xref: /openbmc/linux/arch/arm64/include/asm/kvm_host.h (revision 1460b4b2)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/percpu.h>
20 #include <linux/psci.h>
21 #include <asm/arch_gicv3.h>
22 #include <asm/barrier.h>
23 #include <asm/cpufeature.h>
24 #include <asm/cputype.h>
25 #include <asm/daifflags.h>
26 #include <asm/fpsimd.h>
27 #include <asm/kvm.h>
28 #include <asm/kvm_asm.h>
29 #include <asm/thread_info.h>
30 
31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
32 
33 #define KVM_HALT_POLL_NS_DEFAULT 500000
34 
35 #include <kvm/arm_vgic.h>
36 #include <kvm/arm_arch_timer.h>
37 #include <kvm/arm_pmu.h>
38 
39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40 
41 #define KVM_VCPU_MAX_FEATURES 7
42 
43 #define KVM_REQ_SLEEP \
44 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
45 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
46 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
47 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
48 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
49 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
50 
51 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
52 				     KVM_DIRTY_LOG_INITIALLY_SET)
53 
54 /*
55  * Mode of operation configurable with kvm-arm.mode early param.
56  * See Documentation/admin-guide/kernel-parameters.txt for more information.
57  */
58 enum kvm_mode {
59 	KVM_MODE_DEFAULT,
60 	KVM_MODE_PROTECTED,
61 };
62 enum kvm_mode kvm_get_mode(void);
63 
64 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
65 
66 extern unsigned int kvm_sve_max_vl;
67 int kvm_arm_init_sve(void);
68 
69 int __attribute_const__ kvm_target_cpu(void);
70 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
71 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
72 
73 struct kvm_vmid {
74 	/* The VMID generation used for the virt. memory system */
75 	u64    vmid_gen;
76 	u32    vmid;
77 };
78 
79 struct kvm_s2_mmu {
80 	struct kvm_vmid vmid;
81 
82 	/*
83 	 * stage2 entry level table
84 	 *
85 	 * Two kvm_s2_mmu structures in the same VM can point to the same
86 	 * pgd here.  This happens when running a guest using a
87 	 * translation regime that isn't affected by its own stage-2
88 	 * translation, such as a non-VHE hypervisor running at vEL2, or
89 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
90 	 * canonical stage-2 page tables.
91 	 */
92 	phys_addr_t	pgd_phys;
93 	struct kvm_pgtable *pgt;
94 
95 	/* The last vcpu id that ran on each physical CPU */
96 	int __percpu *last_vcpu_ran;
97 
98 	struct kvm_arch *arch;
99 };
100 
101 struct kvm_arch_memory_slot {
102 };
103 
104 struct kvm_arch {
105 	struct kvm_s2_mmu mmu;
106 
107 	/* VTCR_EL2 value for this VM */
108 	u64    vtcr;
109 
110 	/* The maximum number of vCPUs depends on the used GIC model */
111 	int max_vcpus;
112 
113 	/* Interrupt controller */
114 	struct vgic_dist	vgic;
115 
116 	/* Mandated version of PSCI */
117 	u32 psci_version;
118 
119 	/*
120 	 * If we encounter a data abort without valid instruction syndrome
121 	 * information, report this to user space.  User space can (and
122 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
123 	 * supported.
