xref: /openbmc/linux/arch/arm64/include/asm/kvm_host.h (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   * Copyright (C) 2012,2013 - ARM Ltd
4   * Author: Marc Zyngier <marc.zyngier@arm.com>
5   *
6   * Derived from arch/arm/include/asm/kvm_host.h:
7   * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8   * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9   */
10  
11  #ifndef __ARM64_KVM_HOST_H__
12  #define __ARM64_KVM_HOST_H__
13  
14  #include <linux/arm-smccc.h>
15  #include <linux/bitmap.h>
16  #include <linux/types.h>
17  #include <linux/jump_label.h>
18  #include <linux/kvm_types.h>
19  #include <linux/maple_tree.h>
20  #include <linux/percpu.h>
21  #include <linux/psci.h>
22  #include <asm/arch_gicv3.h>
23  #include <asm/barrier.h>
24  #include <asm/cpufeature.h>
25  #include <asm/cputype.h>
26  #include <asm/daifflags.h>
27  #include <asm/fpsimd.h>
28  #include <asm/kvm.h>
29  #include <asm/kvm_asm.h>
30  
31  #define __KVM_HAVE_ARCH_INTC_INITIALIZED
32  
33  #define KVM_HALT_POLL_NS_DEFAULT 500000
34  
35  #include <kvm/arm_vgic.h>
36  #include <kvm/arm_arch_timer.h>
37  #include <kvm/arm_pmu.h>
38  
39  #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40  
41  #define KVM_VCPU_MAX_FEATURES 7
42  #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
43  
44  #define KVM_REQ_SLEEP \
45  	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
46  #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
47  #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
48  #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
49  #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
50  #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
51  #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
52  #define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
53  
54  #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
55  				     KVM_DIRTY_LOG_INITIALLY_SET)
56  
57  #define KVM_HAVE_MMU_RWLOCK
58  
59  /*
60   * Mode of operation configurable with kvm-arm.mode early param.
61   * See Documentation/admin-guide/kernel-parameters.txt for more information.
62   */
63  enum kvm_mode {
64  	KVM_MODE_DEFAULT,
65  	KVM_MODE_PROTECTED,
66  	KVM_MODE_NV,
67  	KVM_MODE_NONE,
68  };
69  #ifdef CONFIG_KVM
70  enum kvm_mode kvm_get_mode(void);
71  #else
kvm_get_mode(void)72  static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
73  #endif
74  
75  extern unsigned int __ro_after_init kvm_sve_max_vl;
76  int __init kvm_arm_init_sve(void);
77  
78  u32 __attribute_const__ kvm_target_cpu(void);
79  int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
80  void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
81  
82  struct kvm_hyp_memcache {
83  	phys_addr_t head;
84  	unsigned long nr_pages;
85  };
86  
push_hyp_memcache(struct kvm_hyp_memcache * mc,phys_addr_t * p,phys_addr_t (* to_pa)(void * virt))87  static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
88  				     phys_addr_t *p,
89  				     phys_addr_t (*to_pa)(void *virt))
90  {
91  	*p = mc->head;
92  	mc->head = to_pa(p);
93  	mc->nr_pages++;
94  }
95  
pop_hyp_memcache(struct kvm_hyp_memcache * mc,void * (* to_va)(phys_addr_t phys))96  static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
97  				     void *(*to_va)(phys_addr_t phys))
98  {
99  	phys_addr_t *p = to_va(mc->head);
100  
101  	if (!mc->nr_pages)
102  		return NULL;
103  
104  	mc->head = *p;
105  	mc->nr_pages--;
106  
107  	return p;
108  }
109  
__topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages,void * (* alloc_fn)(void * arg),phys_addr_t (* to_pa)(void * virt),void * arg)110  static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
111  				       unsigned long min_pages,
112  				       void *(*alloc_fn)(void *arg),
113  				       phys_addr_t (*to_pa)(void *virt),
114  				       void *arg)
115  {
116  	while (mc->nr_pages < min_pages) {
117  		phys_addr_t *p = alloc_fn(arg);
118  
119  		if (!p)
120  			return -ENOMEM;
121  		push_hyp_memcache(mc, p, to_pa);
122  	}
123  
124  	return 0;
125  }
126  
__free_hyp_memcache(struct kvm_hyp_memcache * mc,void (* free_fn)(void * virt,void * arg),void * (* to_va)(phys_addr_t phys),void * arg)127  static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
128  				       void (*free_fn)(void *virt, void *arg),
129  				       void *(*to_va)(phys_addr_t phys),
130  				       void *arg)
131  {
132  	while (mc->nr_pages)
133  		free_fn(pop_hyp_memcache(mc, to_va), arg);
134  }
135  
136  void free_hyp_memcache(struct kvm_hyp_memcache *mc);
137  int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
138  
139  struct kvm_vmid {
140  	atomic64_t id;
141  };
142  
143  struct kvm_s2_mmu {
144  	struct kvm_vmid vmid;
145  
146  	/*
147  	 * stage2 entry level table
148  	 *
149  	 * Two kvm_s2_mmu structures in the same VM can point to the same
150  	 * pgd here.  This happens when running a guest using a
151  	 * translation regime that isn't affected by its own stage-2
152  	 * translation, such as a non-VHE hypervisor running at vEL2, or
153  	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
154  	 * canonical stage-2 page tables.
