL1) */ 366 367 /* 32bit specific registers. */ 368 DACR32_EL2, /* Domain Access Control Register */ 369 IFSR32_EL2, /* Instruction Fault Status Register */ 370 FPEXC32_EL2, /* Floating-Point Exception Control Register */ 371 DBGVCR32_EL2, /* Debug Vector Catch Register */ 372 373 /* EL2 registers */ 374 VPIDR_EL2, /* Virtualization Processor ID Register */ 375 VMPIDR_EL2, /* Virtualization Multiprocessor ID Register */ 376 SCTLR_EL2, /* System Control Register (EL2) */ 377 ACTLR_EL2, /* Auxiliary Control Register (EL2) */ 378 HCR_EL2, /* Hypervisor Configuration Register */ 379 MDCR_EL2, /* Monitor Debug Configuration Register (EL2) */ 380 CPTR_EL2, /* Architectural Feature Trap Register (EL2) */ 381 HSTR_EL2, /* Hypervisor System Trap Register */ 382 HACR_EL2, /* Hypervisor Auxiliary Control Register */ 383 TTBR0_EL2, /* Translation Table Base Register 0 (EL2) */ 384 TTBR1_EL2, /* Translation Table Base Register 1 (EL2) */ 385 TCR_EL2, /* Translation Control Register (EL2) */ 386 VTTBR_EL2, /* Virtualization Translation Table Base Register */ 387 VTCR_EL2, /* Virtualization Translation Control Register */ 388 SPSR_EL2, /* EL2 saved program status register */ 389 ELR_EL2, /* EL2 exception link register */ 390 AFSR0_EL2, /* Auxiliary Fault Status Register 0 (EL2) */ 391 AFSR1_EL2, /* Auxiliary Fault Status Register 1 (EL2) */ 392 ESR_EL2, /* Exception Syndrome Register (EL2) */ 393 FAR_EL2, /* Fault Address Register (EL2) */ 394 HPFAR_EL2, /* Hypervisor IPA Fault Address Register */ 395 MAIR_EL2, /* Memory Attribute Indirection Register (EL2) */ 396 AMAIR_EL2, /* Auxiliary Memory Attribute Indirection Register (EL2) */ 397 VBAR_EL2, /* Vector Base Address Register (EL2) */ 398 RVBAR_EL2, /* Reset Vector Base Address Register */ 399 CONTEXTIDR_EL2, /* Context ID Register (EL2) */ 400 TPIDR_EL2, /* EL2 Software Thread ID Register */ 401 CNTHCTL_EL2, /* Counter-timer Hypervisor Control register */ 402 SP_EL2, /* EL2 Stack Pointer */ 403 CNTHP_CTL_EL2, 404 CNTHP_CVAL_EL2, 405 CNTHV_CTL_EL2, 406 CNTHV_CVAL_EL2, 407 408 NR_SYS_REGS /* Nothing after this line! */ 409 }; 410 411 struct kvm_cpu_context { 412 struct user_pt_regs regs; /* sp = sp_el0 */ 413 414 u64 spsr_abt; 415 u64 spsr_und; 416 u64 spsr_irq; 417 u64 spsr_fiq; 418 419 struct user_fpsimd_state fp_regs; 420 421 u64 sys_regs[NR_SYS_REGS]; 422 423 struct kvm_vcpu *__hyp_running_vcpu; 424 }; 425 426 struct kvm_host_data { 427 struct kvm_cpu_context host_ctxt; 428 }; 429 430 struct kvm_host_psci_config { 431 /* PSCI version used by host. */ 432 u32 version; 433 u32 smccc_version; 434 435 /* Function IDs used by host if version is v0.1. */ 436 struct psci_0_1_function_ids function_ids_0_1; 437 438 bool psci_0_1_cpu_suspend_implemented; 439 bool psci_0_1_cpu_on_implemented; 440 bool psci_0_1_cpu_off_implemented; 441 bool psci_0_1_migrate_implemented; 442 }; 443 444 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config); 445 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config) 446 447 extern s64 kvm_nvhe_sym(hyp_physvirt_offset); 448 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset) 449 450 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS]; 451 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map) 452 453 struct vcpu_reset_state { 454 unsigned long pc; 455 unsigned long r0; 456 bool be; 457 bool reset; 458 }; 459 460 struct kvm_vcpu_arch { 461 struct kvm_cpu_context ctxt; 462 463 /* 464 * Guest floating point state 465 * 466 * The architecture has two main floating point extensions, 467 * the original FPSIMD and SVE. These have overlapping 468 * register views, with the FPSIMD V registers occupying the 469 * low 128 bits of the SVE Z registers. When the core 470 * floating point code saves the register state of a task it 471 * records which view it saved in fp_type. 472 */ 473 void *sve_state; 474 enum fp_type fp_type; 475 unsigned int sve_max_vl; 476 u64 svcr; 477 478 /* Stage 2 paging state used by the hardware on next switch */ 479 struct kvm_s2_mmu *hw_mmu; 480 481 /* Values of trap registers for the guest. */ 482 u64 hcr_el2; 483 u64 mdcr_el2; 484 u64 cptr_el2; 485 486 /* Values of trap registers for the host before guest entry. */ 487 u64 mdcr_el2_host; 488 489 /* Exception Information */ 490 struct kvm_vcpu_fault_info fault; 491 492 /* Ownership of the FP regs */ 493 enum { 494 FP_STATE_FREE, 495 FP_STATE_HOST_OWNED, 496 FP_STATE_GUEST_OWNED, 497 } fp_state; 498 499 /* Configuration flags, set once and for all before the vcpu can run */ 500 u8 cflags; 501 502 /* Input flags to the hypervisor code, potentially cleared after use */ 503 u8 iflags; 504 505 /* State flags for kernel bookkeeping, unused by the hypervisor code */ 506 u8 sflags; 507 508 /* 509 * Don't run the guest (internal implementation need). 