124 	 */
125 	bool return_nisv_io_abort_to_user;
126 
127 	/*
128 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
129 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
130 	 */
131 	unsigned long *pmu_filter;
132 	unsigned int pmuver;
133 
134 	u8 pfr0_csv2;
135 	u8 pfr0_csv3;
136 
137 	/* Memory Tagging Extension enabled for the guest */
138 	bool mte_enabled;
139 };
140 
141 struct kvm_vcpu_fault_info {
142 	u32 esr_el2;		/* Hyp Syndrom Register */
143 	u64 far_el2;		/* Hyp Fault Address Register */
144 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
145 	u64 disr_el1;		/* Deferred [SError] Status Register */
146 };
147 
148 enum vcpu_sysreg {
149 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
150 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
151 	CSSELR_EL1,	/* Cache Size Selection Register */
152 	SCTLR_EL1,	/* System Control Register */
153 	ACTLR_EL1,	/* Auxiliary Control Register */
154 	CPACR_EL1,	/* Coprocessor Access Control */
155 	ZCR_EL1,	/* SVE Control */
156 	TTBR0_EL1,	/* Translation Table Base Register 0 */
157 	TTBR1_EL1,	/* Translation Table Base Register 1 */
158 	TCR_EL1,	/* Translation Control Register */
159 	ESR_EL1,	/* Exception Syndrome Register */
160 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
161 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
162 	FAR_EL1,	/* Fault Address Register */
163 	MAIR_EL1,	/* Memory Attribute Indirection Register */
164 	VBAR_EL1,	/* Vector Base Address Register */
165 	CONTEXTIDR_EL1,	/* Context ID Register */
166 	TPIDR_EL0,	/* Thread ID, User R/W */
167 	TPIDRRO_EL0,	/* Thread ID, User R/O */
168 	TPIDR_EL1,	/* Thread ID, Privileged */
169 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
170 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
171 	PAR_EL1,	/* Physical Address Register */
172 	MDSCR_EL1,	/* Monitor Debug System Control Register */
173 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
174 	DISR_EL1,	/* Deferred Interrupt Status Register */
175 
176 	/* Performance Monitors Registers */
177 	PMCR_EL0,	/* Control Register */
178 	PMSELR_EL0,	/* Event Counter Selection Register */
179 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
180 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
181 	PMCCNTR_EL0,	/* Cycle Counter Register */
182 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
183 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
184 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
185 	PMCNTENSET_EL0,	/* Count Enable Set Register */
186 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
187 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
188 	PMSWINC_EL0,	/* Software Increment Register */
189 	PMUSERENR_EL0,	/* User Enable Register */
190 
191 	/* Pointer Authentication Registers in a strict increasing order. */
192 	APIAKEYLO_EL1,
193 	APIAKEYHI_EL1,
194 	APIBKEYLO_EL1,
195 	APIBKEYHI_EL1,
196 	APDAKEYLO_EL1,
197 	APDAKEYHI_EL1,
198 	APDBKEYLO_EL1,
199 	APDBKEYHI_EL1,
200 	APGAKEYLO_EL1,
201 	APGAKEYHI_EL1,
202 
203 	ELR_EL1,
204 	SP_EL1,
205 	SPSR_EL1,
206 
207 	CNTVOFF_EL2,
208 	CNTV_CVAL_EL0,
209 	CNTV_CTL_EL0,
210 	CNTP_CVAL_EL0,
211 	CNTP_CTL_EL0,
212 
213 	/* Memory Tagging Extension registers */
214 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
215 	GCR_EL1,	/* Tag Control Register */
216 	TFSR_EL1,	/* Tag Fault Status Register (EL1) */
217 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
218 
219 	/* 32bit specific registers. Keep them at the end of the range */
220 	DACR32_EL2,	/* Domain Access Control Register */
221 	IFSR32_EL2,	/* Instruction Fault Status Register */
222 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
223 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
224 
225 	NR_SYS_REGS	/* Nothing after this line! */
226 };
227 
228 struct kvm_cpu_context {
229 	struct user_pt_regs regs;	/* sp = sp_el0 */
230 
231 	u64	spsr_abt;
232 	u64	spsr_und;
233 	u64	spsr_irq;
234 	u64	spsr_fiq;
235 
236 	struct user_fpsimd_state fp_regs;
237 
238 	u64 sys_regs[NR_SYS_REGS];
239 
240 	struct kvm_vcpu *__hyp_running_vcpu;
241 };
242 
243 struct kvm_pmu_events {
244 	u32 events_host;
245 	u32 events_guest;
246 };
247 
248 struct kvm_host_data {
249 	struct kvm_cpu_context host_ctxt;
250 	struct kvm_pmu_events pmu_events;
251 };
252 
253 struct kvm_host_psci_config {
254 	/* PSCI version used by host. */
255 	u32 version;
256 
257 	/* Function IDs used by host if version is v0.1. */
258 	struct psci_0_1_function_ids function_ids_0_1;
259 
260 	bool psci_0_1_cpu_suspend_implemented;
261 	bool psci_0_1_cpu_on_implemented;
262 	bool psci_0_1_cpu_off_implemented;
263 	bool psci_0_1_migrate_implemented;
264 };
265 
266 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
267 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
268 
269 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
270 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
271 
272 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
273 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
274 
275 struct vcpu_reset_state {
276 	unsigned long	pc;
277 	unsigned long	r0;
278 	bool		be;
279 	bool		reset;
280 };
281 
282 struct kvm_vcpu_arch {
283 	struct kvm_cpu_context ctxt;
284 	void *sve_state;
285 	unsigned int sve_max_vl;
286 
287 	/* Stage 2 paging state used by the hardware on next switch */
288 	struct kvm_s2_mmu *hw_mmu;
289 
290 	/* Values of trap registers for the guest. */
291 	u64 hcr_el2;
292 	u64 mdcr_el2;
293 
294 	/* Values of trap registers for the host before guest entry. */
295 	u64 mdcr_el2_host;
296 
297 	/* Exception Information */
298 	struct kvm_vcpu_fault_info fault;
299 
300 	/* State of various workarounds, see kvm_asm.h for bit assignment */
301 	u64 workaround_flags;
302 
303 	/* Miscellaneous vcpu state flags */
304 	u64 flags;
305 
306 	/*
307 	 * We maintain more than a single set of debug registers to support
308 	 * debugging the guest from the host and to maintain separate host and
309 	 * guest state during world switches. vcpu_debug_state are the debug
310 	 * registers of the vcpu as the guest sees them.  host_debug_state are
311 	 * the host registers which are saved and restored during
312 	 * world switches. external_debug_state contains the debug
313 	 * values we want to debug the guest. This is set via the
314 	 * KVM_SET_GUEST_DEBUG ioctl.
