xref: /openbmc/linux/arch/arm64/include/asm/kvm_host.h (revision 3213486f)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/include/asm/kvm_host.h:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #ifndef __ARM64_KVM_HOST_H__
23 #define __ARM64_KVM_HOST_H__
24 
25 #include <linux/types.h>
26 #include <linux/kvm_types.h>
27 #include <asm/arch_gicv3.h>
28 #include <asm/cpufeature.h>
29 #include <asm/daifflags.h>
30 #include <asm/fpsimd.h>
31 #include <asm/kvm.h>
32 #include <asm/kvm_asm.h>
33 #include <asm/kvm_mmio.h>
34 #include <asm/smp_plat.h>
35 #include <asm/thread_info.h>
36 
37 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
38 
39 #define KVM_USER_MEM_SLOTS 512
40 #define KVM_HALT_POLL_NS_DEFAULT 500000
41 
42 #include <kvm/arm_vgic.h>
43 #include <kvm/arm_arch_timer.h>
44 #include <kvm/arm_pmu.h>
45 
46 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
47 
48 #define KVM_VCPU_MAX_FEATURES 4
49 
50 #define KVM_REQ_SLEEP \
51 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
52 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
53 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
54 
55 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
56 
57 int __attribute_const__ kvm_target_cpu(void);
58 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
59 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
60 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
61 
62 struct kvm_vmid {
63 	/* The VMID generation used for the virt. memory system */
64 	u64    vmid_gen;
65 	u32    vmid;
66 };
67 
68 struct kvm_arch {
69 	struct kvm_vmid vmid;
70 
71 	/* stage2 entry level table */
72 	pgd_t *pgd;
73 	phys_addr_t pgd_phys;
74 
75 	/* VTCR_EL2 value for this VM */
76 	u64    vtcr;
77 
78 	/* The last vcpu id that ran on each physical CPU */
79 	int __percpu *last_vcpu_ran;
80 
81 	/* The maximum number of vCPUs depends on the used GIC model */
82 	int max_vcpus;
83 
84 	/* Interrupt controller */
85 	struct vgic_dist	vgic;
86 
87 	/* Mandated version of PSCI */
88 	u32 psci_version;
89 };
90 
91 #define KVM_NR_MEM_OBJS     40
92 
93 /*
94  * We don't want allocation failures within the mmu code, so we preallocate
95  * enough memory for a single page fault in a cache.
96  */
97 struct kvm_mmu_memory_cache {
98 	int nobjs;
99 	void *objects[KVM_NR_MEM_OBJS];
100 };
101 
102 struct kvm_vcpu_fault_info {
103 	u32 esr_el2;		/* Hyp Syndrom Register */
104 	u64 far_el2;		/* Hyp Fault Address Register */
105 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
106 	u64 disr_el1;		/* Deferred [SError] Status Register */
107 };
108 
109 /*
110  * 0 is reserved as an invalid value.
111  * Order should be kept in sync with the save/restore code.
112  */
113 enum vcpu_sysreg {
114 	__INVALID_SYSREG__,
115 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
116 	CSSELR_EL1,	/* Cache Size Selection Register */
117 	SCTLR_EL1,	/* System Control Register */
118 	ACTLR_EL1,	/* Auxiliary Control Register */
119 	CPACR_EL1,	/* Coprocessor Access Control */
120 	TTBR0_EL1,	/* Translation Table Base Register 0 */
121 	TTBR1_EL1,	/* Translation Table Base Register 1 */
122 	TCR_EL1,	/* Translation Control Register */
123 	ESR_EL1,	/* Exception Syndrome Register */
124 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
125 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
126 	FAR_EL1,	/* Fault Address Register */
127 	MAIR_EL1,	/* Memory Attribute Indirection Register */
128 	VBAR_EL1,	/* Vector Base Address Register */
129 	CONTEXTIDR_EL1,	/* Context ID Register */
130 	TPIDR_EL0,	/* Thread ID, User R/W */
131 	TPIDRRO_EL0,	/* Thread ID, User R/O */
132 	TPIDR_EL1,	/* Thread ID, Privileged */
133 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
134 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
135 	PAR_EL1,	/* Physical Address Register */
136 	MDSCR_EL1,	/* Monitor Debug System Control Register */
