1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/asm/kvm_host.h: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_HOST_H__ 12 #define __ARM64_KVM_HOST_H__ 13 14 #include <linux/arm-smccc.h> 15 #include <linux/bitmap.h> 16 #include <linux/types.h> 17 #include <linux/jump_label.h> 18 #include <linux/kvm_types.h> 19 #include <linux/maple_tree.h> 20 #include <linux/percpu.h> 21 #include <linux/psci.h> 22 #include <asm/arch_gicv3.h> 23 #include <asm/barrier.h> 24 #include <asm/cpufeature.h> 25 #include <asm/cputype.h> 26 #include <asm/daifflags.h> 27 #include <asm/fpsimd.h> 28 #include <asm/kvm.h> 29 #include <asm/kvm_asm.h> 30 31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED 32 33 #define KVM_HALT_POLL_NS_DEFAULT 500000 34 35 #include <kvm/arm_vgic.h> 36 #include <kvm/arm_arch_timer.h> 37 #include <kvm/arm_pmu.h> 38 39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS 40 41 #define KVM_VCPU_MAX_FEATURES 7 42 43 #define KVM_REQ_SLEEP \ 44 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 45 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) 46 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) 47 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) 48 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4) 49 #define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5) 50 #define KVM_REQ_SUSPEND KVM_ARCH_REQ(6) 51 52 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 53 KVM_DIRTY_LOG_INITIALLY_SET) 54 55 #define KVM_HAVE_MMU_RWLOCK 56 57 /* 58 * Mode of operation configurable with kvm-arm.mode early param. 59 * See Documentation/admin-guide/kernel-parameters.txt for more information. 60 */ 61 enum kvm_mode { 62 KVM_MODE_DEFAULT, 63 KVM_MODE_PROTECTED, 64 KVM_MODE_NV, 65 KVM_MODE_NONE, 66 }; 67 #ifdef CONFIG_KVM 68 enum kvm_mode kvm_get_mode(void); 69 #else 70 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; }; 71 #endif 72 73 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 74 75 extern unsigned int __ro_after_init kvm_sve_max_vl; 76 int __init kvm_arm_init_sve(void); 77 78 u32 __attribute_const__ kvm_target_cpu(void); 79 int kvm_reset_vcpu(struct kvm_vcpu *vcpu); 80 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu); 81 82 struct kvm_hyp_memcache { 83 phys_addr_t head; 84 unsigned long nr_pages; 85 }; 86 87 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc, 88 phys_addr_t *p, 89 phys_addr_t (*to_pa)(void *virt)) 90 { 91 *p = mc->head; 92 mc->head = to_pa(p); 93 mc->nr_pages++; 94 } 95 96 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc, 97 void *(*to_va)(phys_addr_t phys)) 98 { 99 phys_addr_t *p = to_va(mc->head); 100 101 if (!mc->nr_pages) 102 return NULL; 103 104 mc->head = *p; 105 mc->nr_pages--; 106 107 return p; 108 } 109 110 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc, 111 unsigned long min_pages, 112 void *(*alloc_fn)(void *arg), 113 phys_addr_t (*to_pa)(void *virt), 114 void *arg) 115 { 116 while (mc->nr_pages < min_pages) { 117 phys_addr_t *p = alloc_fn(arg); 118 119 if (!p) 120 return -ENOMEM; 121 push_hyp_memcache(mc, p, to_pa); 122 } 123 124 return 0; 125 } 126 127 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc, 128 void (*free_fn)(void *virt, void *arg), 129 void *(*to_va)(phys_addr_t phys), 130 void *arg) 131 { 132 while (mc->nr_pages) 133 free_fn(pop_hyp_memcache(mc, to_va), arg); 134 } 135 136 void free_hyp_memcache(struct kvm_hyp_memcache *mc); 137 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages); 138 139 struct kvm_vmid { 140 atomic64_t id; 141 }; 142 143 struct kvm_s2_mmu { 144 struct kvm_vmid vmid; 145 146 /* 147 * stage2 entry level table 148 * 149 * Two kvm_s2_mmu structures in the same VM can point to the same 150 * pgd here. This happens when running a guest using a 151 * translation regime that isn't affected by its own stage-2 152 * translation, such as a non-VHE hypervisor running at vEL2, or 153 * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the 154 * canonical stage-2 page tables. 155 */ 156 phys_addr_t pgd_phys; 157 struct kvm_pgtable *pgt; 158 159 /* The last vcpu id that ran on each physical CPU */ 160 int __percpu *last_vcpu_ran; 161 162 struct kvm_arch *arch; 163 }; 164 165 struct kvm_arch_memory_slot { 166 }; 167 168 /** 169 * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests 170 * 171 * @std_bmap: Bitmap of standard secure service calls 172 * @std_hyp_bmap: Bitmap of standard hypervisor service calls 173 * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls 174 */ 175 struct kvm_smccc_features { 176 unsigned long std_bmap; 177 unsigned long std_hyp_bmap; 178 unsigned long vendor_hyp_bmap; 179 }; 180 181 typedef unsigned int pkvm_handle_t; 182 183 struct kvm_protected_vm { 184 pkvm_handle_t handle; 185 struct kvm_hyp_memcache teardown_mc; 186 }; 187 188 struct kvm_arch { 189 struct kvm_s2_mmu mmu; 190 191 /* VTCR_EL2 value for this VM */ 192 u64 vtcr; 193 194 /* Interrupt controller */ 195 struct vgic_dist vgic; 196 197 /* Timers */ 198 struct arch_timer_vm_data timer_data; 199 200 /* Mandated version of PSCI */ 201 u32 psci_version; 202 203 /* Protects VM-scoped configuration data */ 204 struct mutex config_lock; 205 206 /* 207 * If we encounter a data abort without valid instruction syndrome 208 * information, report this to user space. User space can (and 209 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is 210 * supported. 