155  	 */
156  	phys_addr_t	pgd_phys;
157  	struct kvm_pgtable *pgt;
158  
159  	/* The last vcpu id that ran on each physical CPU */
160  	int __percpu *last_vcpu_ran;
161  
162  #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
163  	/*
164  	 * Memory cache used to split
165  	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
166  	 * is used to allocate stage2 page tables while splitting huge
167  	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
168  	 * influences both the capacity of the split page cache, and
169  	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
170  	 * too high.
171  	 *
172  	 * Protected by kvm->slots_lock.
173  	 */
174  	struct kvm_mmu_memory_cache split_page_cache;
175  	uint64_t split_page_chunk_size;
176  
177  	struct kvm_arch *arch;
178  };
179  
180  struct kvm_arch_memory_slot {
181  };
182  
183  /**
184   * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
185   *
186   * @std_bmap: Bitmap of standard secure service calls
187   * @std_hyp_bmap: Bitmap of standard hypervisor service calls
188   * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
189   */
190  struct kvm_smccc_features {
191  	unsigned long std_bmap;
192  	unsigned long std_hyp_bmap;
193  	unsigned long vendor_hyp_bmap;
194  };
195  
196  typedef unsigned int pkvm_handle_t;
197  
198  struct kvm_protected_vm {
199  	pkvm_handle_t handle;
200  	struct kvm_hyp_memcache teardown_mc;
201  };
202  
203  struct kvm_arch {
204  	struct kvm_s2_mmu mmu;
205  
206  	/* VTCR_EL2 value for this VM */
207  	u64    vtcr;
208  
209  	/* Interrupt controller */
210  	struct vgic_dist	vgic;
211  
212  	/* Timers */
213  	struct arch_timer_vm_data timer_data;
214  
215  	/* Mandated version of PSCI */
216  	u32 psci_version;
217  
218  	/* Protects VM-scoped configuration data */
219  	struct mutex config_lock;
220  
221  	/*
222  	 * If we encounter a data abort without valid instruction syndrome
223  	 * information, report this to user space.  User space can (and
224  	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
225  	 * supported.
226  	 */
227  #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
228  	/* Memory Tagging Extension enabled for the guest */
229  #define KVM_ARCH_FLAG_MTE_ENABLED			1
230  	/* At least one vCPU has ran in the VM */
231  #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
232  	/* The vCPU feature set for the VM is configured */
233  #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
234  	/* PSCI SYSTEM_SUSPEND enabled for the guest */
235  #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
236  	/* VM counter offset */
237  #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
238  	/* Timer PPIs made immutable */
239  #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
240  	/* SMCCC filter initialized for the VM */
241  #define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED		7
242  	/* Initial ID reg values loaded */
243  #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		8
244  	unsigned long flags;
245  
246  	/* VM-wide vCPU feature set */
247  	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
248  
249  	/*
250  	 * VM-wide PMU filter, implemented as a bitmap and big enough for
251  	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
252  	 */
253  	unsigned long *pmu_filter;
254  	struct arm_pmu *arm_pmu;
255  
256  	cpumask_var_t supported_cpus;
257  
258  	/* Hypercall features firmware registers' descriptor */
259  	struct kvm_smccc_features smccc_feat;
260  	struct maple_tree smccc_filter;
261  
262  	/*
263  	 * Emulated CPU ID registers per VM
264  	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
265  	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
266  	 *
267  	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
268  	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
269  	 */
270  #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
271  #define IDREG(kvm, id)		((kvm)->arch.id_regs[IDREG_IDX(id)])
272  #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
273  	u64 id_regs[KVM_ARM_ID_REG_NUM];
274  
275  	/*
276  	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
277  	 * the associated pKVM instance in the hypervisor.