510 * 511 * Contrary to the flags above, this is set/cleared outside of 512 * a vcpu context, and thus cannot be mixed with the flags 513 * themselves (or the flag accesses need to be made atomic). 514 */ 515 bool pause; 516 517 /* 518 * We maintain more than a single set of debug registers to support 519 * debugging the guest from the host and to maintain separate host and 520 * guest state during world switches. vcpu_debug_state are the debug 521 * registers of the vcpu as the guest sees them. host_debug_state are 522 * the host registers which are saved and restored during 523 * world switches. external_debug_state contains the debug 524 * values we want to debug the guest. This is set via the 525 * KVM_SET_GUEST_DEBUG ioctl. 526 * 527 * debug_ptr points to the set of debug registers that should be loaded 528 * onto the hardware when running the guest. 529 */ 530 struct kvm_guest_debug_arch *debug_ptr; 531 struct kvm_guest_debug_arch vcpu_debug_state; 532 struct kvm_guest_debug_arch external_debug_state; 533 534 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ 535 struct task_struct *parent_task; 536 537 struct { 538 /* {Break,watch}point registers */ 539 struct kvm_guest_debug_arch regs; 540 /* Statistical profiling extension */ 541 u64 pmscr_el1; 542 /* Self-hosted trace */ 543 u64 trfcr_el1; 544 } host_debug_state; 545 546 /* VGIC state */ 547 struct vgic_cpu vgic_cpu; 548 struct arch_timer_cpu timer_cpu; 549 struct kvm_pmu pmu; 550 551 /* 552 * Guest registers we preserve during guest debugging. 553 * 554 * These shadow registers are updated by the kvm_handle_sys_reg 555 * trap handler if the guest accesses or updates them while we 556 * are using guest debug. 557 */ 558 struct { 559 u32 mdscr_el1; 560 bool pstate_ss; 561 } guest_debug_preserved; 562 563 /* vcpu power state */ 564 struct kvm_mp_state mp_state; 565 spinlock_t mp_state_lock; 566 567 /* Cache some mmu pages needed inside spinlock regions */ 568 struct kvm_mmu_memory_cache mmu_page_cache; 569 570 /* Target CPU and feature flags */ 571 int target; 572 DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); 573 574 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ 575 u64 vsesr_el2; 576 577 /* Additional reset state */ 578 struct vcpu_reset_state reset_state; 579 580 /* Guest PV state */ 581 struct { 582 u64 last_steal; 583 gpa_t base; 584 } steal; 585 586 /* Per-vcpu CCSIDR override or NULL */ 587 u32 *ccsidr; 588 }; 589 590 /* 591 * Each 'flag' is composed of a comma-separated triplet: 592 * 593 * - the flag-set it belongs to in the vcpu->arch structure 594 * - the value for that flag 595 * - the mask for that flag 596 * 597 * __vcpu_single_flag() builds such a triplet for a single-bit flag. 598 * unpack_vcpu_flag() extract the flag value from the triplet for 599 * direct use outside of the flag accessors. 600 */ 601 #define __vcpu_single_flag(_set, _f) _set, (_f), (_f) 602 603 #define __unpack_flag(_set, _f, _m) _f 604 #define unpack_vcpu_flag(...) __unpack_flag(__VA_ARGS__) 605 606 #define __build_check_flag(v, flagset, f, m) \ 607 do { \ 608 typeof(v->arch.flagset) *_fset; \ 609 \ 610 /* Check that the flags fit in the mask */ \ 611 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \ 612 /* Check that the flags fit in the type */ \ 613 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \ 614 } while (0) 615 616 #define __vcpu_get_flag(v, flagset, f, m) \ 617 ({ \ 618 __build_check_flag(v, flagset, f, m); \ 619 \ 620 READ_ONCE(v->arch.flagset) & (m); \ 621 }) 622 623 /* 624 * Note that the set/clear accessors must be preempt-safe in order to 625 * avoid nesting them with load/put which also manipulate flags... 626 */ 627 #ifdef __KVM_NVHE_HYPERVISOR__ 628 /* the nVHE hypervisor is always non-preemptible */ 629 #define __vcpu_flags_preempt_disable() 630 #define __vcpu_flags_preempt_enable() 631 #else 632 #define __vcpu_flags_preempt_disable() preempt_disable() 633 #define __vcpu_flags_preempt_enable() preempt_enable() 634 #endif 635 636 #define __vcpu_set_flag(v, flagset, f, m) \ 637 do { \ 638 typeof(v->arch.flagset) *fset; \ 639 \ 640 __build_check_flag(v, flagset, f, m); \ 641 \ 642 fset = &v->arch.flagset; \ 643 __vcpu_flags_preempt_disable(); \ 644 if (HWEIGHT(m) > 1) \ 645 *fset &= ~(m); \ 646 *fset |= (f); \ 647 __vcpu_flags_preempt_enable(); \ 648 } while (0) 649 650 #define __vcpu_clear_flag(v, flagset, f, m) \ 651 do { \ 652 typeof(v->arch.flagset) *fset; \ 653 \ 654 __build_check_flag(v, flagset, f, m); \ 