315 	 *
316 	 * debug_ptr points to the set of debug registers that should be loaded
317 	 * onto the hardware when running the guest.
318 	 */
319 	struct kvm_guest_debug_arch *debug_ptr;
320 	struct kvm_guest_debug_arch vcpu_debug_state;
321 	struct kvm_guest_debug_arch external_debug_state;
322 
323 	struct thread_info *host_thread_info;	/* hyp VA */
324 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
325 
326 	struct {
327 		/* {Break,watch}point registers */
328 		struct kvm_guest_debug_arch regs;
329 		/* Statistical profiling extension */
330 		u64 pmscr_el1;
331 		/* Self-hosted trace */
332 		u64 trfcr_el1;
333 	} host_debug_state;
334 
335 	/* VGIC state */
336 	struct vgic_cpu vgic_cpu;
337 	struct arch_timer_cpu timer_cpu;
338 	struct kvm_pmu pmu;
339 
340 	/*
341 	 * Anything that is not used directly from assembly code goes
342 	 * here.
343 	 */
344 
345 	/*
346 	 * Guest registers we preserve during guest debugging.
347 	 *
348 	 * These shadow registers are updated by the kvm_handle_sys_reg
349 	 * trap handler if the guest accesses or updates them while we
350 	 * are using guest debug.
351 	 */
352 	struct {
353 		u32	mdscr_el1;
354 	} guest_debug_preserved;
355 
356 	/* vcpu power-off state */
357 	bool power_off;
358 
359 	/* Don't run the guest (internal implementation need) */
360 	bool pause;
361 
362 	/* Cache some mmu pages needed inside spinlock regions */
363 	struct kvm_mmu_memory_cache mmu_page_cache;
364 
365 	/* Target CPU and feature flags */
366 	int target;
367 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
368 
369 	/* Detect first run of a vcpu */
370 	bool has_run_once;
371 
372 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
373 	u64 vsesr_el2;
374 
375 	/* Additional reset state */
376 	struct vcpu_reset_state	reset_state;
377 
378 	/* True when deferrable sysregs are loaded on the physical CPU,
379 	 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
380 	bool sysregs_loaded_on_cpu;
381 
382 	/* Guest PV state */
383 	struct {
384 		u64 last_steal;
385 		gpa_t base;
386 	} steal;
387 };
388 
389 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
390 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
391 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
392 
393 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
394 
395 #define vcpu_sve_state_size(vcpu) ({					\
396 	size_t __size_ret;						\
397 	unsigned int __vcpu_vq;						\
398 									\
399 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
400 		__size_ret = 0;						\
401 	} else {							\
402 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
403 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
404 	}								\
405 									\
406 	__size_ret;							\
407 })
408 
409 /* vcpu_arch flags field values: */
410 #define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
411 #define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
412 #define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
413 #define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
414 #define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
415 #define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
416 #define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
417 #define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
418 #define KVM_ARM64_PENDING_EXCEPTION	(1 << 8) /* Exception pending */
419 #define KVM_ARM64_EXCEPT_MASK		(7 << 9) /* Target EL/MODE */
420 #define KVM_ARM64_DEBUG_STATE_SAVE_SPE	(1 << 12) /* Save SPE context if active  */
421 #define KVM_ARM64_DEBUG_STATE_SAVE_TRBE	(1 << 13) /* Save TRBE context if active  */
422 
423 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
424 				 KVM_GUESTDBG_USE_SW_BP | \
425 				 KVM_GUESTDBG_USE_HW | \
426 				 KVM_GUESTDBG_SINGLESTEP)
427 /*
428  * When KVM_ARM64_PENDING_EXCEPTION is set, KVM_ARM64_EXCEPT_MASK can
429  * take the following values:
430  *
431  * For AArch32 EL1:
432  */
433 #define KVM_ARM64_EXCEPT_AA32_UND	(0 << 9)
434 #define KVM_ARM64_EXCEPT_AA32_IABT	(1 << 9)
435 #define KVM_ARM64_EXCEPT_AA32_DABT	(2 << 9)
436 /* For AArch64: */
437 #define KVM_ARM64_EXCEPT_AA64_ELx_SYNC	(0 << 9)
438 #define KVM_ARM64_EXCEPT_AA64_ELx_IRQ	(1 << 9)
439 #define KVM_ARM64_EXCEPT_AA64_ELx_FIQ	(2 << 9)
440 #define KVM_ARM64_EXCEPT_AA64_ELx_SERR	(3 << 9)
441 #define KVM_ARM64_EXCEPT_AA64_EL1	(0 << 11)
442 #define KVM_ARM64_EXCEPT_AA64_EL2	(1 << 11)
443 
444 /*
445  * Overlaps with KVM_ARM64_EXCEPT_MASK on purpose so that it can't be
446  * set together with an exception...