278  	 */
279  	struct kvm_protected_vm pkvm;
280  };
281  
282  struct kvm_vcpu_fault_info {
283  	u64 esr_el2;		/* Hyp Syndrom Register */
284  	u64 far_el2;		/* Hyp Fault Address Register */
285  	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
286  	u64 disr_el1;		/* Deferred [SError] Status Register */
287  };
288  
289  enum vcpu_sysreg {
290  	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
291  	MPIDR_EL1,	/* MultiProcessor Affinity Register */
292  	CLIDR_EL1,	/* Cache Level ID Register */
293  	CSSELR_EL1,	/* Cache Size Selection Register */
294  	SCTLR_EL1,	/* System Control Register */
295  	ACTLR_EL1,	/* Auxiliary Control Register */
296  	CPACR_EL1,	/* Coprocessor Access Control */
297  	ZCR_EL1,	/* SVE Control */
298  	TTBR0_EL1,	/* Translation Table Base Register 0 */
299  	TTBR1_EL1,	/* Translation Table Base Register 1 */
300  	TCR_EL1,	/* Translation Control Register */
301  	TCR2_EL1,	/* Extended Translation Control Register */
302  	ESR_EL1,	/* Exception Syndrome Register */
303  	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
304  	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
305  	FAR_EL1,	/* Fault Address Register */
306  	MAIR_EL1,	/* Memory Attribute Indirection Register */
307  	VBAR_EL1,	/* Vector Base Address Register */
308  	CONTEXTIDR_EL1,	/* Context ID Register */
309  	TPIDR_EL0,	/* Thread ID, User R/W */
310  	TPIDRRO_EL0,	/* Thread ID, User R/O */
311  	TPIDR_EL1,	/* Thread ID, Privileged */
312  	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
313  	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
314  	PAR_EL1,	/* Physical Address Register */
315  	MDSCR_EL1,	/* Monitor Debug System Control Register */
316  	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
317  	OSLSR_EL1,	/* OS Lock Status Register */
318  	DISR_EL1,	/* Deferred Interrupt Status Register */
319  
320  	/* Performance Monitors Registers */
321  	PMCR_EL0,	/* Control Register */
322  	PMSELR_EL0,	/* Event Counter Selection Register */
323  	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
324  	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
325  	PMCCNTR_EL0,	/* Cycle Counter Register */
326  	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
327  	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
328  	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
329  	PMCNTENSET_EL0,	/* Count Enable Set Register */
330  	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
331  	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
332  	PMUSERENR_EL0,	/* User Enable Register */
333  
334  	/* Pointer Authentication Registers in a strict increasing order. */
335  	APIAKEYLO_EL1,
336  	APIAKEYHI_EL1,
337  	APIBKEYLO_EL1,
338  	APIBKEYHI_EL1,
339  	APDAKEYLO_EL1,
340  	APDAKEYHI_EL1,
341  	APDBKEYLO_EL1,
342  	APDBKEYHI_EL1,
343  	APGAKEYLO_EL1,
344  	APGAKEYHI_EL1,
345  
346  	ELR_EL1,
347  	SP_EL1,
348  	SPSR_EL1,
349  
350  	CNTVOFF_EL2,
351  	CNTV_CVAL_EL0,
352  	CNTV_CTL_EL0,
353  	CNTP_CVAL_EL0,
354  	CNTP_CTL_EL0,
355  
356  	/* Memory Tagging Extension registers */
357  	RGSR_EL1,	/* Random Allocation Tag Seed Register */
358  	GCR_EL1,	/* Tag Control Register */
359  	TFSR_EL1,	/* Tag Fault Status Register (EL1) */
360  	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
361  
362  	/* Permission Indirection Extension registers */
363  	PIR_EL1,       /* Permission Indirection Register 1 (EL1) */
364  	PIRE0_EL1,     /*  Permission Indirection Register 0 (EL1) */
365  
366  	/* 32bit specific registers. */
367  	DACR32_EL2,	/* Domain Access Control Register */
368  	IFSR32_EL2,	/* Instruction Fault Status Register */
369  	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
370  	DBGVCR32_EL2,	/* Debug Vector Catch Register */
371  
372  	/* EL2 registers */
373  	VPIDR_EL2,	/* Virtualization Processor ID Register */
374  	VMPIDR_EL2,	/* Virtualization Multiprocessor ID Register */
375  	SCTLR_EL2,	/* System Control Register (EL2) */
376  	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
377  	HCR_EL2,	/* Hypervisor Configuration Register */
378  	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
379  	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
380  	HSTR_EL2,	/* Hypervisor System Trap Register */
381  	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