211 */ 212 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER 0 213 /* Memory Tagging Extension enabled for the guest */ 214 #define KVM_ARCH_FLAG_MTE_ENABLED 1 215 /* At least one vCPU has ran in the VM */ 216 #define KVM_ARCH_FLAG_HAS_RAN_ONCE 2 217 /* 218 * The following two bits are used to indicate the guest's EL1 219 * register width configuration. A value of KVM_ARCH_FLAG_EL1_32BIT 220 * bit is valid only when KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED is set. 221 * Otherwise, the guest's EL1 register width has not yet been 222 * determined yet. 223 */ 224 #define KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED 3 225 #define KVM_ARCH_FLAG_EL1_32BIT 4 226 /* PSCI SYSTEM_SUSPEND enabled for the guest */ 227 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 5 228 /* VM counter offset */ 229 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET 6 230 /* Timer PPIs made immutable */ 231 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE 7 232 /* SMCCC filter initialized for the VM */ 233 #define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED 8 234 unsigned long flags; 235 236 /* 237 * VM-wide PMU filter, implemented as a bitmap and big enough for 238 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+). 239 */ 240 unsigned long *pmu_filter; 241 struct arm_pmu *arm_pmu; 242 243 cpumask_var_t supported_cpus; 244 245 u8 pfr0_csv2; 246 u8 pfr0_csv3; 247 struct { 248 u8 imp:4; 249 u8 unimp:4; 250 } dfr0_pmuver; 251 252 /* Hypercall features firmware registers' descriptor */ 253 struct kvm_smccc_features smccc_feat; 254 struct maple_tree smccc_filter; 255 256 /* 257 * For an untrusted host VM, 'pkvm.handle' is used to lookup 258 * the associated pKVM instance in the hypervisor. 259 */ 260 struct kvm_protected_vm pkvm; 261 }; 262 263 struct kvm_vcpu_fault_info { 264 u64 esr_el2; /* Hyp Syndrom Register */ 265 u64 far_el2; /* Hyp Fault Address Register */ 266 u64 hpfar_el2; /* Hyp IPA Fault Address Register */ 267 u64 disr_el1; /* Deferred [SError] Status Register */ 268 }; 269 270 enum vcpu_sysreg { 271 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */ 272 MPIDR_EL1, /* MultiProcessor Affinity Register */ 273 CLIDR_EL1, /* Cache Level ID Register */ 274 CSSELR_EL1, /* Cache Size Selection Register */ 275 SCTLR_EL1, /* System Control Register */ 276 ACTLR_EL1, /* Auxiliary Control Register */ 277 CPACR_EL1, /* Coprocessor Access Control */ 278 ZCR_EL1, /* SVE Control */ 279 TTBR0_EL1, /* Translation Table Base Register 0 */ 280 TTBR1_EL1, /* Translation Table Base Register 1 */ 281 TCR_EL1, /* Translation Control Register */ 282 ESR_EL1, /* Exception Syndrome Register */ 283 AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ 284 AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ 285 FAR_EL1, /* Fault Address Register */ 286 MAIR_EL1, /* Memory Attribute Indirection Register */ 287 VBAR_EL1, /* Vector Base Address Register */ 288 CONTEXTIDR_EL1, /* Context ID Register */ 289 TPIDR_EL0, /* Thread ID, User R/W */ 290 TPIDRRO_EL0, /* Thread ID, User R/O */ 291 TPIDR_EL1, /* Thread ID, Privileged */ 292 AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ 293 CNTKCTL_EL1, /* Timer Control Register (EL1) */ 294 PAR_EL1, /* Physical Address Register */ 295 MDSCR_EL1, /* Monitor Debug System Control Register */ 296 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ 297 OSLSR_EL1, /* OS Lock Status Register */ 298 DISR_EL1, /* Deferred Interrupt Status Register */ 299 300 /* Performance Monitors Registers */ 301 PMCR_EL0, /* Control Register */ 302 PMSELR_EL0, /* Event Counter Selection Register */ 303 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ 304 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, 305 PMCCNTR_EL0, /* Cycle Counter Register */ 306 PMEVTYPER0_EL0, /* Event Type Register (0-30) */ 307 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, 308 PMCCFILTR_EL0, /* Cycle Count Filter Register */ 309 PMCNTENSET_EL0, /* Count Enable Set Register */ 310 PMINTENSET_EL1, /* Interrupt Enable Set