137 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
138 	DISR_EL1,	/* Deferred Interrupt Status Register */
139 
140 	/* Performance Monitors Registers */
141 	PMCR_EL0,	/* Control Register */
142 	PMSELR_EL0,	/* Event Counter Selection Register */
143 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
144 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
145 	PMCCNTR_EL0,	/* Cycle Counter Register */
146 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
147 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
148 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
149 	PMCNTENSET_EL0,	/* Count Enable Set Register */
150 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
151 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
152 	PMSWINC_EL0,	/* Software Increment Register */
153 	PMUSERENR_EL0,	/* User Enable Register */
154 
155 	/* 32bit specific registers. Keep them at the end of the range */
156 	DACR32_EL2,	/* Domain Access Control Register */
157 	IFSR32_EL2,	/* Instruction Fault Status Register */
158 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
159 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
160 
161 	NR_SYS_REGS	/* Nothing after this line! */
162 };
163 
164 /* 32bit mapping */
165 #define c0_MPIDR	(MPIDR_EL1 * 2)	/* MultiProcessor ID Register */
166 #define c0_CSSELR	(CSSELR_EL1 * 2)/* Cache Size Selection Register */
167 #define c1_SCTLR	(SCTLR_EL1 * 2)	/* System Control Register */
168 #define c1_ACTLR	(ACTLR_EL1 * 2)	/* Auxiliary Control Register */
169 #define c1_CPACR	(CPACR_EL1 * 2)	/* Coprocessor Access Control */
170 #define c2_TTBR0	(TTBR0_EL1 * 2)	/* Translation Table Base Register 0 */
171 #define c2_TTBR0_high	(c2_TTBR0 + 1)	/* TTBR0 top 32 bits */
172 #define c2_TTBR1	(TTBR1_EL1 * 2)	/* Translation Table Base Register 1 */
173 #define c2_TTBR1_high	(c2_TTBR1 + 1)	/* TTBR1 top 32 bits */
174 #define c2_TTBCR	(TCR_EL1 * 2)	/* Translation Table Base Control R. */
175 #define c3_DACR		(DACR32_EL2 * 2)/* Domain Access Control Register */
176 #define c5_DFSR		(ESR_EL1 * 2)	/* Data Fault Status Register */
177 #define c5_IFSR		(IFSR32_EL2 * 2)/* Instruction Fault Status Register */
178 #define c5_ADFSR	(AFSR0_EL1 * 2)	/* Auxiliary Data Fault Status R */
179 #define c5_AIFSR	(AFSR1_EL1 * 2)	/* Auxiliary Instr Fault Status R */
180 #define c6_DFAR		(FAR_EL1 * 2)	/* Data Fault Address Register */
181 #define c6_IFAR		(c6_DFAR + 1)	/* Instruction Fault Address Register */
182 #define c7_PAR		(PAR_EL1 * 2)	/* Physical Address Register */
183 #define c7_PAR_high	(c7_PAR + 1)	/* PAR top 32 bits */
184 #define c10_PRRR	(MAIR_EL1 * 2)	/* Primary Region Remap Register */
185 #define c10_NMRR	(c10_PRRR + 1)	/* Normal Memory Remap Register */
186 #define c12_VBAR	(VBAR_EL1 * 2)	/* Vector Base Address Register */
187 #define c13_CID		(CONTEXTIDR_EL1 * 2)	/* Context ID Register */
188 #define c13_TID_URW	(TPIDR_EL0 * 2)	/* Thread ID, User R/W */
189 #define c13_TID_URO	(TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
190 #define c13_TID_PRIV	(TPIDR_EL1 * 2)	/* Thread ID, Privileged */
191 #define c10_AMAIR0	(AMAIR_EL1 * 2)	/* Aux Memory Attr Indirection Reg */
192 #define c10_AMAIR1	(c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
193 #define c14_CNTKCTL	(CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
194 
195 #define cp14_DBGDSCRext	(MDSCR_EL1 * 2)
196 #define cp14_DBGBCR0	(DBGBCR0_EL1 * 2)
197 #define cp14_DBGBVR0	(DBGBVR0_EL1 * 2)
198 #define cp14_DBGBXVR0	(cp14_DBGBVR0 + 1)
199 #define cp14_DBGWCR0	(DBGWCR0_EL1 * 2)
200 #define cp14_DBGWVR0	(DBGWVR0_EL1 * 2)
201 #define cp14_DBGDCCINT	(MDCCINT_EL1 * 2)
202 
203 #define NR_COPRO_REGS	(NR_SYS_REGS * 2)
204 
205 struct kvm_cpu_context {
206 	struct kvm_regs	gp_regs;
207 	union {
208 		u64 sys_regs[NR_SYS_REGS];
209 		u32 copro[NR_COPRO_REGS];
210 	};
211 
212 	struct kvm_vcpu *__hyp_running_vcpu;
213 };
214 