382  	HCRX_EL2,	/* Extended Hypervisor Configuration Register */
383  	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
384  	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
385  	TCR_EL2,	/* Translation Control Register (EL2) */
386  	VTTBR_EL2,	/* Virtualization Translation Table Base Register */
387  	VTCR_EL2,	/* Virtualization Translation Control Register */
388  	SPSR_EL2,	/* EL2 saved program status register */
389  	ELR_EL2,	/* EL2 exception link register */
390  	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
391  	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
392  	ESR_EL2,	/* Exception Syndrome Register (EL2) */
393  	FAR_EL2,	/* Fault Address Register (EL2) */
394  	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
395  	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
396  	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
397  	VBAR_EL2,	/* Vector Base Address Register (EL2) */
398  	RVBAR_EL2,	/* Reset Vector Base Address Register */
399  	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
400  	TPIDR_EL2,	/* EL2 Software Thread ID Register */
401  	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
402  	SP_EL2,		/* EL2 Stack Pointer */
403  	HFGRTR_EL2,
404  	HFGWTR_EL2,
405  	HFGITR_EL2,
406  	HDFGRTR_EL2,
407  	HDFGWTR_EL2,
408  	CNTHP_CTL_EL2,
409  	CNTHP_CVAL_EL2,
410  	CNTHV_CTL_EL2,
411  	CNTHV_CVAL_EL2,
412  
413  	NR_SYS_REGS	/* Nothing after this line! */
414  };
415  
416  struct kvm_cpu_context {
417  	struct user_pt_regs regs;	/* sp = sp_el0 */
418  
419  	u64	spsr_abt;
420  	u64	spsr_und;
421  	u64	spsr_irq;
422  	u64	spsr_fiq;
423  
424  	struct user_fpsimd_state fp_regs;
425  
426  	u64 sys_regs[NR_SYS_REGS];
427  
428  	struct kvm_vcpu *__hyp_running_vcpu;
429  };
430  
431  struct kvm_host_data {
432  	struct kvm_cpu_context host_ctxt;
433  };
434  
435  struct kvm_host_psci_config {
436  	/* PSCI version used by host. */
437  	u32 version;
438  	u32 smccc_version;
439  
440  	/* Function IDs used by host if version is v0.1. */
441  	struct psci_0_1_function_ids function_ids_0_1;
442  
443  	bool psci_0_1_cpu_suspend_implemented;
444  	bool psci_0_1_cpu_on_implemented;
445  	bool psci_0_1_cpu_off_implemented;
446  	bool psci_0_1_migrate_implemented;
447  };
448  
449  extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
450  #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
451  
452  extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
453  #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
454  
455  extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
456  #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
457  
458  struct vcpu_reset_state {
459  	unsigned long	pc;
460  	unsigned long	r0;
461  	bool		be;
462  	bool		reset;
463  };
464  
465  struct kvm_vcpu_arch {
466  	struct kvm_cpu_context ctxt;
467  
468  	/*
469  	 * Guest floating point state
470  	 *
471  	 * The architecture has two main floating point extensions,
472  	 * the original FPSIMD and SVE.  These have overlapping
473  	 * register views, with the FPSIMD V registers occupying the
474  	 * low 128 bits of the SVE Z registers.  When the core
475  	 * floating point code saves the register state of a task it
476  	 * records which view it saved in fp_type.
477  	 */
478  	void *sve_state;
479  	enum fp_type fp_type;
480  	unsigned int sve_max_vl;
481  	u64 svcr;
482  
483  	/* Stage 2 paging state used by the hardware on next switch */
484  	struct kvm_s2_mmu *hw_mmu;
485  
486  	/* Values of trap registers for the guest. */
487  	u64 hcr_el2;
488  	u64 mdcr_el2;
489  	u64 cptr_el2;
490  
491  	/* Values of trap registers for the host before guest entry. */
492  	u64 mdcr_el2_host;
493  
494  	/* Exception Information */
495  	struct kvm_vcpu_fault_info fault;
496  
497  	/* Ownership of the FP regs */
498  	enum {
499  		FP_STATE_FREE,
500  		FP_STATE_HOST_OWNED,
501  		FP_STATE_GUEST_OWNED,
502  	} fp_state;
503  
504  	/* Configuration flags, set once and for all before the vcpu can run */
505  	u8 cflags;
506  
507  	/* Input flags to the hypervisor code, potentially cleared after use */
508  	u8 iflags;
509  
510  	/* State flags for kernel bookkeeping, unused by the hypervisor code */
511  	u8 sflags;
512  
513  	/*
514  	 * Don't run the guest (internal implementation need).