655 \ 656 fset = &v->arch.flagset; \ 657 __vcpu_flags_preempt_disable(); \ 658 *fset &= ~(m); \ 659 __vcpu_flags_preempt_enable(); \ 660 } while (0) 661 662 #define vcpu_get_flag(v, ...) __vcpu_get_flag((v), __VA_ARGS__) 663 #define vcpu_set_flag(v, ...) __vcpu_set_flag((v), __VA_ARGS__) 664 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__) 665 666 /* SVE exposed to guest */ 667 #define GUEST_HAS_SVE __vcpu_single_flag(cflags, BIT(0)) 668 /* SVE config completed */ 669 #define VCPU_SVE_FINALIZED __vcpu_single_flag(cflags, BIT(1)) 670 /* PTRAUTH exposed to guest */ 671 #define GUEST_HAS_PTRAUTH __vcpu_single_flag(cflags, BIT(2)) 672 673 /* Exception pending */ 674 #define PENDING_EXCEPTION __vcpu_single_flag(iflags, BIT(0)) 675 /* 676 * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't 677 * be set together with an exception... 678 */ 679 #define INCREMENT_PC __vcpu_single_flag(iflags, BIT(1)) 680 /* Target EL/MODE (not a single flag, but let's abuse the macro) */ 681 #define EXCEPT_MASK __vcpu_single_flag(iflags, GENMASK(3, 1)) 682 683 /* Helpers to encode exceptions with minimum fuss */ 684 #define __EXCEPT_MASK_VAL unpack_vcpu_flag(EXCEPT_MASK) 685 #define __EXCEPT_SHIFT __builtin_ctzl(__EXCEPT_MASK_VAL) 686 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL 687 688 /* 689 * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following 690 * values: 691 * 692 * For AArch32 EL1: 693 */ 694 #define EXCEPT_AA32_UND __vcpu_except_flags(0) 695 #define EXCEPT_AA32_IABT __vcpu_except_flags(1) 696 #define EXCEPT_AA32_DABT __vcpu_except_flags(2) 697 /* For AArch64: */ 698 #define EXCEPT_AA64_EL1_SYNC __vcpu_except_flags(0) 699 #define EXCEPT_AA64_EL1_IRQ __vcpu_except_flags(1) 700 #define EXCEPT_AA64_EL1_FIQ __vcpu_except_flags(2) 701 #define EXCEPT_AA64_EL1_SERR __vcpu_except_flags(3) 702 /* For AArch64 with NV: */ 703 #define EXCEPT_AA64_EL2_SYNC __vcpu_except_flags(4) 704 #define EXCEPT_AA64_EL2_IRQ __vcpu_except_flags(5) 705 #define EXCEPT_AA64_EL2_FIQ __vcpu_except_flags(6) 706 #define EXCEPT_AA64_EL2_SERR __vcpu_except_flags(7) 707 /* Guest debug is live */ 708 #define DEBUG_DIRTY __vcpu_single_flag(iflags, BIT(4)) 709 /* Save SPE context if active */ 710 #define DEBUG_STATE_SAVE_SPE __vcpu_single_flag(iflags, BIT(5)) 711 /* Save TRBE context if active */ 712 #define DEBUG_STATE_SAVE_TRBE __vcpu_single_flag(iflags, BIT(6)) 713 /* vcpu running in HYP context */ 714 #define VCPU_HYP_CONTEXT __vcpu_single_flag(iflags, BIT(7)) 715 716 /* SVE enabled for host EL0 */ 717 #define HOST_SVE_ENABLED __vcpu_single_flag(sflags, BIT(0)) 718 /* SME enabled for EL0 */ 719 #define HOST_SME_ENABLED __vcpu_single_flag(sflags, BIT(1)) 720 /* Physical CPU not in supported_cpus */ 721 #define ON_UNSUPPORTED_CPU __vcpu_single_flag(sflags, BIT(2)) 722 /* WFIT instruction trapped */ 723 #define IN_WFIT __vcpu_single_flag(sflags, BIT(3)) 724 /* vcpu system registers loaded on physical CPU */ 725 #define SYSREGS_ON_CPU __vcpu_single_flag(sflags, BIT(4)) 726 /* Software step state is Active-pending */ 727 #define DBG_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(5)) 728 /* PMUSERENR for the guest EL0 is on physical CPU */ 729 #define PMUSERENR_ON_CPU __vcpu_single_flag(sflags, BIT(6)) 730 731 732 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ 733 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \ 734 sve_ffr_offset((vcpu)->arch.sve_max_vl)) 735 736 #define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl) 737 738 #define vcpu_sve_state_size(vcpu) ({ \ 739 size_t __size_ret; \ 740 unsigned int __vcpu_vq; \ 741 \ 742 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ 743 __size_ret = 0; \ 744 } else { \ 745 __vcpu_vq = vcpu_sve_max_vq(vcpu); \ 746 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ 747 } \ 748 \ 749 __size_ret; \ 750 }) 751 752 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \ 753 KVM_GUESTDBG_USE_SW_BP | \ 754 KVM_GUESTDBG_USE_HW | \ 755 KVM_GUESTDBG_SINGLESTEP) 756 757 #define vcpu_has_sve(vcpu) (system_supports_sve() && \ 758 vcpu_get_flag(vcpu, GUEST_HAS_SVE)) 759 760 #ifdef CONFIG_ARM64_PTR_AUTH 761 #define vcpu_has_ptrauth(vcpu) \ 762 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \ 763 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \ 764 vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH)) 765 #else 766 #define vcpu_has_ptrauth(vcpu) false 767 #endif 768 769 #define vcpu_on_unsupported_cpu(vcpu) \ 770 vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU) 771 772 #define vcpu_set_on_unsupported_cpu(vcpu) \ 773 vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU) 774 775 #define vcpu_clear_on_unsupported_cpu(vcpu) \ 776 vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU) 777 778 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs) 779 780 /* 781 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the 782 * memory backed version of a register, and not the one most recently 783 * accessed by a running VCPU. For example, for userspace access or 784 * for system registers that are never context switched, but only 785 * emulated. 