xref: /openbmc/linux/arch/arm64/include/asm/kvm_emulate.h (revision f5fb5ac7cee29cea9156e734fd652a66417d32fc)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/kvm_emulate.h
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_EMULATE_H__
12 #define __ARM64_KVM_EMULATE_H__
13 
14 #include <linux/kvm_host.h>
15 
16 #include <asm/debug-monitors.h>
17 #include <asm/esr.h>
18 #include <asm/kvm_arm.h>
19 #include <asm/kvm_hyp.h>
20 #include <asm/ptrace.h>
21 #include <asm/cputype.h>
22 #include <asm/virt.h>
23 
24 #define CURRENT_EL_SP_EL0_VECTOR	0x0
25 #define CURRENT_EL_SP_ELx_VECTOR	0x200
26 #define LOWER_EL_AArch64_VECTOR		0x400
27 #define LOWER_EL_AArch32_VECTOR		0x600
28 
29 enum exception_type {
30 	except_type_sync	= 0,
31 	except_type_irq		= 0x80,
32 	except_type_fiq		= 0x100,
33 	except_type_serror	= 0x180,
34 };
35 
36 #define kvm_exception_type_names		\
37 	{ except_type_sync,	"SYNC"   },	\
38 	{ except_type_irq,	"IRQ"    },	\
39 	{ except_type_fiq,	"FIQ"    },	\
40 	{ except_type_serror,	"SERROR" }
41 
42 bool kvm_condition_valid32(const struct kvm_vcpu *vcpu);
43 void kvm_skip_instr32(struct kvm_vcpu *vcpu);
44 
45 void kvm_inject_undefined(struct kvm_vcpu *vcpu);
46 void kvm_inject_vabt(struct kvm_vcpu *vcpu);
47 void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr);
48 void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr);
49 void kvm_inject_size_fault(struct kvm_vcpu *vcpu);
50 
51 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu);
52 
53 void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu);
54 int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2);
55 int kvm_inject_nested_irq(struct kvm_vcpu *vcpu);
56 
57 #if defined(__KVM_VHE_HYPERVISOR__) || defined(__KVM_NVHE_HYPERVISOR__)
58 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
59 {
60 	return !(vcpu->arch.hcr_el2 & HCR_RW);
61 }
62 #else
63 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
64 {
65 	return test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features);
66 }
67 #endif
68 
69 static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu)
70 {
71 	vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS;
72 	if (has_vhe() || has_hvhe())
73 		vcpu->arch.hcr_el2 |= HCR_E2H;
74 	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) {
75 		/* route synchronous external abort exceptions to EL2 */
76 		vcpu->arch.hcr_el2 |= HCR_TEA;
77 		/* trap error record accesses */
78 		vcpu->arch.hcr_el2 |= HCR_TERR;
79 	}
80 
81 	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
82 		vcpu->arch.hcr_el2 |= HCR_FWB;
83 	} else {
84 		/*
85 		 * For non-FWB CPUs, we trap VM ops (HCR_EL2.TVM) until M+C
86 		 * get set in SCTLR_EL1 such that we can detect when the guest
87 		 * MMU gets turned on and do the necessary cache maintenance
88 		 * then.