515  	 *
516  	 * Contrary to the flags above, this is set/cleared outside of
517  	 * a vcpu context, and thus cannot be mixed with the flags
518  	 * themselves (or the flag accesses need to be made atomic).
519  	 */
520  	bool pause;
521  
522  	/*
523  	 * We maintain more than a single set of debug registers to support
524  	 * debugging the guest from the host and to maintain separate host and
525  	 * guest state during world switches. vcpu_debug_state are the debug
526  	 * registers of the vcpu as the guest sees them.  host_debug_state are
527  	 * the host registers which are saved and restored during
528  	 * world switches. external_debug_state contains the debug
529  	 * values we want to debug the guest. This is set via the
530  	 * KVM_SET_GUEST_DEBUG ioctl.
531  	 *
532  	 * debug_ptr points to the set of debug registers that should be loaded
533  	 * onto the hardware when running the guest.
534  	 */
535  	struct kvm_guest_debug_arch *debug_ptr;
536  	struct kvm_guest_debug_arch vcpu_debug_state;
537  	struct kvm_guest_debug_arch external_debug_state;
538  
539  	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
540  	struct task_struct *parent_task;
541  
542  	struct {
543  		/* {Break,watch}point registers */
544  		struct kvm_guest_debug_arch regs;
545  		/* Statistical profiling extension */
546  		u64 pmscr_el1;
547  		/* Self-hosted trace */
548  		u64 trfcr_el1;
549  	} host_debug_state;
550  
551  	/* VGIC state */
552  	struct vgic_cpu vgic_cpu;
553  	struct arch_timer_cpu timer_cpu;
554  	struct kvm_pmu pmu;
555  
556  	/*
557  	 * Guest registers we preserve during guest debugging.
558  	 *
559  	 * These shadow registers are updated by the kvm_handle_sys_reg
560  	 * trap handler if the guest accesses or updates them while we
561  	 * are using guest debug.
562  	 */
563  	struct {
564  		u32	mdscr_el1;
565  		bool	pstate_ss;
566  	} guest_debug_preserved;
567  
568  	/* vcpu power state */
569  	struct kvm_mp_state mp_state;
570  	spinlock_t mp_state_lock;
571  
572  	/* Cache some mmu pages needed inside spinlock regions */
573  	struct kvm_mmu_memory_cache mmu_page_cache;
574  
575  	/* feature flags */
576  	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
577  
578  	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
579  	u64 vsesr_el2;
580  
581  	/* Additional reset state */
582  	struct vcpu_reset_state	reset_state;
583  
584  	/* Guest PV state */
585  	struct {
586  		u64 last_steal;
587  		gpa_t base;
588  	} steal;
589  
590  	/* Per-vcpu CCSIDR override or NULL */
591  	u32 *ccsidr;
592  };
593  
594  /*
595   * Each 'flag' is composed of a comma-separated triplet:
596   *
597   * - the flag-set it belongs to in the vcpu->arch structure
598   * - the value for that flag
599   * - the mask for that flag
600   *
601   *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
602   * unpack_vcpu_flag() extract the flag value from the triplet for
603   * direct use outside of the flag accessors.
604   */
605  #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
606  
607  #define __unpack_flag(_set, _f, _m)	_f
608  #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
609  
610  #define __build_check_flag(v, flagset, f, m)			\
611  	do {							\
612  		typeof(v->arch.flagset) *_fset;			\
613  								\
614  		/* Check that the flags fit in the mask */	\
615  		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
616  		/* Check that the flags fit in the type */	\
617  		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
618  	} while (0)
619  
620  #define __vcpu_get_flag(v, flagset, f, m)			\
621  	({							\
622  		__build_check_flag(v, flagset, f, m);		\
623  								\
624  		READ_ONCE(v->arch.flagset) & (m);		\
625  	})
626  
627  /*
628   * Note that the set/clear accessors must be preempt-safe in order to
629   * avoid nesting them with load/put which also manipulate flags...