786 */ 787 #define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)]) 788 789 #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r)) 790 791 #define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r))) 792 793 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); 794 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); 795 796 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val) 797 { 798 /* 799 * *** VHE ONLY *** 800 * 801 * System registers listed in the switch are not saved on every 802 * exit from the guest but are only saved on vcpu_put. 803 * 804 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 805 * should never be listed below, because the guest cannot modify its 806 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's 807 * thread when emulating cross-VCPU communication. 808 */ 809 if (!has_vhe()) 810 return false; 811 812 switch (reg) { 813 case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break; 814 case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break; 815 case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break; 816 case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break; 817 case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break; 818 case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break; 819 case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break; 820 case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break; 821 case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break; 822 case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break; 823 case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break; 824 case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break; 825 case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break; 826 case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break; 827 case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break; 828 case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break; 829 case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break; 830 case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break; 831 case PAR_EL1: *val = read_sysreg_par(); break; 832 case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break; 833 case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break; 834 case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break; 835 default: return false; 836 } 837 838 return true; 839 } 840 841 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg) 842 { 843 /* 844 * *** VHE ONLY *** 845 * 846 * System registers listed in the switch are not restored on every 847 * entry to the guest but are only restored on vcpu_load. 848 * 849 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 850 * should never be listed below, because the MPIDR should only be set 851 * once, before running the VCPU, and never changed later. 852 */ 853 if (!has_vhe()) 854 return false; 855 856 switch (reg) { 857 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break; 858 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break; 859 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break; 860 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break; 861 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break; 862 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break; 863 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break; 864 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break; 865 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break; 866 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break; 867 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break; 868 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break; 869 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break; 870 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break; 871 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break; 872 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break; 873 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break; 874 case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break; 875 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break; 876 