Register */ 311 PMOVSSET_EL0, /* Overflow Flag Status Set Register */ 312 PMUSERENR_EL0, /* User Enable Register */ 313 314 /* Pointer Authentication Registers in a strict increasing order. */ 315 APIAKEYLO_EL1, 316 APIAKEYHI_EL1, 317 APIBKEYLO_EL1, 318 APIBKEYHI_EL1, 319 APDAKEYLO_EL1, 320 APDAKEYHI_EL1, 321 APDBKEYLO_EL1, 322 APDBKEYHI_EL1, 323 APGAKEYLO_EL1, 324 APGAKEYHI_EL1, 325 326 ELR_EL1, 327 SP_EL1, 328 SPSR_EL1, 329 330 CNTVOFF_EL2, 331 CNTV_CVAL_EL0, 332 CNTV_CTL_EL0, 333 CNTP_CVAL_EL0, 334 CNTP_CTL_EL0, 335 336 /* Memory Tagging Extension registers */ 337 RGSR_EL1, /* Random Allocation Tag Seed Register */ 338 GCR_EL1, /* Tag Control Register */ 339 TFSR_EL1, /* Tag Fault Status Register (EL1) */ 340 TFSRE0_EL1, /* Tag Fault Status Register (EL0) */ 341 342 /* 32bit specific registers. */ 343 DACR32_EL2, /* Domain Access Control Register */ 344 IFSR32_EL2, /* Instruction Fault Status Register */ 345 FPEXC32_EL2, /* Floating-Point Exception Control Register */ 346 DBGVCR32_EL2, /* Debug Vector Catch Register */ 347 348 /* EL2 registers */ 349 VPIDR_EL2, /* Virtualization Processor ID Register */ 350 VMPIDR_EL2, /* Virtualization Multiprocessor ID Register */ 351 SCTLR_EL2, /* System Control Register (EL2) */ 352 ACTLR_EL2, /* Auxiliary Control Register (EL2) */ 353 HCR_EL2, /* Hypervisor Configuration Register */ 354 MDCR_EL2, /* Monitor Debug Configuration Register (EL2) */ 355 CPTR_EL2, /* Architectural Feature Trap Register (EL2) */ 356 HSTR_EL2, /* Hypervisor System Trap Register */ 357 HACR_EL2, /* Hypervisor Auxiliary Control Register */ 358 TTBR0_EL2, /* Translation Table Base Register 0 (EL2) */ 359 TTBR1_EL2, /* Translation Table Base Register 1 (EL2) */ 360 TCR_EL2, /* Translation Control Register (EL2) */ 361 VTTBR_EL2, /* Virtualization Translation Table Base Register */ 362 VTCR_EL2, /* Virtualization Translation Control Register */ 363 SPSR_EL2, /* EL2 saved program status register */ 364 ELR_EL2, /* EL2 exception link register */ 365 AFSR0_EL2, /* Auxiliary Fault Status Register 0 (EL2) */ 366 AFSR1_EL2, /* Auxiliary Fault Status Register 1 (EL2) */ 367 ESR_EL2, /* Exception Syndrome Register (EL2) */ 368 FAR_EL2, /* Fault Address Register (EL2) */ 369 HPFAR_EL2, /* Hypervisor IPA Fault Address Register */ 370 MAIR_EL2, /* Memory Attribute Indirection Register (EL2) */ 371 AMAIR_EL2, /* Auxiliary Memory Attribute Indirection Register (EL2) */ 372 VBAR_EL2, /* Vector Base Address Register (EL2) */ 373 RVBAR_EL2, /* Reset Vector Base Address Register */ 374 CONTEXTIDR_EL2, /* Context ID Register (EL2) */ 375 TPIDR_EL2, /* EL2 Software Thread ID Register */ 376 CNTHCTL_EL2, /* Counter-timer Hypervisor Control register */ 377 SP_EL2, /* EL2 Stack Pointer */ 378 CNTHP_CTL_EL2, 379 CNTHP_CVAL_EL2, 380 CNTHV_CTL_EL2, 381 CNTHV_CVAL_EL2, 382 383 NR_SYS_REGS /* Nothing after this line! */ 384 }; 385 386 struct kvm_cpu_context { 387 struct user_pt_regs regs; /* sp = sp_el0 */ 388 389 u64 spsr_abt; 390 u64 spsr_und; 391 u64 spsr_irq; 392 u64 spsr_fiq; 393 394 struct user_fpsimd_state fp_regs; 395 396 u64 sys_regs[NR_SYS_REGS]; 397 398 struct kvm_vcpu *__hyp_running_vcpu; 399 }; 400 401 struct kvm_host_data { 402 struct kvm_cpu_context host_ctxt; 403 }; 404 405 struct kvm_host_psci_config { 406 /* PSCI version used by host. */ 407 u32 version; 408 409 /* Function IDs used by host if version is v0.1. */ 410 struct psci_0_1_function_ids function_ids_0_1; 411 412 bool psci_0_1_cpu_suspend_implemented; 413 bool psci_0_1_cpu_on_implemented; 414 bool psci_0_1_cpu_off_implemented; 415 bool psci_0_1_migrate_implemented; 416 }; 417 418 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config); 419 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config) 420 421 extern s64 kvm_nvhe_sym(hyp_physvirt_offset); 422 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset) 423 424 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS]; 425 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map) 426 427 struct vcpu_reset_state { 428 unsigned long pc; 429 unsigned long r0; 430 bool be; 431 bool reset; 432 }; 433 434 struct kvm_vcpu_arch { 435 struct kvm_cpu_context ctxt; 436 437 /* 438 * Guest floating point state 439 * 440 * The architecture has two main floating point extensions, 441 * the original FPSIMD and SVE. These have overlapping 442 * register views, with the FPSIMD V registers occupying the 443 * low 128 bits of the SVE Z registers. When the core 444 * floating point code saves the register state of a task it 445 * records which view it saved in fp_type. 446 */ 447 void *sve_state; 448 enum fp_type fp_type; 449 unsigned int sve_max_vl; 450 u64 svcr; 451 452 /* Stage 2 paging state used by the hardware on next