447  */
448 #define KVM_ARM64_INCREMENT_PC		(1 << 9) /* Increment PC */
449 
450 #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
451 			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
452 
453 #ifdef CONFIG_ARM64_PTR_AUTH
454 #define vcpu_has_ptrauth(vcpu)						\
455 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
456 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
457 	 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)
458 #else
459 #define vcpu_has_ptrauth(vcpu)		false
460 #endif
461 
462 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
463 
464 /*
465  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
466  * memory backed version of a register, and not the one most recently
467  * accessed by a running VCPU.  For example, for userspace access or
468  * for system registers that are never context switched, but only
469  * emulated.
470  */
471 #define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])
472 
473 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
474 
475 #define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
476 
477 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
478 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
479 
480 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
481 {
482 	/*
483 	 * *** VHE ONLY ***
484 	 *
485 	 * System registers listed in the switch are not saved on every
486 	 * exit from the guest but are only saved on vcpu_put.
487 	 *
488 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
489 	 * should never be listed below, because the guest cannot modify its
490 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
491 	 * thread when emulating cross-VCPU communication.
492 	 */
493 	if (!has_vhe())
494 		return false;
495 
496 	switch (reg) {
497 	case CSSELR_EL1:	*val = read_sysreg_s(SYS_CSSELR_EL1);	break;
498 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
499 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
500 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
501 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
502 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
503 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
504 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
505 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
506 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
507 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
508 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
509 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
510 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
511 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
512 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
513 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
514 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
515 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
516 	case PAR_EL1:		*val = read_sysreg_par();		break;
517 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
518 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
519 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
520 	default:		return false;
521 	}
522 
523 	return true;
524 }
525 
526 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
527 {
528 	/*
529 	 * *** VHE ONLY ***
530 	 *
531 	 * System registers listed in the switch are not restored on every
532 	 * entry to the guest but are only restored on vcpu_load.
533 	 *
534 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
535 	 * should never be listed below, because the MPIDR should only be set
536 	 * once, before running the VCPU, and never changed later.
537 	 */
538 	if (!has_vhe())
539 		return false;
540 
541 	switch (reg) {
542 	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	break;
543 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
544 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
545 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
546 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
547 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
548 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
549 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
550 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
551 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
552 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
553 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
554 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
555 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
556 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
557 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
558 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
559 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
560 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
561 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
562 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
563 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
564 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
565 	default:		return false;
566 	}
567 
568 	return true;
569 }
570 
571 struct kvm_vm_stat {
572 	struct kvm_vm_stat_generic generic;
573 };
574 
575 struct kvm_vcpu_stat {
576 	struct kvm_vcpu_stat_generic generic;
577 	u64 hvc_exit_stat;
578 	u64 wfe_exit_stat;
579 	u64 wfi_exit_stat;
580 	u64 mmio_exit_user;
581 	u64 mmio_exit_kernel;
582 	u64 exits;
583 };
584 
585 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
586 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
587 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
588 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
589 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
590 
591 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
592 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
593 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
594 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
595 
596 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
597 			      struct kvm_vcpu_events *events);
598 
599 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
600 			      struct kvm_vcpu_events *events);
601 
602 #define KVM_ARCH_WANT_MMU_NOTIFIER
603 
604 void kvm_arm_halt_guest(struct kvm *kvm);
605 void kvm_arm_resume_guest(struct kvm *kvm);
606 
607 #ifndef __KVM_NVHE_HYPERVISOR__
608 #define kvm_call_hyp_nvhe(f, ...)						\
609 	({								\
610 		struct arm_smccc_res res;				\
611 									\
612 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
613 				  ##__VA_ARGS__, &res);			\
614 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
615 									\
616 		res.a1;							\
617 	})
618 
619 /*
620  * The couple of isb() below are there to guarantee the same behaviour
621  * on VHE as on !VHE, where the eret to EL1 acts as a context
622  * synchronization event.