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break; 877 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break; 878 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break; 879 default: return false; 880 } 881 882 return true; 883 } 884 885 struct kvm_vm_stat { 886 struct kvm_vm_stat_generic generic; 887 }; 888 889 struct kvm_vcpu_stat { 890 struct kvm_vcpu_stat_generic generic; 891 u64 hvc_exit_stat; 892 u64 wfe_exit_stat; 893 u64 wfi_exit_stat; 894 u64 mmio_exit_user; 895 u64 mmio_exit_kernel; 896 u64 signal_exits; 897 u64 exits; 898 }; 899 900 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); 901 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); 902 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); 903 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 904 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 905 906 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu); 907 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices); 908 909 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 910 struct kvm_vcpu_events *events); 911 912 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 913 struct kvm_vcpu_events *events); 914 915 #define KVM_ARCH_WANT_MMU_NOTIFIER 916 917 void kvm_arm_halt_guest(struct kvm *kvm); 918 void kvm_arm_resume_guest(struct kvm *kvm); 919 920 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid) 921 922 #ifndef __KVM_NVHE_HYPERVISOR__ 923 #define kvm_call_hyp_nvhe(f, ...) \ 924 ({ \ 925 struct arm_smccc_res res; \ 926 \ 927 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \ 928 ##__VA_ARGS__, &res); \ 929 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \ 930 \ 931 res.a1; \ 932 }) 933 934 /* 935 * The couple of isb() below are there to guarantee the same behaviour 936 * on VHE as on !VHE, where the eret to EL1 acts as a context 937 * synchronization event. 938 */ 939 #define kvm_call_hyp(f, ...) \ 940 do { \ 941 if (has_vhe()) { \ 942 f(__VA_ARGS__); \ 943 isb(); \ 944 } else { \ 945 kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 946 } \ 947 } while(0) 948 949 #define kvm_call_hyp_ret(f, ...) \ 950 ({ \ 951 typeof(f(__VA_ARGS__)) ret; \ 952 \ 953 if (has_vhe()) { \ 954 ret = f(__VA_ARGS__); \ 955 isb(); \ 956 } else { \ 957 ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 958 } \ 959 \ 960 ret; \ 961 }) 962 #else /* __KVM_NVHE_HYPERVISOR__ */ 963 #define kvm_call_hyp(f, ...) f(__VA_ARGS__) 964 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__) 965 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__) 966 #endif /* __KVM_NVHE_HYPERVISOR__ */ 967 968 void force_vm_exit(const cpumask_t *mask); 969 970 int handle_exit(struct kvm_vcpu *vcpu, int exception_index); 971 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index); 972 973 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu); 974 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu); 975 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu); 976 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu); 977 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu); 978 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu); 979 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu); 980 981 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu); 982 983 int __init kvm_sys_reg_table_init(void); 984 985 bool lock_all_vcpus(struct kvm *kvm); 986 void unlock_all_vcpus(struct kvm *kvm); 987 988 /* MMIO helpers */ 989 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); 990 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len); 991 992 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu); 993 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa); 994 995 /* 996 * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event, 997 * arrived in guest context. For arm64, any event that arrives while a vCPU is 998 * loaded is considered to be "in guest". 999 */ 1000 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu) 1001 { 1002 return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu; 1003 } 1004 1005 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); 1006 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); 1007 void kvm_update_stolen_time(struct kvm_vcpu *vcpu); 1008 1009 bool kvm_arm_pvtime_supported(void); 1010 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, 1011 struct kvm_device_attr *attr); 1012 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, 1013 struct kvm_device_attr *attr); 1014 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, 1015 struct kvm_device_attr *attr); 1016 1017 extern unsigned int __ro_after_init kvm_arm_vmid_bits; 1018 int __init