630   */
631  #ifdef __KVM_NVHE_HYPERVISOR__
632  /* the nVHE hypervisor is always non-preemptible */
633  #define __vcpu_flags_preempt_disable()
634  #define __vcpu_flags_preempt_enable()
635  #else
636  #define __vcpu_flags_preempt_disable()	preempt_disable()
637  #define __vcpu_flags_preempt_enable()	preempt_enable()
638  #endif
639  
640  #define __vcpu_set_flag(v, flagset, f, m)			\
641  	do {							\
642  		typeof(v->arch.flagset) *fset;			\
643  								\
644  		__build_check_flag(v, flagset, f, m);		\
645  								\
646  		fset = &v->arch.flagset;			\
647  		__vcpu_flags_preempt_disable();			\
648  		if (HWEIGHT(m) > 1)				\
649  			*fset &= ~(m);				\
650  		*fset |= (f);					\
651  		__vcpu_flags_preempt_enable();			\
652  	} while (0)
653  
654  #define __vcpu_clear_flag(v, flagset, f, m)			\
655  	do {							\
656  		typeof(v->arch.flagset) *fset;			\
657  								\
658  		__build_check_flag(v, flagset, f, m);		\
659  								\
660  		fset = &v->arch.flagset;			\
661  		__vcpu_flags_preempt_disable();			\
662  		*fset &= ~(m);					\
663  		__vcpu_flags_preempt_enable();			\
664  	} while (0)
665  
666  #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
667  #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
668  #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
669  
670  /* SVE exposed to guest */
671  #define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
672  /* SVE config completed */
673  #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
674  /* PTRAUTH exposed to guest */
675  #define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
676  /* KVM_ARM_VCPU_INIT completed */
677  #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(3))
678  
679  /* Exception pending */
680  #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
681  /*
682   * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
683   * be set together with an exception...
684   */
685  #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
686  /* Target EL/MODE (not a single flag, but let's abuse the macro) */
687  #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
688  
689  /* Helpers to encode exceptions with minimum fuss */
690  #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
691  #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
692  #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
693  
694  /*
695   * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
696   * values:
697   *
698   * For AArch32 EL1:
699   */
700  #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
701  #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
702  #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
703  /* For AArch64: */
704  #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
705  #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
706  #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
707  #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
708  /* For AArch64 with NV: */
709  #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
710  #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
711  #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
712  #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
713  /* Guest debug is live */
714  #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
715  /* Save SPE context if active  */
716  #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
717  /* Save TRBE context if active  */
718  #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
719  /* vcpu running in HYP context */
720  #define VCPU_HYP_CONTEXT	__vcpu_single_flag(iflags, BIT(7))
721  
722  /* SVE enabled for host EL0 */
723  #define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
724  /* SME enabled for EL0 */
725  #define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
726  /* Physical CPU not in supported_cpus */
727  #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
728  /* WFIT instruction trapped */
729  #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
730  /* vcpu system registers loaded on physical CPU */
731  #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
732  /* Software step state is Active-pending */
733  #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
734  /* PMUSERENR for the guest EL0 is on physical CPU */
735  #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(6))
736  /* WFI instruction trapped */
737  #define IN_WFI			__vcpu_single_flag(sflags, BIT(7))
738  
739  
740  /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
741  #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
742  			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
743  
744  #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
745  
746  #define vcpu_sve_state_size(vcpu) ({					\
747  	size_t __size_ret;						\
748  	unsigned int __vcpu_vq;						\
749  									\
750  	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
751  		__size_ret = 0;						\
752  	} else {							\
753  		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
754  		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
755  	}								\
756  									\
757  	__size_ret;							\
758  })
759  
760  #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
761  				 KVM_GUESTDBG_USE_SW_BP | \
762  				 KVM_GUESTDBG_USE_HW | \
763  				 KVM_GUESTDBG_SINGLESTEP)
764  
765  #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
766  			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
767  
768  #ifdef CONFIG_ARM64_PTR_AUTH
769  #define vcpu_has_ptrauth(vcpu)						\
770  	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
771  	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
772  	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
773  #else
774  #define vcpu_has_ptrauth(vcpu)		false
775  #endif
776  
777  #define vcpu_on_unsupported_cpu(vcpu)					\
778  	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
779  
780  #define vcpu_set_on_unsupported_cpu(vcpu)				\
781  	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
782  
783  #define vcpu_clear_on_unsupported_cpu(vcpu)				\
784  	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
785  
786  #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
787  
788  /*
789   * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
790   * memory backed version of a register, and not the one most recently
791   * accessed by a running VCPU.  For example, for userspace access or
792   * for system registers that are never context switched, but only
793   * emulated.
794   */
795  #define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])
796  
797  #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
798  
799  #define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
800  
801  u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
802  void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
803  
__vcpu_read_sys_reg_from_cpu(int reg,u64 * val)804  static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
805  {
806  	/*
807  	 * *** VHE ONLY ***
808  	 *
809  	 * System registers listed in the switch are not saved on every
810  	 * exit from the guest but are only saved on vcpu_put.
