xref: /openbmc/linux/arch/arm64/include/asm/kvm_host.h (revision 0c874100)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/include/asm/kvm_host.h:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #ifndef __ARM64_KVM_HOST_H__
23 #define __ARM64_KVM_HOST_H__
24 
25 #include <linux/types.h>
26 #include <linux/kvm_types.h>
27 #include <asm/cpufeature.h>
28 #include <asm/daifflags.h>
29 #include <asm/fpsimd.h>
30 #include <asm/kvm.h>
31 #include <asm/kvm_asm.h>
32 #include <asm/kvm_mmio.h>
33 #include <asm/thread_info.h>
34 
35 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
36 
37 #define KVM_USER_MEM_SLOTS 512
38 #define KVM_HALT_POLL_NS_DEFAULT 500000
39 
40 #include <kvm/arm_vgic.h>
41 #include <kvm/arm_arch_timer.h>
42 #include <kvm/arm_pmu.h>
43 
44 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
45 
46 #define KVM_VCPU_MAX_FEATURES 4
47 
48 #define KVM_REQ_SLEEP \
49 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
50 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
51 
52 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
53 
54 int __attribute_const__ kvm_target_cpu(void);
55 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
56 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
57 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
58 
59 struct kvm_arch {
60 	/* The VMID generation used for the virt. memory system */
61 	u64    vmid_gen;
62 	u32    vmid;
63 
64 	/* stage2 entry level table */
65 	pgd_t *pgd;
66 
67 	/* VTTBR value associated with above pgd and vmid */
68 	u64    vttbr;
69 	/* VTCR_EL2 value for this VM */
70 	u64    vtcr;
71 
72 	/* The last vcpu id that ran on each physical CPU */
73 	int __percpu *last_vcpu_ran;
74 
75 	/* The maximum number of vCPUs depends on the used GIC model */
76 	int max_vcpus;
77 
78 	/* Interrupt controller */
79 	struct vgic_dist	vgic;
80 
81 	/* Mandated version of PSCI */
82 	u32 psci_version;
83 };
84 
85 #define KVM_NR_MEM_OBJS     40
86 
87 /*
88  * We don't want allocation failures within the mmu code, so we preallocate
89  * enough memory for a single page fault in a cache.
90  */
91 struct kvm_mmu_memory_cache {
92 	int nobjs;
93 	void *objects[KVM_NR_MEM_OBJS];
94 };
95 
96 struct kvm_vcpu_fault_info {
97 	u32 esr_el2;		/* Hyp Syndrom Register */
98 	u64 far_el2;		/* Hyp Fault Address Register */
99 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
100 	u64 disr_el1;		/* Deferred [SError] Status Register */
101 };
102 
103 /*
104  * 0 is reserved as an invalid value.
105  * Order should be kept in sync with the save/restore code.
106  */
107 enum vcpu_sysreg {
108 	__INVALID_SYSREG__,
109 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
110 	CSSELR_EL1,	/* Cache Size Selection Register */
111 	SCTLR_EL1,	/* System Control Register */
112 	ACTLR_EL1,	/* Auxiliary Control Register */
113 	CPACR_EL1,	/* Coprocessor Access Control */
114 	TTBR0_EL1,	/* Translation Table Base Register 0 */
115 	TTBR1_EL1,	/* Translation Table Base Register 1 */
116 	TCR_EL1,	/* Translation Control Register */
117 	ESR_EL1,	/* Exception Syndrome Register */
118 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
119 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
120 	FAR_EL1,	/* Fault Address Register */
121 	MAIR_EL1,	/* Memory Attribute Indirection Register */
122 	VBAR_EL1,	/* Vector Base Address Register */
123 	CONTEXTIDR_EL1,	/* Context ID Register */
124 	TPIDR_EL0,	/* Thread ID, User R/W */
125 	TPIDRRO_EL0,	/* Thread ID, User R/O */
126 	TPIDR_EL1,	/* Thread ID, Privileged */
127 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
128 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
129 	PAR_EL1,	/* Physical Address Register */
130 	MDSCR_EL1,	/* Monitor Debug System Control Register */
131 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
132 	DISR_EL1,	/* Deferred Interrupt Status Register */
133 
134 	/* Performance Monitors Registers */
135 	PMCR_EL0,	/* Control Register */
136 	PMSELR_EL0,	/* Event Counter Selection Register */
137 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
138 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
139 	PMCCNTR_EL0,	/* Cycle Counter Register */
140 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
141 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