kvm_arm_vmid_alloc_init(void); 1019 void __init kvm_arm_vmid_alloc_free(void); 1020 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid); 1021 void kvm_arm_vmid_clear_active(void); 1022 1023 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) 1024 { 1025 vcpu_arch->steal.base = INVALID_GPA; 1026 } 1027 1028 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) 1029 { 1030 return (vcpu_arch->steal.base != INVALID_GPA); 1031 } 1032 1033 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); 1034 1035 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); 1036 1037 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data); 1038 1039 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) 1040 { 1041 /* The host's MPIDR is immutable, so let's set it up at boot time */ 1042 ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr(); 1043 } 1044 1045 static inline bool kvm_system_needs_idmapped_vectors(void) 1046 { 1047 return cpus_have_const_cap(ARM64_SPECTRE_V3A); 1048 } 1049 1050 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu); 1051 1052 static inline void kvm_arch_sync_events(struct kvm *kvm) {} 1053 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} 1054 1055 void kvm_arm_init_debug(void); 1056 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu); 1057 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); 1058 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); 1059 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); 1060 1061 #define kvm_vcpu_os_lock_enabled(vcpu) \ 1062 (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK)) 1063 1064 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 1065 struct kvm_device_attr *attr); 1066 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 1067 struct kvm_device_attr *attr); 1068 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 1069 struct kvm_device_attr *attr); 1070 1071 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, 1072 struct kvm_arm_copy_mte_tags *copy_tags); 1073 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm, 1074 struct kvm_arm_counter_offset *offset); 1075 1076 /* Guest/host FPSIMD coordination helpers */ 1077 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); 1078 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); 1079 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu); 1080 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); 1081 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); 1082 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu); 1083 1084 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) 1085 { 1086 return (!has_vhe() && attr->exclude_host); 1087 } 1088 1089 /* Flags for host debug state */ 1090 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu); 1091 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu); 1092 1093 #ifdef CONFIG_KVM 1094 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); 1095 void kvm_clr_pmu_events(u32 clr); 1096 bool kvm_set_pmuserenr(u64 val); 1097 #else 1098 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} 1099 static inline void kvm_clr_pmu_events(u32 clr) {} 1100 static inline bool kvm_set_pmuserenr(u64 val) 1101 { 1102 return false; 1103 } 1104 #endif 1105 1106 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu); 1107 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu); 1108 1109 int __init kvm_set_ipa_limit(void); 1110 1111 #define __KVM_HAVE_ARCH_VM_ALLOC 1112 struct kvm *kvm_arch_alloc_vm(void); 1113 1114 static inline bool kvm_vm_is_protected(struct kvm *kvm) 1115 { 1116 return false; 1117 } 1118 1119 void kvm_init_protected_traps(struct kvm_vcpu *vcpu); 1120 1121 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); 1122 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); 1123 1124 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED) 1125 1126 #define kvm_has_mte(kvm) \ 1127 (system_supports_mte() && \ 1128 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags)) 1129 1130 #define kvm_supports_32bit_el0() \ 1131 (system_supports_32bit_el0() && \ 1132 !static_branch_unlikely(&arm64_mismatched_32bit_el0)) 1133 1134 #define kvm_vm_has_ran_once(kvm) \ 1135 (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags)) 1136 1137 int kvm_trng_call(struct kvm_vcpu *vcpu); 1138 #ifdef CONFIG_KVM 1139 extern phys_addr_t hyp_mem_base; 1140 extern phys_addr_t hyp_mem_size; 1141 void __init kvm_hyp_reserve(void); 1142 #else 1143 static inline void kvm_hyp_reserve(void) { } 1144 #endif 1145 1146 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu); 1147 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu); 1148 1149 #endif /* __ARM64_KVM_HOST_H__ */ 1150