215 typedef struct kvm_cpu_context kvm_cpu_context_t;
216 
217 struct vcpu_reset_state {
218 	unsigned long	pc;
219 	unsigned long	r0;
220 	bool		be;
221 	bool		reset;
222 };
223 
224 struct kvm_vcpu_arch {
225 	struct kvm_cpu_context ctxt;
226 
227 	/* HYP configuration */
228 	u64 hcr_el2;
229 	u32 mdcr_el2;
230 
231 	/* Exception Information */
232 	struct kvm_vcpu_fault_info fault;
233 
234 	/* State of various workarounds, see kvm_asm.h for bit assignment */
235 	u64 workaround_flags;
236 
237 	/* Miscellaneous vcpu state flags */
238 	u64 flags;
239 
240 	/*
241 	 * We maintain more than a single set of debug registers to support
242 	 * debugging the guest from the host and to maintain separate host and
243 	 * guest state during world switches. vcpu_debug_state are the debug
244 	 * registers of the vcpu as the guest sees them.  host_debug_state are
245 	 * the host registers which are saved and restored during
246 	 * world switches. external_debug_state contains the debug
247 	 * values we want to debug the guest. This is set via the
248 	 * KVM_SET_GUEST_DEBUG ioctl.
249 	 *
250 	 * debug_ptr points to the set of debug registers that should be loaded
251 	 * onto the hardware when running the guest.
252 	 */
253 	struct kvm_guest_debug_arch *debug_ptr;
254 	struct kvm_guest_debug_arch vcpu_debug_state;
255 	struct kvm_guest_debug_arch external_debug_state;
256 
257 	/* Pointer to host CPU context */
258 	kvm_cpu_context_t *host_cpu_context;
259 
260 	struct thread_info *host_thread_info;	/* hyp VA */
261 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
262 
263 	struct {
264 		/* {Break,watch}point registers */
265 		struct kvm_guest_debug_arch regs;
266 		/* Statistical profiling extension */
267 		u64 pmscr_el1;
268 	} host_debug_state;
269 
270 	/* VGIC state */
271 	struct vgic_cpu vgic_cpu;
272 	struct arch_timer_cpu timer_cpu;
273 	struct kvm_pmu pmu;
274 
275 	/*
276 	 * Anything that is not used directly from assembly code goes
277 	 * here.
278 	 */
279 
280 	/*
281 	 * Guest registers we preserve during guest debugging.
282 	 *
283 	 * These shadow registers are updated by the kvm_handle_sys_reg
284 	 * trap handler if the guest accesses or updates them while we
285 	 * are using guest debug.
286 	 */
287 	struct {
288 		u32	mdscr_el1;
289 	} guest_debug_preserved;
290 
291 	/* vcpu power-off state */
292 	bool power_off;
293 
294 	/* Don't run the guest (internal implementation need) */
295 	bool pause;
296 
297 	/* IO related fields */
298 	struct kvm_decode mmio_decode;
299 
300 	/* Cache some mmu pages needed inside spinlock regions */
301 	struct kvm_mmu_memory_cache mmu_page_cache;
302 
303 	/* Target CPU and feature flags */
304 	int target;
305 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
306 
307 	/* Detect first run of a vcpu */
308 	bool has_run_once;
309 
310 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
311 	u64 vsesr_el2;
312 
313 	/* Additional reset state */
314 	struct vcpu_reset_state	reset_state;
315 
316 	/* True when deferrable sysregs are loaded on the physical CPU,
317 	 * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */
318 	bool sysregs_loaded_on_cpu;
319 };
320 
321 /* vcpu_arch flags field values: */
322 #define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
323 #define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
324 #define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
325 #define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
326 #define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
327 
328 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.gp_regs)
329 
330 /*
331  * Only use __vcpu_sys_reg if you know you want the memory backed version of a
332  * register, and not the one most recently accessed by a running VCPU.  For
333  * example, for userspace access or for system registers that are never context
334  * switched, but only emulated.