switch */ 453 struct kvm_s2_mmu *hw_mmu; 454 455 /* Values of trap registers for the guest. */ 456 u64 hcr_el2; 457 u64 mdcr_el2; 458 u64 cptr_el2; 459 460 /* Values of trap registers for the host before guest entry. */ 461 u64 mdcr_el2_host; 462 463 /* Exception Information */ 464 struct kvm_vcpu_fault_info fault; 465 466 /* Ownership of the FP regs */ 467 enum { 468 FP_STATE_FREE, 469 FP_STATE_HOST_OWNED, 470 FP_STATE_GUEST_OWNED, 471 } fp_state; 472 473 /* Configuration flags, set once and for all before the vcpu can run */ 474 u8 cflags; 475 476 /* Input flags to the hypervisor code, potentially cleared after use */ 477 u8 iflags; 478 479 /* State flags for kernel bookkeeping, unused by the hypervisor code */ 480 u8 sflags; 481 482 /* 483 * Don't run the guest (internal implementation need). 484 * 485 * Contrary to the flags above, this is set/cleared outside of 486 * a vcpu context, and thus cannot be mixed with the flags 487 * themselves (or the flag accesses need to be made atomic). 488 */ 489 bool pause; 490 491 /* 492 * We maintain more than a single set of debug registers to support 493 * debugging the guest from the host and to maintain separate host and 494 * guest state during world switches. vcpu_debug_state are the debug 495 * registers of the vcpu as the guest sees them. host_debug_state are 496 * the host registers which are saved and restored during 497 * world switches. external_debug_state contains the debug 498 * values we want to debug the guest. This is set via the 499 * KVM_SET_GUEST_DEBUG ioctl. 500 * 501 * debug_ptr points to the set of debug registers that should be loaded 502 * onto the hardware when running the guest. 503 */ 504 struct kvm_guest_debug_arch *debug_ptr; 505 struct kvm_guest_debug_arch vcpu_debug_state; 506 struct kvm_guest_debug_arch external_debug_state; 507 508 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ 509 struct task_struct *parent_task; 510 511 struct { 512 /* {Break,watch}point registers */ 513 struct kvm_guest_debug_arch regs; 514 /* Statistical profiling extension */ 515 u64 pmscr_el1; 516 /* Self-hosted trace */ 517 u64 trfcr_el1; 518 } host_debug_state; 519 520 /* VGIC state */ 521 struct vgic_cpu vgic_cpu; 522 struct arch_timer_cpu timer_cpu; 523 struct kvm_pmu pmu; 524 525 /* 526 * Guest registers we preserve during guest debugging. 527 * 528 * These shadow registers are updated by the kvm_handle_sys_reg 529 * trap handler if the guest accesses or updates them while we 530 * are using guest debug. 531 */ 532 struct { 533 u32 mdscr_el1; 534 bool pstate_ss; 535 } guest_debug_preserved; 536 537 /* vcpu power state */ 538 struct kvm_mp_state mp_state; 539 spinlock_t mp_state_lock; 540 541 /* Cache some mmu pages needed inside spinlock regions */ 542 struct kvm_mmu_memory_cache mmu_page_cache; 543 544 /* Target CPU and feature flags */ 545 int target; 546 DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); 547 548 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ 549 u64 vsesr_el2; 550 551 /* Additional reset state */ 552 struct vcpu_reset_state reset_state; 553 554 /* Guest PV state */ 555 struct { 556 u64 last_steal; 557 gpa_t base; 558 } steal; 559 560 /* Per-vcpu CCSIDR override or NULL */ 561 u32 *ccsidr; 562 }; 563 564 /* 565 * Each 'flag' is composed of a comma-separated triplet: 566 * 567 * - the flag-set it belongs to in the vcpu->arch structure 568 * - the value for that flag 569 * - the mask for that flag 570 * 571 * __vcpu_single_flag() builds such a triplet for a single-bit flag. 572 * unpack_vcpu_flag() extract the flag value from the triplet for 573 * direct use outside of the flag accessors. 574 */ 575 #define __vcpu_single_flag(_set, _f) _set, (_f), (_f) 576 577 #define __unpack_flag(_set, _f, _m) _f 578 #define unpack_vcpu_flag(...) __unpack_flag(__VA_ARGS__) 579 580 #define __build_check_flag(v, flagset, f, m) \ 581 do { \ 582 typeof(v->arch.flagset) *_fset; \ 583 \ 584 /* Check that the flags fit in the mask */ \ 585 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \ 586 /* Check that the flags fit in the type */ \ 587 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \ 588 } while (0) 589 590 #define __vcpu_get_flag(v, flagset, f, m) \ 591 ({ \ 592 __build_check_flag(v, flagset, f, m); \ 593 \ 594 READ_ONCE(v->arch.flagset) & (m); \ 595 }) 596 597 /* 598 * Note that the set/clear accessors must be preempt-safe in order to 599 * avoid nesting them with load/put which also manipulate flags... 