89 		 */
90 		vcpu->arch.hcr_el2 |= HCR_TVM;
91 	}
92 
93 	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
94 	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE))
95 		vcpu->arch.hcr_el2 |= HCR_TID4;
96 	else
97 		vcpu->arch.hcr_el2 |= HCR_TID2;
98 
99 	if (vcpu_el1_is_32bit(vcpu))
100 		vcpu->arch.hcr_el2 &= ~HCR_RW;
101 
102 	if (kvm_has_mte(vcpu->kvm))
103 		vcpu->arch.hcr_el2 |= HCR_ATA;
104 }
105 
106 static inline unsigned long *vcpu_hcr(struct kvm_vcpu *vcpu)
107 {
108 	return (unsigned long *)&vcpu->arch.hcr_el2;
109 }
110 
111 static inline void vcpu_clear_wfx_traps(struct kvm_vcpu *vcpu)
112 {
113 	vcpu->arch.hcr_el2 &= ~HCR_TWE;
114 	if (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
115 	    vcpu->kvm->arch.vgic.nassgireq)
116 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
117 	else
118 		vcpu->arch.hcr_el2 |= HCR_TWI;
119 }
120 
121 static inline void vcpu_set_wfx_traps(struct kvm_vcpu *vcpu)
122 {
123 	vcpu->arch.hcr_el2 |= HCR_TWE;
124 	vcpu->arch.hcr_el2 |= HCR_TWI;
125 }
126 
127 static inline void vcpu_ptrauth_enable(struct kvm_vcpu *vcpu)
128 {
129 	vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
130 }
131 
132 static inline void vcpu_ptrauth_disable(struct kvm_vcpu *vcpu)
133 {
134 	vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
135 }
136 
137 static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu)
138 {
139 	return vcpu->arch.vsesr_el2;
140 }
141 
142 static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr)
143 {
144 	vcpu->arch.vsesr_el2 = vsesr;
145 }
146 
147 static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu)
148 {
149 	return (unsigned long *)&vcpu_gp_regs(vcpu)->pc;
150 }
151 
152 static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu)
153 {
154 	return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate;
155 }
156 
157 static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu)
158 {
159 	return !!(*vcpu_cpsr(vcpu) & PSR_MODE32_BIT);
160 }
161 
162 static __always_inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu)
163 {
164 	if (vcpu_mode_is_32bit(vcpu))
165 		return kvm_condition_valid32(vcpu);
166 
167 	return true;
168 }
169 
170 static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu)
171 {
172 	*vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT;
173 }
174 
175 /*
176  * vcpu_get_reg and vcpu_set_reg should always be passed a register number
177  * coming from a read of ESR_EL2. Otherwise, it may give the wrong result on
178  * AArch32 with banked registers.
179  */
180 static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu,
181 					 u8 reg_num)
182 {
183 	return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num];
184 }
185 
186 static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num,
187 				unsigned long val)
188 {
189 	if (reg_num != 31)
190 		vcpu_gp_regs(vcpu)->regs[reg_num] = val;
191 }
192 
193 static inline bool vcpu_is_el2_ctxt(const struct kvm_cpu_context *ctxt)
194 {
195 	switch (ctxt->regs.pstate & (PSR_MODE32_BIT | PSR_MODE_MASK)) {
196 	case PSR_MODE_EL2h:
197 	case PSR_MODE_EL2t:
198 		return true;
199 	default:
200 		return false;
201 	}
202 }
203 
204 static inline bool vcpu_is_el2(const struct kvm_vcpu *vcpu)
205 {
206 	return vcpu_is_el2_ctxt(&vcpu->arch.ctxt);
207 }
208 
209 static inline bool __vcpu_el2_e2h_is_set(const struct kvm_cpu_context *ctxt)
210 {
211 	return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_E2H;
212 }
213 
214 static inline bool vcpu_el2_e2h_is_set(const struct kvm_vcpu *vcpu)
215 {
216 	return __vcpu_el2_e2h_is_set(&vcpu->arch.ctxt);
217 }
218 
219 static inline bool __vcpu_el2_tge_is_set(const struct kvm_cpu_context *ctxt)
220 {
221 	return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_TGE;
222 }
223 
224 static inline bool vcpu_el2_tge_is_set(const struct kvm_vcpu *vcpu)
225 {
226 	return __vcpu_el2_tge_is_set(&vcpu->arch.ctxt);
227 }
228 
229 static inline bool __is_hyp_ctxt(const struct kvm_cpu_context *ctxt)
230 {
231 	/*
232 	 * We are in a hypervisor context if the vcpu mode is EL2 or
233 	 * E2H and TGE bits are set. The latter means we are in the user space
234 	 * of the VHE kernel. ARMv8.1 ARM describes this as 'InHost'
235 	 *
236 	 * Note that the HCR_EL2.{E2H,TGE}={0,1} isn't really handled in the
237 	 * rest of the KVM code, and will result in a misbehaving guest.