335  */
336 #define __vcpu_sys_reg(v,r)	((v)->arch.ctxt.sys_regs[(r)])
337 
338 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
339 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
340 
341 /*
342  * CP14 and CP15 live in the same array, as they are backed by the
343  * same system registers.
344  */
345 #define vcpu_cp14(v,r)		((v)->arch.ctxt.copro[(r)])
346 #define vcpu_cp15(v,r)		((v)->arch.ctxt.copro[(r)])
347 
348 struct kvm_vm_stat {
349 	ulong remote_tlb_flush;
350 };
351 
352 struct kvm_vcpu_stat {
353 	u64 halt_successful_poll;
354 	u64 halt_attempted_poll;
355 	u64 halt_poll_invalid;
356 	u64 halt_wakeup;
357 	u64 hvc_exit_stat;
358 	u64 wfe_exit_stat;
359 	u64 wfi_exit_stat;
360 	u64 mmio_exit_user;
361 	u64 mmio_exit_kernel;
362 	u64 exits;
363 };
364 
365 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
366 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
367 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
368 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
369 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
370 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
371 			      struct kvm_vcpu_events *events);
372 
373 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
374 			      struct kvm_vcpu_events *events);
375 
376 #define KVM_ARCH_WANT_MMU_NOTIFIER
377 int kvm_unmap_hva_range(struct kvm *kvm,
378 			unsigned long start, unsigned long end);
379 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
380 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
381 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
382 
383 struct kvm_vcpu *kvm_arm_get_running_vcpu(void);
384 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
385 void kvm_arm_halt_guest(struct kvm *kvm);
386 void kvm_arm_resume_guest(struct kvm *kvm);
387 
388 u64 __kvm_call_hyp(void *hypfn, ...);
389 
390 /*
391  * The couple of isb() below are there to guarantee the same behaviour
392  * on VHE as on !VHE, where the eret to EL1 acts as a context
393  * synchronization event.
394  */
395 #define kvm_call_hyp(f, ...)						\
396 	do {								\
397 		if (has_vhe()) {					\
398 			f(__VA_ARGS__);					\
399 			isb();						\
400 		} else {						\
401 			__kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__); \
402 		}							\
403 	} while(0)
404 
405 #define kvm_call_hyp_ret(f, ...)					\
406 	({								\
407 		typeof(f(__VA_ARGS__)) ret;				\
408 									\
409 		if (has_vhe()) {					\
410 			ret = f(__VA_ARGS__);				\
411 			isb();						\
412 		} else {						\
413 			ret = __kvm_call_hyp(kvm_ksym_ref(f),		\
414 					     ##__VA_ARGS__);		\
415 		}							\
416 									\
417 		ret;							\
418 	})
419 
420 void force_vm_exit(const cpumask_t *mask);
421 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
422 
423 int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
424 		int exception_index);
425 void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
426 		       int exception_index);
427 
428 int kvm_perf_init(void);
429 int kvm_perf_teardown(void);
430 
431 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
432 
433 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
434 
435 DECLARE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
436 
437 static inline void kvm_init_host_cpu_context(kvm_cpu_context_t *cpu_ctxt,
438 					     int cpu)
439 {
440 	/* The host's MPIDR is immutable, so let's set it up at boot time */
441 	cpu_ctxt->sys_regs[MPIDR_EL1] = cpu_logical_map(cpu);
442 }
443 
444 void __kvm_enable_ssbs(void);
445 
446 static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
447 				       unsigned long hyp_stack_ptr,
448 				       unsigned long vector_ptr)
449 {
450 	/*
451 	 * Calculate the raw per-cpu offset without a translation from the
452 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
453 	 * so that we can use adr_l to access per-cpu variables in EL2.
454 	 */
455 	u64 tpidr_el2 = ((u64)this_cpu_ptr(&kvm_host_cpu_state) -
456 			 (u64)kvm_ksym_ref(kvm_host_cpu_state));
457 
458 	/*
459 	 * Call initialization code, and switch to the full blown HYP code.
460 	 * If the cpucaps haven't been finalized yet, something has gone very
461 	 * wrong, and hyp will crash and burn when it uses any
462 	 * cpus_have_const_cap() wrapper.