623  */
624 #define kvm_call_hyp(f, ...)						\
625 	do {								\
626 		if (has_vhe()) {					\
627 			f(__VA_ARGS__);					\
628 			isb();						\
629 		} else {						\
630 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
631 		}							\
632 	} while(0)
633 
634 #define kvm_call_hyp_ret(f, ...)					\
635 	({								\
636 		typeof(f(__VA_ARGS__)) ret;				\
637 									\
638 		if (has_vhe()) {					\
639 			ret = f(__VA_ARGS__);				\
640 			isb();						\
641 		} else {						\
642 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
643 		}							\
644 									\
645 		ret;							\
646 	})
647 #else /* __KVM_NVHE_HYPERVISOR__ */
648 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
649 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
650 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
651 #endif /* __KVM_NVHE_HYPERVISOR__ */
652 
653 void force_vm_exit(const cpumask_t *mask);
654 
655 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
656 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
657 
658 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
659 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
660 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
661 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
662 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
663 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
664 
665 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
666 
667 void kvm_sys_reg_table_init(void);
668 
669 /* MMIO helpers */
670 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
671 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
672 
673 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
674 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
675 
676 int kvm_perf_init(void);
677 int kvm_perf_teardown(void);
678 
679 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
680 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
681 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
682 
683 bool kvm_arm_pvtime_supported(void);
684 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
685 			    struct kvm_device_attr *attr);
686 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
687 			    struct kvm_device_attr *attr);
688 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
689 			    struct kvm_device_attr *attr);
690 
691 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
692 {
693 	vcpu_arch->steal.base = GPA_INVALID;
694 }
695 
696 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
697 {
698 	return (vcpu_arch->steal.base != GPA_INVALID);
699 }
700 
701 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
702 
703 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
704 
705 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
706 
707 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
708 {
709 	/* The host's MPIDR is immutable, so let's set it up at boot time */
710 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
711 }
712 
713 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
714 
715 static inline void kvm_arch_hardware_unsetup(void) {}
716 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
717 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
718 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
719 
720 void kvm_arm_init_debug(void);
721 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
722 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
723 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
724 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
725 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
726 			       struct kvm_device_attr *attr);
727 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
728 			       struct kvm_device_attr *attr);
729 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
730 			       struct kvm_device_attr *attr);
731 
732 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
733 				struct kvm_arm_copy_mte_tags *copy_tags);
734 
735 /* Guest/host FPSIMD coordination helpers */
736 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
737 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
738 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
739 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
740 
741 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
742 {
743 	return (!has_vhe() && attr->exclude_host);
744 }
745 
746 /* Flags for host debug state */
747 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
748 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
749 
750 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
751 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
752 {
753 	return kvm_arch_vcpu_run_map_fp(vcpu);
754 }
755 
756 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
757 void kvm_clr_pmu_events(u32 clr);
758 
759 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
760 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
761 #else
762 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
763 static inline void kvm_clr_pmu_events(u32 clr) {}
764 #endif
765 
766 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
767 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
768 
769 int kvm_set_ipa_limit(void);
770 
771 #define __KVM_HAVE_ARCH_VM_ALLOC
772 struct kvm *kvm_arch_alloc_vm(void);
773 void kvm_arch_free_vm(struct kvm *kvm);
774 
775 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
776 
777 static inline bool kvm_vm_is_protected(struct kvm *kvm)
778 {
779 	return false;
780 }
781 
782 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
783 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
784 
785 #define kvm_arm_vcpu_sve_finalized(vcpu) \
786 	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
787 
788 #define kvm_has_mte(kvm) (system_supports_mte() && (kvm)->arch.mte_enabled)
789 #define kvm_vcpu_has_pmu(vcpu)					\
790 	(test_bit(KVM_ARM_VCPU_PMU_V3, (vcpu)->arch.features))
791 
792 int kvm_trng_call(struct kvm_vcpu *vcpu);
793 #ifdef CONFIG_KVM
794 extern phys_addr_t hyp_mem_base;
795 extern phys_addr_t hyp_mem_size;
796 void __init kvm_hyp_reserve(void);
797 #else
798 static inline void kvm_hyp_reserve(void) { }
799 #endif
800 
801 #endif /* __ARM64_KVM_HOST_H__ */
802