600 */ 601 #ifdef __KVM_NVHE_HYPERVISOR__ 602 /* the nVHE hypervisor is always non-preemptible */ 603 #define __vcpu_flags_preempt_disable() 604 #define __vcpu_flags_preempt_enable() 605 #else 606 #define __vcpu_flags_preempt_disable() preempt_disable() 607 #define __vcpu_flags_preempt_enable() preempt_enable() 608 #endif 609 610 #define __vcpu_set_flag(v, flagset, f, m) \ 611 do { \ 612 typeof(v->arch.flagset) *fset; \ 613 \ 614 __build_check_flag(v, flagset, f, m); \ 615 \ 616 fset = &v->arch.flagset; \ 617 __vcpu_flags_preempt_disable(); \ 618 if (HWEIGHT(m) > 1) \ 619 *fset &= ~(m); \ 620 *fset |= (f); \ 621 __vcpu_flags_preempt_enable(); \ 622 } while (0) 623 624 #define __vcpu_clear_flag(v, flagset, f, m) \ 625 do { \ 626 typeof(v->arch.flagset) *fset; \ 627 \ 628 __build_check_flag(v, flagset, f, m); \ 629 \ 630 fset = &v->arch.flagset; \ 631 __vcpu_flags_preempt_disable(); \ 632 *fset &= ~(m); \ 633 __vcpu_flags_preempt_enable(); \ 634 } while (0) 635 636 #define vcpu_get_flag(v, ...) __vcpu_get_flag((v), __VA_ARGS__) 637 #define vcpu_set_flag(v, ...) __vcpu_set_flag((v), __VA_ARGS__) 638 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__) 639 640 /* SVE exposed to guest */ 641 #define GUEST_HAS_SVE __vcpu_single_flag(cflags, BIT(0)) 642 /* SVE config completed */ 643 #define VCPU_SVE_FINALIZED __vcpu_single_flag(cflags, BIT(1)) 644 /* PTRAUTH exposed to guest */ 645 #define GUEST_HAS_PTRAUTH __vcpu_single_flag(cflags, BIT(2)) 646 647 /* Exception pending */ 648 #define PENDING_EXCEPTION __vcpu_single_flag(iflags, BIT(0)) 649 /* 650 * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't 651 * be set together with an exception... 652 */ 653 #define INCREMENT_PC __vcpu_single_flag(iflags, BIT(1)) 654 /* Target EL/MODE (not a single flag, but let's abuse the macro) */ 655 #define EXCEPT_MASK __vcpu_single_flag(iflags, GENMASK(3, 1)) 656 657 /* Helpers to encode exceptions with minimum fuss */ 658 #define __EXCEPT_MASK_VAL unpack_vcpu_flag(EXCEPT_MASK) 659 #define __EXCEPT_SHIFT __builtin_ctzl(__EXCEPT_MASK_VAL) 660 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL 661 662 /* 663 * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following 664 * values: 665 * 666 * For AArch32 EL1: 667 */ 668 #define EXCEPT_AA32_UND __vcpu_except_flags(0) 669 #define EXCEPT_AA32_IABT __vcpu_except_flags(1) 670 #define EXCEPT_AA32_DABT __vcpu_except_flags(2) 671 /* For AArch64: */ 672 #define EXCEPT_AA64_EL1_SYNC __vcpu_except_flags(0) 673 #define EXCEPT_AA64_EL1_IRQ __vcpu_except_flags(1) 674 #define EXCEPT_AA64_EL1_FIQ __vcpu_except_flags(2) 675 #define EXCEPT_AA64_EL1_SERR __vcpu_except_flags(3) 676 /* For AArch64 with NV: */ 677 #define EXCEPT_AA64_EL2_SYNC __vcpu_except_flags(4) 678 #define EXCEPT_AA64_EL2_IRQ __vcpu_except_flags(5) 679 #define EXCEPT_AA64_EL2_FIQ __vcpu_except_flags(6) 680 #define EXCEPT_AA64_EL2_SERR __vcpu_except_flags(7) 681 /* Guest debug is live */ 682 #define DEBUG_DIRTY __vcpu_single_flag(iflags, BIT(4)) 683 /* Save SPE context if active */ 684 #define DEBUG_STATE_SAVE_SPE __vcpu_single_flag(iflags, BIT(5)) 685 /* Save TRBE context if active */ 686 #define DEBUG_STATE_SAVE_TRBE __vcpu_single_flag(iflags, BIT(6)) 687 /* vcpu running in HYP context */ 688 #define VCPU_HYP_CONTEXT __vcpu_single_flag(iflags, BIT(7)) 689 690 /* SVE enabled for host EL0 */ 691 #define HOST_SVE_ENABLED __vcpu_single_flag(sflags, BIT(0)) 692 /* SME enabled for EL0 */ 693 #define HOST_SME_ENABLED __vcpu_single_flag(sflags, BIT(1)) 694 /* Physical CPU not in supported_cpus */ 695 #define ON_UNSUPPORTED_CPU __vcpu_single_flag(sflags, BIT(2)) 696 /* WFIT instruction trapped */ 697 #define IN_WFIT __vcpu_single_flag(sflags, BIT(3)) 698 /* vcpu system registers loaded on physical CPU */ 699 #define SYSREGS_ON_CPU __vcpu_single_flag(sflags, BIT(4)) 700 /* Software step state is Active-pending */ 701 #define DBG_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(5)) 702 703 704 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ 705 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \ 706 sve_ffr_offset((vcpu)->arch.sve_max_vl)) 707 708 #define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl) 709 710 #define vcpu_sve_state_size(vcpu) ({ \ 711 size_t __size_ret; \ 712 unsigned int __vcpu_vq; \ 713 \ 714 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ 715 __size_ret = 0; \ 716 } else { \ 717 __vcpu_vq = vcpu_sve_max_vq(vcpu); \ 718 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ 719 } \ 720 \ 721 __size_ret; \ 722 }) 723 724 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \ 725 KVM_GUESTDBG_USE_SW_BP | \ 726 KVM_GUESTDBG_USE_HW | \ 727 KVM_GUESTDBG_SINGLESTEP) 728 729 #define vcpu_has_sve(vcpu) (system_supports_sve() && \ 730 vcpu_get_flag(vcpu, GUEST_HAS_SVE)) 731 732 #ifdef CONFIG_ARM64_PTR_AUTH 733 #define vcpu_has_ptrauth(vcpu) \ 734 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \ 735 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \ 736 vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH)) 737 #else 738 #define vcpu_has_ptrauth(vcpu) false 739 #endif 740 741 #define vcpu_on_unsupported_cpu(vcpu) \ 742 vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU) 743 744 #define vcpu_set_on_unsupported_cpu(vcpu) \ 745 vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU) 746 747 #define vcpu_clear_on_unsupported_cpu(vcpu) \ 748 vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU) 749 750 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs) 751 752 /* 753 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the 754 * memory backed version of a register, and not the one most recently 755 * accessed by a running VCPU. For example, for userspace access or 756 * for system registers that are never context switched, but only 757 * emulated. 758 */ 759 #define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)]) 760 761 #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r)) 762 763 #define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r))) 764 765 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); 766 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); 767 768 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val) 769 { 770 /* 771 * *** VHE ONLY *** 772 * 773 * System registers listed in the switch are not saved on every 774 * exit from the guest but are only saved on vcpu_put. 775 * 776 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 777 * should never be listed below, because the guest cannot modify its 778 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's 779 * thread when emulating cross-VCPU communication. 780 */ 781 if (!has_vhe()) 782 return false; 783 784 switch (reg) { 785 case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break; 786 case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break; 787 case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break; 788 case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break; 789 case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break; 790 case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break; 791 case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break; 792 case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break; 793 case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break; 794 case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break; 795 case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break; 796 case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break; 797 case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break; 798 case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break; 799 case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break; 800 case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break; 801 case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break; 802 case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break; 803 case PAR_EL1: *val = read_sysreg_par(); break; 804 case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break; 805 case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break; 806 case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break; 807 default: return false; 808 } 809 810 return true; 811 } 812 813 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg) 814 { 815 /* 816 * *** VHE ONLY *** 817 * 818 * System registers listed in the switch are not restored on every 819 * entry to the guest but are only restored on vcpu_load. 820 * 821 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 822 * should never be listed below, because the MPIDR should only be set 823 * once, before running the VCPU, and never changed later. 824 */ 825 if (!has_vhe()) 826 return false; 827 828 switch (reg) { 829 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break; 830 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break; 831 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break; 832 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break; 833 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break; 834 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break; 835 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break; 836 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break; 837 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break; 838 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break; 839 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break; 840 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break; 841 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break; 842 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break; 843 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break; 