463 	 */
464 	BUG_ON(!static_branch_likely(&arm64_const_caps_ready));
465 	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
466 
467 	/*
468 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
469 	 * at EL2.
470 	 */
471 	if (!has_vhe() && this_cpu_has_cap(ARM64_SSBS) &&
472 	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
473 		kvm_call_hyp(__kvm_enable_ssbs);
474 	}
475 }
476 
477 static inline bool kvm_arch_requires_vhe(void)
478 {
479 	/*
480 	 * The Arm architecture specifies that implementation of SVE
481 	 * requires VHE also to be implemented.  The KVM code for arm64
482 	 * relies on this when SVE is present:
483 	 */
484 	if (system_supports_sve())
485 		return true;
486 
487 	/* Some implementations have defects that confine them to VHE */
488 	if (cpus_have_cap(ARM64_WORKAROUND_1165522))
489 		return true;
490 
491 	return false;
492 }
493 
494 static inline void kvm_arch_hardware_unsetup(void) {}
495 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
496 static inline void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) {}
497 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
498 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
499 
500 void kvm_arm_init_debug(void);
501 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
502 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
503 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
504 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
505 			       struct kvm_device_attr *attr);
506 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
507 			       struct kvm_device_attr *attr);
508 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
509 			       struct kvm_device_attr *attr);
510 
511 static inline void __cpu_init_stage2(void) {}
512 
513 /* Guest/host FPSIMD coordination helpers */
514 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
515 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
516 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
517 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
518 
519 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
520 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
521 {
522 	return kvm_arch_vcpu_run_map_fp(vcpu);
523 }
524 #endif
525 
526 static inline void kvm_arm_vhe_guest_enter(void)
527 {
528 	local_daif_mask();
529 
530 	/*
531 	 * Having IRQs masked via PMR when entering the guest means the GIC
532 	 * will not signal the CPU of interrupts of lower priority, and the
533 	 * only way to get out will be via guest exceptions.
534 	 * Naturally, we want to avoid this.
535 	 */
536 	if (system_uses_irq_prio_masking()) {
537 		gic_write_pmr(GIC_PRIO_IRQON);
538 		dsb(sy);
539 	}
540 }
541 
542 static inline void kvm_arm_vhe_guest_exit(void)
543 {
544 	/*
545 	 * local_daif_restore() takes care to properly restore PSTATE.DAIF
546 	 * and the GIC PMR if the host is using IRQ priorities.
547 	 */
548 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
549 
550 	/*
551 	 * When we exit from the guest we change a number of CPU configuration
552 	 * parameters, such as traps.  Make sure these changes take effect
553 	 * before running the host or additional guests.
554 	 */
555 	isb();
556 }
557 
558 static inline bool kvm_arm_harden_branch_predictor(void)
559 {
560 	return cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR);
561 }
562 
563 #define KVM_SSBD_UNKNOWN		-1
564 #define KVM_SSBD_FORCE_DISABLE		0
565 #define KVM_SSBD_KERNEL		1
566 #define KVM_SSBD_FORCE_ENABLE		2
567 #define KVM_SSBD_MITIGATED		3
568 
569 static inline int kvm_arm_have_ssbd(void)
570 {
571 	switch (arm64_get_ssbd_state()) {
572 	case ARM64_SSBD_FORCE_DISABLE:
573 		return KVM_SSBD_FORCE_DISABLE;
574 	case ARM64_SSBD_KERNEL:
575 		return KVM_SSBD_KERNEL;
576 	case ARM64_SSBD_FORCE_ENABLE:
577 		return KVM_SSBD_FORCE_ENABLE;
578 	case ARM64_SSBD_MITIGATED:
579 		return KVM_SSBD_MITIGATED;
580 	case ARM64_SSBD_UNKNOWN:
581 	default:
582 		return KVM_SSBD_UNKNOWN;
583 	}
584 }
585 
586 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
587 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
588 
589 void kvm_set_ipa_limit(void);
590 
591 #define __KVM_HAVE_ARCH_VM_ALLOC
592 struct kvm *kvm_arch_alloc_vm(void);
593 void kvm_arch_free_vm(struct kvm *kvm);
594 
595 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
596 
597 #endif /* __ARM64_KVM_HOST_H__ */
598