238 	 */
239 	return vcpu_is_el2_ctxt(ctxt) ||
240 		(__vcpu_el2_e2h_is_set(ctxt) && __vcpu_el2_tge_is_set(ctxt)) ||
241 		__vcpu_el2_tge_is_set(ctxt);
242 }
243 
244 static inline bool is_hyp_ctxt(const struct kvm_vcpu *vcpu)
245 {
246 	return __is_hyp_ctxt(&vcpu->arch.ctxt);
247 }
248 
249 /*
250  * The layout of SPSR for an AArch32 state is different when observed from an
251  * AArch64 SPSR_ELx or an AArch32 SPSR_*. This function generates the AArch32
252  * view given an AArch64 view.
253  *
254  * In ARM DDI 0487E.a see:
255  *
256  * - The AArch64 view (SPSR_EL2) in section C5.2.18, page C5-426
257  * - The AArch32 view (SPSR_abt) in section G8.2.126, page G8-6256
258  * - The AArch32 view (SPSR_und) in section G8.2.132, page G8-6280
259  *
260  * Which show the following differences:
261  *
262  * | Bit | AA64 | AA32 | Notes                       |
263  * +-----+------+------+-----------------------------|
264  * | 24  | DIT  | J    | J is RES0 in ARMv8          |
265  * | 21  | SS   | DIT  | SS doesn't exist in AArch32 |
266  *
267  * ... and all other bits are (currently) common.
268  */
269 static inline unsigned long host_spsr_to_spsr32(unsigned long spsr)
270 {
271 	const unsigned long overlap = BIT(24) | BIT(21);
272 	unsigned long dit = !!(spsr & PSR_AA32_DIT_BIT);
273 
274 	spsr &= ~overlap;
275 
276 	spsr |= dit << 21;
277 
278 	return spsr;
279 }
280 
281 static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu)
282 {
283 	u32 mode;
284 
285 	if (vcpu_mode_is_32bit(vcpu)) {
286 		mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK;
287 		return mode > PSR_AA32_MODE_USR;
288 	}
289 
290 	mode = *vcpu_cpsr(vcpu) & PSR_MODE_MASK;
291 
292 	return mode != PSR_MODE_EL0t;
293 }
294 
295 static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu)
296 {
297 	return vcpu->arch.fault.esr_el2;
298 }
299 
300 static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu)
301 {
302 	u64 esr = kvm_vcpu_get_esr(vcpu);
303 
304 	if (esr & ESR_ELx_CV)
305 		return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
306 
307 	return -1;
308 }
309 
310 static __always_inline unsigned long kvm_vcpu_get_hfar(const struct kvm_vcpu *vcpu)
311 {
312 	return vcpu->arch.fault.far_el2;
313 }
314 
315 static __always_inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu)
316 {
317 	return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8;
318 }
319 
320 static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu)
321 {
322 	return vcpu->arch.fault.disr_el1;
323 }
324 
325 static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu)
326 {
327 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK;
328 }
329 
330 static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu)
331 {
332 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV);
333 }
334 
335 static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu)
336 {
337 	return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC);
338 }
339 
340 static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu)
341 {
342 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE);
343 }
344 
345 static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu)
346 {
347 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF);
348 }
349 
350 static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu)
351 {
352 	return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT;
353 }
354 
355 static __always_inline bool kvm_vcpu_abt_iss1tw(const struct kvm_vcpu *vcpu)
356 {
357 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW);
358 }
359 
360 /* Always check for S1PTW *before* using this. */
361 static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu)