844 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break; 845 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break; 846 case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break; 847 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break; 848 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break; 849 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break; 850 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break; 851 default: return false; 852 } 853 854 return true; 855 } 856 857 struct kvm_vm_stat { 858 struct kvm_vm_stat_generic generic; 859 }; 860 861 struct kvm_vcpu_stat { 862 struct kvm_vcpu_stat_generic generic; 863 u64 hvc_exit_stat; 864 u64 wfe_exit_stat; 865 u64 wfi_exit_stat; 866 u64 mmio_exit_user; 867 u64 mmio_exit_kernel; 868 u64 signal_exits; 869 u64 exits; 870 }; 871 872 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); 873 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); 874 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); 875 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 876 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 877 878 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu); 879 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices); 880 881 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 882 struct kvm_vcpu_events *events); 883 884 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 885 struct kvm_vcpu_events *events); 886 887 #define KVM_ARCH_WANT_MMU_NOTIFIER 888 889 void kvm_arm_halt_guest(struct kvm *kvm); 890 void kvm_arm_resume_guest(struct kvm *kvm); 891 892 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid) 893 894 #ifndef __KVM_NVHE_HYPERVISOR__ 895 #define kvm_call_hyp_nvhe(f, ...) \ 896 ({ \ 897 struct arm_smccc_res res; \ 898 \ 899 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \ 900 ##__VA_ARGS__, &res); \ 901 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \ 902 \ 903 res.a1; \ 904 }) 905 906 /* 907 * The couple of isb() below are there to guarantee the same behaviour 908 * on VHE as on !VHE, where the eret to EL1 acts as a context 909 * synchronization event. 910 */ 911 #define kvm_call_hyp(f, ...) \ 912 do { \ 913 if (has_vhe()) { \ 914 f(__VA_ARGS__); \ 915 isb(); \ 916 } else { \ 917 kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 918 } \ 919 } while(0) 920 921 #define kvm_call_hyp_ret(f, ...) \ 922 ({ \ 923 typeof(f(__VA_ARGS__)) ret; \ 924 \ 925 if (has_vhe()) { \ 926 ret = f(__VA_ARGS__); \ 927 isb(); \ 928 } else { \ 929 ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 930 } \ 931 \ 932 ret; \ 933 }) 934 #else /* __KVM_NVHE_HYPERVISOR__ */ 935 #define kvm_call_hyp(f, ...) f(__VA_ARGS__) 936 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__) 937 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__) 938 #endif /* __KVM_NVHE_HYPERVISOR__ */ 939 940 void force_vm_exit(const cpumask_t *mask); 941 942 int handle_exit(struct kvm_vcpu *vcpu, int exception_index); 943 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index); 944 945 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu); 946 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu); 947 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu); 948 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu); 949 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu); 950 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu); 951 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu); 952 953 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu); 954 955 int __init kvm_sys_reg_table_init(void); 956 957 bool lock_all_vcpus(struct kvm *kvm); 958 void unlock_all_vcpus(struct kvm *kvm); 959 960 /* MMIO helpers */ 961 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); 962 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len); 963 964 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu); 965 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa); 966 967 /* 968 * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event, 969 * arrived in guest context. For arm64, any event that arrives while a vCPU is 970 * loaded is considered to be "in guest". 