811  	 *
812  	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
813  	 * should never be listed below, because the guest cannot modify its
814  	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
815  	 * thread when emulating cross-VCPU communication.
816  	 */
817  	if (!has_vhe())
818  		return false;
819  
820  	switch (reg) {
821  	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
822  	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
823  	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
824  	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
825  	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
826  	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
827  	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
828  	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
829  	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
830  	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
831  	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
832  	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
833  	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
834  	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
835  	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
836  	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
837  	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
838  	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
839  	case PAR_EL1:		*val = read_sysreg_par();		break;
840  	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
841  	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
842  	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
843  	default:		return false;
844  	}
845  
846  	return true;
847  }
848  
__vcpu_write_sys_reg_to_cpu(u64 val,int reg)849  static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
850  {
851  	/*
852  	 * *** VHE ONLY ***
853  	 *
854  	 * System registers listed in the switch are not restored on every
855  	 * entry to the guest but are only restored on vcpu_load.
856  	 *
857  	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
858  	 * should never be listed below, because the MPIDR should only be set
859  	 * once, before running the VCPU, and never changed later.
860  	 */
861  	if (!has_vhe())
862  		return false;
863  
864  	switch (reg) {
865  	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
866  	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
867  	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
868  	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
869  	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
870  	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
871  	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
872  	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
873  	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
874  	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
875  	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
876  	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
877  	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
878  	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
879  	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
880  	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
881  	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
882  	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
883  	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
884  	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
885  	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
886  	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
887  	default:		return false;
888  	}
889  
890  	return true;
891  }
892  
893  struct kvm_vm_stat {
894  	struct kvm_vm_stat_generic generic;
895  };
896  
897  struct kvm_vcpu_stat {
898  	struct kvm_vcpu_stat_generic generic;
899  	u64 hvc_exit_stat;
900  	u64 wfe_exit_stat;
901  	u64 wfi_exit_stat;
902  	u64 mmio_exit_user;
903  	u64 mmio_exit_kernel;
904  	u64 signal_exits;
905  	u64 exits;
906  };
907  
908  unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
909  int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
910  int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
911  int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
912  
913  unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
914  int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
915  
916  int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
917  			      struct kvm_vcpu_events *events);
918  
919  int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
920  			      struct kvm_vcpu_events *events);
921  
922  #define KVM_ARCH_WANT_MMU_NOTIFIER
923  
924  void kvm_arm_halt_guest(struct kvm *kvm);
925  void kvm_arm_resume_guest(struct kvm *kvm);
926  
927  #define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
928  
929  #ifndef __KVM_NVHE_HYPERVISOR__
930  #define kvm_call_hyp_nvhe(f, ...)						\
931  	({								\
932  		struct arm_smccc_res res;				\
933  									\
934  		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
935  				  ##__VA_ARGS__, &res);			\
936  		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
937  									\
938  		res.a1;							\
939  	})
940  
941  /*
942   * The couple of isb() below are there to guarantee the same behaviour
943   * on VHE as on !VHE, where the eret to EL1 acts as a context
944   * synchronization event.
945   */
946  #define kvm_call_hyp(f, ...)						\
947  	do {								\
948  		if (has_vhe()) {					\
949  			f(__VA_ARGS__);					\
950  			isb();						\
951  		} else {						\
952  			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
953  		}							\
954  	} while(0)
955  
956  #define kvm_call_hyp_ret(f, ...)					\
957  	({								\
958  		typeof(f(__VA_ARGS__)) ret;				\
959  									\
960  		if (has_vhe()) {					\
961  			ret = f(__VA_ARGS__);				\
962  			isb();						\
963  		} else {						\
964  			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
965  		}							\
966  									\
967  		ret;							\
968  	})
969  #else /* __KVM_NVHE_HYPERVISOR__ */
970  #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
971  #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
972  #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
973  #endif /* __KVM_NVHE_HYPERVISOR__ */
974  
975  int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
976  void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
977  
978  int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
979  int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
980  int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
981  int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
982  int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
983  int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
984  int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
985  
986  void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
987  
988  int __init kvm_sys_reg_table_init(void);
989  int __init populate_nv_trap_config(void);
990  
991  bool lock_all_vcpus(struct kvm *kvm);
992  void unlock_all_vcpus(struct kvm *kvm);
993  
994  /* MMIO helpers */
995  void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
996  unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
997  
998  int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
999  int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1000  
1001  /*
1002   * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1003   * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1004   * loaded is considered to be "in guest".