362 {
363 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR;
364 }
365 
366 static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu)
367 {
368 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM);
369 }
370 
371 static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu)
372 {
373 	return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT);
374 }
375 
376 /* This one is not specific to Data Abort */
377 static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu)
378 {
379 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL);
380 }
381 
382 static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu)
383 {
384 	return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu));
385 }
386 
387 static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu)
388 {
389 	return kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_IABT_LOW;
390 }
391 
392 static inline bool kvm_vcpu_trap_is_exec_fault(const struct kvm_vcpu *vcpu)
393 {
394 	return kvm_vcpu_trap_is_iabt(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu);
395 }
396 
397 static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu)
398 {
399 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC;
400 }
401 
402 static __always_inline u8 kvm_vcpu_trap_get_fault_type(const struct kvm_vcpu *vcpu)
403 {
404 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC_TYPE;
405 }
406 
407 static __always_inline u8 kvm_vcpu_trap_get_fault_level(const struct kvm_vcpu *vcpu)
408 {
409 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC_LEVEL;
410 }
411 
412 static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu)
413 {
414 	switch (kvm_vcpu_trap_get_fault(vcpu)) {
415 	case ESR_ELx_FSC_EXTABT:
416 	case ESR_ELx_FSC_SEA_TTW0:
417 	case ESR_ELx_FSC_SEA_TTW1:
418 	case ESR_ELx_FSC_SEA_TTW2:
419 	case ESR_ELx_FSC_SEA_TTW3:
420 	case ESR_ELx_FSC_SECC:
421 	case ESR_ELx_FSC_SECC_TTW0:
422 	case ESR_ELx_FSC_SECC_TTW1:
423 	case ESR_ELx_FSC_SECC_TTW2:
424 	case ESR_ELx_FSC_SECC_TTW3:
425 		return true;
426 	default:
427 		return false;
428 	}
429 }
430 
431 static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu)
432 {
433 	u64 esr = kvm_vcpu_get_esr(vcpu);
434 	return ESR_ELx_SYS64_ISS_RT(esr);
435 }
436 
437 static inline bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
438 {
439 	if (kvm_vcpu_abt_iss1tw(vcpu)) {
440 		/*
441 		 * Only a permission fault on a S1PTW should be
442 		 * considered as a write. Otherwise, page tables baked
443 		 * in a read-only memslot will result in an exception
444 		 * being delivered in the guest.
445 		 *
446 		 * The drawback is that we end-up faulting twice if the
447 		 * guest is using any of HW AF/DB: a translation fault
448 		 * to map the page containing the PT (read only at
449 		 * first), then a permission fault to allow the flags
450 		 * to be set.
451 		 */
452 		switch (kvm_vcpu_trap_get_fault_type(vcpu)) {
453 		case ESR_ELx_FSC_PERM:
454 			return true;
455 		default:
456 			return false;
457 		}
458 	}
459 
460 	if (kvm_vcpu_trap_is_iabt(vcpu))
461 		return false;
462 
463 	return kvm_vcpu_dabt_iswrite(vcpu);
464 }
465 
466 static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
467 {
468 	return vcpu_read_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK;
469 }
470 
471 static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu)
472 {
473 	if (vcpu_mode_is_32bit(vcpu)) {
474 		*vcpu_cpsr(vcpu) |= PSR_AA32_E_BIT;
475 	} else {
476 		u64 sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
477 		sctlr |= SCTLR_ELx_EE;
478 		vcpu_write_sys_reg(vcpu, sctlr, SCTLR_EL1);
479 	}
480 }
481 
482 static inline bool kvm_vcpu_is_be(struct kvm_vcpu *vcpu)