142 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
143 	PMCNTENSET_EL0,	/* Count Enable Set Register */
144 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
145 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
146 	PMSWINC_EL0,	/* Software Increment Register */
147 	PMUSERENR_EL0,	/* User Enable Register */
148 
149 	/* 32bit specific registers. Keep them at the end of the range */
150 	DACR32_EL2,	/* Domain Access Control Register */
151 	IFSR32_EL2,	/* Instruction Fault Status Register */
152 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
153 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
154 
155 	NR_SYS_REGS	/* Nothing after this line! */
156 };
157 
158 /* 32bit mapping */
159 #define c0_MPIDR	(MPIDR_EL1 * 2)	/* MultiProcessor ID Register */
160 #define c0_CSSELR	(CSSELR_EL1 * 2)/* Cache Size Selection Register */
161 #define c1_SCTLR	(SCTLR_EL1 * 2)	/* System Control Register */
162 #define c1_ACTLR	(ACTLR_EL1 * 2)	/* Auxiliary Control Register */
163 #define c1_CPACR	(CPACR_EL1 * 2)	/* Coprocessor Access Control */
164 #define c2_TTBR0	(TTBR0_EL1 * 2)	/* Translation Table Base Register 0 */
165 #define c2_TTBR0_high	(c2_TTBR0 + 1)	/* TTBR0 top 32 bits */
166 #define c2_TTBR1	(TTBR1_EL1 * 2)	/* Translation Table Base Register 1 */
167 #define c2_TTBR1_high	(c2_TTBR1 + 1)	/* TTBR1 top 32 bits */
168 #define c2_TTBCR	(TCR_EL1 * 2)	/* Translation Table Base Control R. */
169 #define c3_DACR		(DACR32_EL2 * 2)/* Domain Access Control Register */
170 #define c5_DFSR		(ESR_EL1 * 2)	/* Data Fault Status Register */
171 #define c5_IFSR		(IFSR32_EL2 * 2)/* Instruction Fault Status Register */
172 #define c5_ADFSR	(AFSR0_EL1 * 2)	/* Auxiliary Data Fault Status R */
173 #define c5_AIFSR	(AFSR1_EL1 * 2)	/* Auxiliary Instr Fault Status R */
174 #define c6_DFAR		(FAR_EL1 * 2)	/* Data Fault Address Register */
175 #define c6_IFAR		(c6_DFAR + 1)	/* Instruction Fault Address Register */
176 #define c7_PAR		(PAR_EL1 * 2)	/* Physical Address Register */
177 #define c7_PAR_high	(c7_PAR + 1)	/* PAR top 32 bits */
178 #define c10_PRRR	(MAIR_EL1 * 2)	/* Primary Region Remap Register */
179 #define c10_NMRR	(c10_PRRR + 1)	/* Normal Memory Remap Register */
180 #define c12_VBAR	(VBAR_EL1 * 2)	/* Vector Base Address Register */
181 #define c13_CID		(CONTEXTIDR_EL1 * 2)	/* Context ID Register */
182 #define c13_TID_URW	(TPIDR_EL0 * 2)	/* Thread ID, User R/W */
183 #define c13_TID_URO	(TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
184 #define c13_TID_PRIV	(TPIDR_EL1 * 2)	/* Thread ID, Privileged */
185 #define c10_AMAIR0	(AMAIR_EL1 * 2)	/* Aux Memory Attr Indirection Reg */
186 #define c10_AMAIR1	(c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
187 #define c14_CNTKCTL	(CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
188 
189 #define cp14_DBGDSCRext	(MDSCR_EL1 * 2)
190 #define cp14_DBGBCR0	(DBGBCR0_EL1 * 2)
191 #define cp14_DBGBVR0	(DBGBVR0_EL1 * 2)
192 #define cp14_DBGBXVR0	(cp14_DBGBVR0 + 1)
193 #define cp14_DBGWCR0	(DBGWCR0_EL1 * 2)
194 #define cp14_DBGWVR0	(DBGWVR0_EL1 * 2)
195 #define cp14_DBGDCCINT	(MDCCINT_EL1 * 2)
196 
197 #define NR_COPRO_REGS	(NR_SYS_REGS * 2)
198 
199 struct kvm_cpu_context {
200 	struct kvm_regs	gp_regs;
201 	union {
202 		u64 sys_regs[NR_SYS_REGS];
203 		u32 copro[NR_COPRO_REGS];
204 	};
205 
206 	struct kvm_vcpu *__hyp_running_vcpu;
207 };
208 
209 typedef struct kvm_cpu_context kvm_cpu_context_t;
210 
211 struct kvm_vcpu_arch {
212 	struct kvm_cpu_context ctxt;
213 
214 	/* HYP configuration */
215 	u64 hcr_el2;
216 	u32 mdcr_el2;
217 
218 	/* Exception Information */
219 	struct kvm_vcpu_fault_info fault;
220 
221 	/* State of various workarounds, see kvm_asm.h for bit assignment */
222 	u64 workaround_flags;
223 
224 	/* Miscellaneous vcpu state flags */
225 	u64 flags;
226 
227 	/*
228 	 * We maintain more than a single set of debug registers to support
229 	 * debugging the guest from the host and to maintain separate host and
230 	 * guest state during world switches. vcpu_debug_state are the debug
231 	 * registers of the vcpu as the guest sees them.  host_debug_state are
232 	 * the host registers which are saved and restored during
233 	 * world switches. external_debug_state contains the debug
234 	 * values we want to debug the guest. This is set via the
235 	 * KVM_SET_GUEST_DEBUG ioctl.