971 */ 972 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu) 973 { 974 return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu; 975 } 976 977 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); 978 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); 979 void kvm_update_stolen_time(struct kvm_vcpu *vcpu); 980 981 bool kvm_arm_pvtime_supported(void); 982 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, 983 struct kvm_device_attr *attr); 984 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, 985 struct kvm_device_attr *attr); 986 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, 987 struct kvm_device_attr *attr); 988 989 extern unsigned int __ro_after_init kvm_arm_vmid_bits; 990 int __init kvm_arm_vmid_alloc_init(void); 991 void __init kvm_arm_vmid_alloc_free(void); 992 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid); 993 void kvm_arm_vmid_clear_active(void); 994 995 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) 996 { 997 vcpu_arch->steal.base = INVALID_GPA; 998 } 999 1000 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) 1001 { 1002 return (vcpu_arch->steal.base != INVALID_GPA); 1003 } 1004 1005 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); 1006 1007 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); 1008 1009 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data); 1010 1011 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) 1012 { 1013 /* The host's MPIDR is immutable, so let's set it up at boot time */ 1014 ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr(); 1015 } 1016 1017 static inline bool kvm_system_needs_idmapped_vectors(void) 1018 { 1019 return cpus_have_const_cap(ARM64_SPECTRE_V3A); 1020 } 1021 1022 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu); 1023 1024 static inline void kvm_arch_sync_events(struct kvm *kvm) {} 1025 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} 1026 1027 void kvm_arm_init_debug(void); 1028 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu); 1029 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); 1030 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); 1031 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); 1032 1033 #define kvm_vcpu_os_lock_enabled(vcpu) \ 1034 (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK)) 1035 1036 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 1037 struct kvm_device_attr *attr); 1038 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 1039 struct kvm_device_attr *attr); 1040 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 1041 struct kvm_device_attr *attr); 1042 1043 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, 1044 struct kvm_arm_copy_mte_tags *copy_tags); 1045 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm, 1046 struct kvm_arm_counter_offset *offset); 1047 1048 /* Guest/host FPSIMD coordination helpers */ 1049 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); 1050 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); 1051 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu); 1052 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); 1053 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); 1054 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu); 1055 1056 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) 1057 { 1058 return (!has_vhe() && attr->exclude_host); 1059 } 1060 1061 /* Flags for host debug state */ 1062 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu); 1063 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu); 1064 1065 #ifdef CONFIG_KVM 1066 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); 1067 void kvm_clr_pmu_events(u32 clr); 1068 #else 1069 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} 1070 static inline void kvm_clr_pmu_events(u32 clr) {} 1071 #endif 1072 1073 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu); 1074 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu); 1075 1076 int __init kvm_set_ipa_limit(void); 1077 1078 #define __KVM_HAVE_ARCH_VM_ALLOC 1079 struct kvm *kvm_arch_alloc_vm(void); 1080 1081 static inline bool kvm_vm_is_protected(struct kvm *kvm) 1082 { 1083 return false; 1084 } 1085 1086 void kvm_init_protected_traps(struct kvm_vcpu *vcpu); 1087 1088 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); 1089 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); 1090 1091 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED) 1092 1093 #define kvm_has_mte(kvm) \ 1094 (system_supports_mte() && \ 1095 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags)) 1096 1097 #define kvm_supports_32bit_el0() \ 1098 (system_supports_32bit_el0() && \ 1099 !static_branch_unlikely(&arm64_mismatched_32bit_el0)) 1100 1101 #define kvm_vm_has_ran_once(kvm) \ 1102 (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags)) 1103 1104 int kvm_trng_call(struct kvm_vcpu *vcpu); 1105 #ifdef CONFIG_KVM 1106 extern phys_addr_t hyp_mem_base; 1107 extern phys_addr_t hyp_mem_size; 1108 void __init kvm_hyp_reserve(void); 1109 #else 1110 static inline void kvm_hyp_reserve(void) { } 1111 #endif 1112 1113 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu); 1114 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu); 1115 1116 #endif /* __ARM64_KVM_HOST_H__ */ 1117