483 {
484 	if (vcpu_mode_is_32bit(vcpu))
485 		return !!(*vcpu_cpsr(vcpu) & PSR_AA32_E_BIT);
486 
487 	if (vcpu_mode_priv(vcpu))
488 		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_EE);
489 	else
490 		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_EL1_E0E);
491 }
492 
493 static inline unsigned long vcpu_data_guest_to_host(struct kvm_vcpu *vcpu,
494 						    unsigned long data,
495 						    unsigned int len)
496 {
497 	if (kvm_vcpu_is_be(vcpu)) {
498 		switch (len) {
499 		case 1:
500 			return data & 0xff;
501 		case 2:
502 			return be16_to_cpu(data & 0xffff);
503 		case 4:
504 			return be32_to_cpu(data & 0xffffffff);
505 		default:
506 			return be64_to_cpu(data);
507 		}
508 	} else {
509 		switch (len) {
510 		case 1:
511 			return data & 0xff;
512 		case 2:
513 			return le16_to_cpu(data & 0xffff);
514 		case 4:
515 			return le32_to_cpu(data & 0xffffffff);
516 		default:
517 			return le64_to_cpu(data);
518 		}
519 	}
520 
521 	return data;		/* Leave LE untouched */
522 }
523 
524 static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu,
525 						    unsigned long data,
526 						    unsigned int len)
527 {
528 	if (kvm_vcpu_is_be(vcpu)) {
529 		switch (len) {
530 		case 1:
531 			return data & 0xff;
532 		case 2:
533 			return cpu_to_be16(data & 0xffff);
534 		case 4:
535 			return cpu_to_be32(data & 0xffffffff);
536 		default:
537 			return cpu_to_be64(data);
538 		}
539 	} else {
540 		switch (len) {
541 		case 1:
542 			return data & 0xff;
543 		case 2:
544 			return cpu_to_le16(data & 0xffff);
545 		case 4:
546 			return cpu_to_le32(data & 0xffffffff);
547 		default:
548 			return cpu_to_le64(data);
549 		}
550 	}
551 
552 	return data;		/* Leave LE untouched */
553 }
554 
555 static __always_inline void kvm_incr_pc(struct kvm_vcpu *vcpu)
556 {
557 	WARN_ON(vcpu_get_flag(vcpu, PENDING_EXCEPTION));
558 	vcpu_set_flag(vcpu, INCREMENT_PC);
559 }
560 
561 #define kvm_pend_exception(v, e)					\
562 	do {								\
563 		WARN_ON(vcpu_get_flag((v), INCREMENT_PC));		\
564 		vcpu_set_flag((v), PENDING_EXCEPTION);			\
565 		vcpu_set_flag((v), e);					\
566 	} while (0)
567 
568 
569 static inline bool vcpu_has_feature(struct kvm_vcpu *vcpu, int feature)
570 {
571 	return test_bit(feature, vcpu->arch.features);
572 }
573 
574 static __always_inline void kvm_write_cptr_el2(u64 val)
575 {
576 	if (has_vhe() || has_hvhe())
577 		write_sysreg(val, cpacr_el1);
578 	else
579 		write_sysreg(val, cptr_el2);
580 }
581 
582 static __always_inline u64 kvm_get_reset_cptr_el2(struct kvm_vcpu *vcpu)
583 {
584 	u64 val;
585 
586 	if (has_vhe()) {
587 		val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |
588 		       CPACR_EL1_ZEN_EL1EN);
589 		if (cpus_have_final_cap(ARM64_SME))
590 			val |= CPACR_EL1_SMEN_EL1EN;
591 	} else if (has_hvhe()) {
592 		val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN);
593 
594 		if (!vcpu_has_sve(vcpu) ||
595 		    (vcpu->arch.fp_state != FP_STATE_GUEST_OWNED))
596 			val |= CPACR_EL1_ZEN_EL1EN | CPACR_EL1_ZEN_EL0EN;
597 		if (cpus_have_final_cap(ARM64_SME))
598 			val |= CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN;
599 	} else {
600 		val = CPTR_NVHE_EL2_RES1;
601 
602 		if (vcpu_has_sve(vcpu) &&
603 		    (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED))
604 			val |= CPTR_EL2_TZ;
605 		if (cpus_have_final_cap(ARM64_SME))
606 			val &= ~CPTR_EL2_TSM;
607 	}
608 
609 	return val;
610 }
611 
612 static __always_inline void kvm_reset_cptr_el2(struct kvm_vcpu *vcpu)
613 {
614 	u64 val = kvm_get_reset_cptr_el2(vcpu);
615 
616 	kvm_write_cptr_el2(val);
617 }
618 #endif /* __ARM64_KVM_EMULATE_H__ */
619