236 	 *
237 	 * debug_ptr points to the set of debug registers that should be loaded
238 	 * onto the hardware when running the guest.
239 	 */
240 	struct kvm_guest_debug_arch *debug_ptr;
241 	struct kvm_guest_debug_arch vcpu_debug_state;
242 	struct kvm_guest_debug_arch external_debug_state;
243 
244 	/* Pointer to host CPU context */
245 	kvm_cpu_context_t *host_cpu_context;
246 
247 	struct thread_info *host_thread_info;	/* hyp VA */
248 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
249 
250 	struct {
251 		/* {Break,watch}point registers */
252 		struct kvm_guest_debug_arch regs;
253 		/* Statistical profiling extension */
254 		u64 pmscr_el1;
255 	} host_debug_state;
256 
257 	/* VGIC state */
258 	struct vgic_cpu vgic_cpu;
259 	struct arch_timer_cpu timer_cpu;
260 	struct kvm_pmu pmu;
261 
262 	/*
263 	 * Anything that is not used directly from assembly code goes
264 	 * here.
265 	 */
266 
267 	/*
268 	 * Guest registers we preserve during guest debugging.
269 	 *
270 	 * These shadow registers are updated by the kvm_handle_sys_reg
271 	 * trap handler if the guest accesses or updates them while we
272 	 * are using guest debug.
273 	 */
274 	struct {
275 		u32	mdscr_el1;
276 	} guest_debug_preserved;
277 
278 	/* vcpu power-off state */
279 	bool power_off;
280 
281 	/* Don't run the guest (internal implementation need) */
282 	bool pause;
283 
284 	/* IO related fields */
285 	struct kvm_decode mmio_decode;
286 
287 	/* Cache some mmu pages needed inside spinlock regions */
288 	struct kvm_mmu_memory_cache mmu_page_cache;
289 
290 	/* Target CPU and feature flags */
291 	int target;
292 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
293 
294 	/* Detect first run of a vcpu */
295 	bool has_run_once;
296 
297 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
298 	u64 vsesr_el2;
299 
300 	/* True when deferrable sysregs are loaded on the physical CPU,
301 	 * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */
302 	bool sysregs_loaded_on_cpu;
303 };
304 
305 /* vcpu_arch flags field values: */
306 #define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
307 #define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
308 #define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
309 #define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
310 #define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
311 
312 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.gp_regs)
313 
314 /*
315  * Only use __vcpu_sys_reg if you know you want the memory backed version of a
316  * register, and not the one most recently accessed by a running VCPU.  For
317  * example, for userspace access or for system registers that are never context
318  * switched, but only emulated.
319  */
320 #define __vcpu_sys_reg(v,r)	((v)->arch.ctxt.sys_regs[(r)])
321 
322 u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg);
323 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
324 
325 /*
326  * CP14 and CP15 live in the same array, as they are backed by the
327  * same system registers.
328  */
329 #define vcpu_cp14(v,r)		((v)->arch.ctxt.copro[(r)])
330 #define vcpu_cp15(v,r)		((v)->arch.ctxt.copro[(r)])
331 
332 struct kvm_vm_stat {
333 	ulong remote_tlb_flush;
334 };
335 
336 struct kvm_vcpu_stat {
337 	u64 halt_successful_poll;
338 	u64 halt_attempted_poll;
339 	u64 halt_poll_invalid;
340 	u64 halt_wakeup;
341 	u64 hvc_exit_stat;
342 	u64 wfe_exit_stat;
343 	u64 wfi_exit_stat;
344 	u64 mmio_exit_user;
345 	u64 mmio_exit_kernel;
346 	u64 exits;
347 };
348 
349 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
350 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
351 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
352 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
353 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
354 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
355 			      struct kvm_vcpu_events *events);
356 
357 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
358 			      struct kvm_vcpu_events *events);
359 
360 #define KVM_ARCH_WANT_MMU_NOTIFIER
361 int kvm_unmap_hva_range(struct kvm *kvm,
362 			unsigned long start, unsigned long end);
363 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
364 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
365 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
366 
367 struct kvm_vcpu *kvm_arm_get_running_vcpu(void);
368 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
369 void kvm_arm_halt_guest(struct kvm *kvm);
370 void kvm_arm_resume_guest(struct kvm *kvm);
371 
372 u64 __kvm_call_hyp(void *hypfn, ...);
373 #define kvm_call_hyp(f, ...) __kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__)
374 
375 void force_vm_exit(const cpumask_t *mask);
376 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
377 
378 int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
379 		int exception_index);
380 void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
381 		       int exception_index);
382 
383 int kvm_perf_init(void);
384 int kvm_perf_teardown(void);
385 
386 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
387 
388 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
389 
390 DECLARE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
391 
392 void __kvm_enable_ssbs(void);
393 
394 static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
395 				       unsigned long hyp_stack_ptr,
396 				       unsigned long vector_ptr)
397 {
398 	/*
399 	 * Calculate the raw per-cpu offset without a translation from the
400 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
401 	 * so that we can use adr_l to access per-cpu variables in EL2.