1005   */
kvm_arch_pmi_in_guest(struct kvm_vcpu * vcpu)1006  static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1007  {
1008  	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1009  }
1010  
1011  long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1012  gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1013  void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1014  
1015  bool kvm_arm_pvtime_supported(void);
1016  int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1017  			    struct kvm_device_attr *attr);
1018  int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1019  			    struct kvm_device_attr *attr);
1020  int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1021  			    struct kvm_device_attr *attr);
1022  
1023  extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1024  int __init kvm_arm_vmid_alloc_init(void);
1025  void __init kvm_arm_vmid_alloc_free(void);
1026  void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1027  void kvm_arm_vmid_clear_active(void);
1028  
kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch * vcpu_arch)1029  static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1030  {
1031  	vcpu_arch->steal.base = INVALID_GPA;
1032  }
1033  
kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch * vcpu_arch)1034  static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1035  {
1036  	return (vcpu_arch->steal.base != INVALID_GPA);
1037  }
1038  
1039  void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1040  
1041  struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1042  
1043  DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1044  
kvm_init_host_cpu_context(struct kvm_cpu_context * cpu_ctxt)1045  static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1046  {
1047  	/* The host's MPIDR is immutable, so let's set it up at boot time */
1048  	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1049  }
1050  
kvm_system_needs_idmapped_vectors(void)1051  static inline bool kvm_system_needs_idmapped_vectors(void)
1052  {
1053  	return cpus_have_const_cap(ARM64_SPECTRE_V3A);
1054  }
1055  
kvm_arch_sync_events(struct kvm * kvm)1056  static inline void kvm_arch_sync_events(struct kvm *kvm) {}
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)1057  static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
1058  
1059  void kvm_arm_init_debug(void);
1060  void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1061  void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1062  void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1063  void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1064  
1065  #define kvm_vcpu_os_lock_enabled(vcpu)		\
1066  	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1067  
1068  int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1069  			       struct kvm_device_attr *attr);
1070  int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1071  			       struct kvm_device_attr *attr);
1072  int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1073  			       struct kvm_device_attr *attr);
1074  
1075  int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1076  			       struct kvm_arm_copy_mte_tags *copy_tags);
1077  int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1078  				    struct kvm_arm_counter_offset *offset);
1079  
1080  /* Guest/host FPSIMD coordination helpers */
1081  int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1082  void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1083  void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1084  void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1085  void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1086  void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
1087  
kvm_pmu_counter_deferred(struct perf_event_attr * attr)1088  static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1089  {
1090  	return (!has_vhe() && attr->exclude_host);
1091  }
1092  
1093  /* Flags for host debug state */
1094  void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1095  void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1096  
1097  #ifdef CONFIG_KVM
1098  void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
1099  void kvm_clr_pmu_events(u32 clr);
1100  bool kvm_set_pmuserenr(u64 val);
1101  #else
kvm_set_pmu_events(u32 set,struct perf_event_attr * attr)1102  static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
kvm_clr_pmu_events(u32 clr)1103  static inline void kvm_clr_pmu_events(u32 clr) {}
kvm_set_pmuserenr(u64 val)1104  static inline bool kvm_set_pmuserenr(u64 val)
1105  {
1106  	return false;
1107  }
1108  #endif
1109  
1110  void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
1111  void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
1112  
1113  int __init kvm_set_ipa_limit(void);
1114  
1115  #define __KVM_HAVE_ARCH_VM_ALLOC
1116  struct kvm *kvm_arch_alloc_vm(void);
1117  
1118  #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1119  
1120  #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1121  
kvm_vm_is_protected(struct kvm * kvm)1122  static inline bool kvm_vm_is_protected(struct kvm *kvm)
1123  {
1124  	return false;
1125  }
1126  
1127  int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1128  bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1129  
1130  #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1131  
1132  #define kvm_has_mte(kvm)					\
1133  	(system_supports_mte() &&				\
1134  	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1135  
1136  #define kvm_supports_32bit_el0()				\
1137  	(system_supports_32bit_el0() &&				\
1138  	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1139  
1140  #define kvm_vm_has_ran_once(kvm)					\
1141  	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1142  
1143  int kvm_trng_call(struct kvm_vcpu *vcpu);
1144  #ifdef CONFIG_KVM
1145  extern phys_addr_t hyp_mem_base;
1146  extern phys_addr_t hyp_mem_size;
1147  void __init kvm_hyp_reserve(void);
1148  #else
kvm_hyp_reserve(void)1149  static inline void kvm_hyp_reserve(void) { }
1150  #endif
1151  
1152  void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1153  bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1154  
1155  #endif /* __ARM64_KVM_HOST_H__ */
1156