402 	 */
403 	u64 tpidr_el2 = ((u64)this_cpu_ptr(&kvm_host_cpu_state) -
404 			 (u64)kvm_ksym_ref(kvm_host_cpu_state));
405 
406 	/*
407 	 * Call initialization code, and switch to the full blown HYP code.
408 	 * If the cpucaps haven't been finalized yet, something has gone very
409 	 * wrong, and hyp will crash and burn when it uses any
410 	 * cpus_have_const_cap() wrapper.
411 	 */
412 	BUG_ON(!static_branch_likely(&arm64_const_caps_ready));
413 	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
414 
415 	/*
416 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
417 	 * at EL2.
418 	 */
419 	if (!has_vhe() && this_cpu_has_cap(ARM64_SSBS) &&
420 	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
421 		kvm_call_hyp(__kvm_enable_ssbs);
422 	}
423 }
424 
425 static inline bool kvm_arch_check_sve_has_vhe(void)
426 {
427 	/*
428 	 * The Arm architecture specifies that implementation of SVE
429 	 * requires VHE also to be implemented.  The KVM code for arm64
430 	 * relies on this when SVE is present:
431 	 */
432 	if (system_supports_sve())
433 		return has_vhe();
434 	else
435 		return true;
436 }
437 
438 static inline void kvm_arch_hardware_unsetup(void) {}
439 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
440 static inline void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) {}
441 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
442 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
443 
444 void kvm_arm_init_debug(void);
445 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
446 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
447 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
448 bool kvm_arm_handle_step_debug(struct kvm_vcpu *vcpu, struct kvm_run *run);
449 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
450 			       struct kvm_device_attr *attr);
451 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
452 			       struct kvm_device_attr *attr);
453 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
454 			       struct kvm_device_attr *attr);
455 
456 static inline void __cpu_init_stage2(void) {}
457 
458 /* Guest/host FPSIMD coordination helpers */
459 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
460 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
461 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
462 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
463 
464 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
465 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
466 {
467 	return kvm_arch_vcpu_run_map_fp(vcpu);
468 }
469 #endif
470 
471 static inline void kvm_arm_vhe_guest_enter(void)
472 {
473 	local_daif_mask();
474 }
475 
476 static inline void kvm_arm_vhe_guest_exit(void)
477 {
478 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
479 
480 	/*
481 	 * When we exit from the guest we change a number of CPU configuration
482 	 * parameters, such as traps.  Make sure these changes take effect
483 	 * before running the host or additional guests.
484 	 */
485 	isb();
486 }
487 
488 static inline bool kvm_arm_harden_branch_predictor(void)
489 {
490 	return cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR);
491 }
492 
493 #define KVM_SSBD_UNKNOWN		-1
494 #define KVM_SSBD_FORCE_DISABLE		0
495 #define KVM_SSBD_KERNEL		1
496 #define KVM_SSBD_FORCE_ENABLE		2
497 #define KVM_SSBD_MITIGATED		3
498 
499 static inline int kvm_arm_have_ssbd(void)
500 {
501 	switch (arm64_get_ssbd_state()) {
502 	case ARM64_SSBD_FORCE_DISABLE:
503 		return KVM_SSBD_FORCE_DISABLE;
504 	case ARM64_SSBD_KERNEL:
505 		return KVM_SSBD_KERNEL;
506 	case ARM64_SSBD_FORCE_ENABLE:
507 		return KVM_SSBD_FORCE_ENABLE;
508 	case ARM64_SSBD_MITIGATED:
509 		return KVM_SSBD_MITIGATED;
510 	case ARM64_SSBD_UNKNOWN:
511 	default:
512 		return KVM_SSBD_UNKNOWN;
513 	}
514 }
515 
516 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
517 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
518 
519 void kvm_set_ipa_limit(void);
520 
521 #define __KVM_HAVE_ARCH_VM_ALLOC
522 struct kvm *kvm_arch_alloc_vm(void);
523 void kvm_arch_free_vm(struct kvm *kvm);
524 
525 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
526 
527 #endif /* __ARM64_KVM_HOST_H__ */
528