1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/kvm_emulate.h 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_EMULATE_H__ 12 #define __ARM64_KVM_EMULATE_H__ 13 14 #include <linux/kvm_host.h> 15 16 #include <asm/debug-monitors.h> 17 #include <asm/esr.h> 18 #include <asm/kvm_arm.h> 19 #include <asm/kvm_hyp.h> 20 #include <asm/ptrace.h> 21 #include <asm/cputype.h> 22 #include <asm/virt.h> 23 24 #define CURRENT_EL_SP_EL0_VECTOR 0x0 25 #define CURRENT_EL_SP_ELx_VECTOR 0x200 26 #define LOWER_EL_AArch64_VECTOR 0x400 27 #define LOWER_EL_AArch32_VECTOR 0x600 28 29 enum exception_type { 30 except_type_sync = 0, 31 except_type_irq = 0x80, 32 except_type_fiq = 0x100, 33 except_type_serror = 0x180, 34 }; 35 36 #define kvm_exception_type_names \ 37 { except_type_sync, "SYNC" }, \ 38 { except_type_irq, "IRQ" }, \ 39 { except_type_fiq, "FIQ" }, \ 40 { except_type_serror, "SERROR" } 41 42 bool kvm_condition_valid32(const struct kvm_vcpu *vcpu); 43 void kvm_skip_instr32(struct kvm_vcpu *vcpu); 44 45 void kvm_inject_undefined(struct kvm_vcpu *vcpu); 46 void kvm_inject_vabt(struct kvm_vcpu *vcpu); 47 void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr); 48 void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr); 49 void kvm_inject_size_fault(struct kvm_vcpu *vcpu); 50 51 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu); 52 53 void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu); 54 int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2); 55 int kvm_inject_nested_irq(struct kvm_vcpu *vcpu); 56 57 #if defined(__KVM_VHE_HYPERVISOR__) || defined(__KVM_NVHE_HYPERVISOR__) 58 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu) 59 { 60 return !(vcpu->arch.hcr_el2 & HCR_RW); 61 } 62 #else 63 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu) 64 { 65 return test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features); 66 } 67 #endif 68 69 static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu) 70 { 71 vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS; 72 if (has_vhe() || has_hvhe()) 73 vcpu->arch.hcr_el2 |= HCR_E2H; 74 if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) { 75 /* route synchronous external abort exceptions to EL2 */ 76 vcpu->arch.hcr_el2 |= HCR_TEA; 77 /* trap error record accesses */ 78 vcpu->arch.hcr_el2 |= HCR_TERR; 79 } 80 81 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 82 vcpu->arch.hcr_el2 |= HCR_FWB; 83 } else { 84 /* 85 * For non-FWB CPUs, we trap VM ops (HCR_EL2.TVM) until M+C 86 * get set in SCTLR_EL1 such that we can detect when the guest 87 * MMU gets turned on and do the necessary cache maintenance 88 * then. 89 */ 90 vcpu->arch.hcr_el2 |= HCR_TVM; 91 } 92 93 if (cpus_have_final_cap(ARM64_HAS_EVT) && 94 !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE)) 95 vcpu->arch.hcr_el2 |= HCR_TID4; 96 else 97 vcpu->arch.hcr_el2 |= HCR_TID2; 98 99 if (vcpu_el1_is_32bit(vcpu)) 100 vcpu->arch.hcr_el2 &= ~HCR_RW; 101 102 if (kvm_has_mte(vcpu->kvm)) 103 vcpu->arch.hcr_el2 |= HCR_ATA; 104 } 105 106 static inline unsigned long *vcpu_hcr(struct kvm_vcpu *vcpu) 107 { 108 return (unsigned long *)&vcpu->arch.hcr_el2; 109 } 110 111 static inline void vcpu_clear_wfx_traps(struct kvm_vcpu *vcpu) 112 { 113 vcpu->arch.hcr_el2 &= ~HCR_TWE; 114 if (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 115 vcpu->kvm->arch.vgic.nassgireq) 116 vcpu->arch.hcr_el2 &= ~HCR_TWI; 117 else 118 vcpu->arch.hcr_el2 |= HCR_TWI; 119 } 120 121 static inline void vcpu_set_wfx_traps(struct kvm_vcpu *vcpu) 122 { 123 vcpu->arch.hcr_el2 |= HCR_TWE; 124 vcpu->arch.hcr_el2 |= HCR_TWI; 125 } 126 127 static inline void vcpu_ptrauth_enable(struct kvm_vcpu *vcpu) 128 { 129 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 130 } 131 132 static inline void vcpu_ptrauth_disable(struct kvm_vcpu *vcpu) 133 { 134 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 135 } 136 137 static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu) 138 { 139 return vcpu->arch.vsesr_el2; 140 } 141 142 static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr) 143 { 144 vcpu->arch.vsesr_el2 = vsesr; 145 } 146 147 static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu) 148 { 149 return (unsigned long *)&vcpu_gp_regs(vcpu)->pc; 150 } 151 152 static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu) 153 { 154 return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate; 155 } 156 157 static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu) 158 { 159 return !!(*vcpu_cpsr(vcpu) & PSR_MODE32_BIT); 160 } 161 162 static __always_inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu) 163 { 164 if (vcpu_mode_is_32bit(vcpu)) 165 return kvm_condition_valid32(vcpu); 166 167 return true; 168 } 169 170 static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu) 171 { 172 *vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT; 173 } 174 175 /* 176 * vcpu_get_reg and vcpu_set_reg should always be passed a register number 177 * coming from a read of ESR_EL2. Otherwise, it may give the wrong result on 178 * AArch32 with banked registers. 179 */ 180 static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu, 181 u8 reg_num) 182 { 183 return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num]; 184 } 185 186 static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num, 187 unsigned long val) 188 { 189 if (reg_num != 31) 190 vcpu_gp_regs(vcpu)->regs[reg_num] = val; 191 } 192 193 static inline bool vcpu_is_el2_ctxt(const struct kvm_cpu_context *ctxt) 194 { 195 switch (ctxt->regs.pstate & (PSR_MODE32_BIT | PSR_MODE_MASK)) { 196 case PSR_MODE_EL2h: 197 case PSR_MODE_EL2t: 198 return true; 199 default: 200 return false; 201 } 202 } 203 204 static inline bool vcpu_is_el2(const struct kvm_vcpu *vcpu) 205 { 206 return vcpu_is_el2_ctxt(&vcpu->arch.ctxt); 207 } 208 209 static inline bool __vcpu_el2_e2h_is_set(const struct kvm_cpu_context *ctxt) 210 { 211 return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_E2H; 212 } 213 214 static inline bool vcpu_el2_e2h_is_set(const struct kvm_vcpu *vcpu) 215 { 216 return __vcpu_el2_e2h_is_set(&vcpu->arch.ctxt); 217 } 218 219 static inline bool __vcpu_el2_tge_is_set(const struct kvm_cpu_context *ctxt) 220 { 221 return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_TGE; 222 } 223 224 static inline bool vcpu_el2_tge_is_set(const struct kvm_vcpu *vcpu) 225 { 226 return __vcpu_el2_tge_is_set(&vcpu->arch.ctxt); 227 } 228 229 static inline bool __is_hyp_ctxt(const struct kvm_cpu_context *ctxt) 230 { 231 /* 232 * We are in a hypervisor context if the vcpu mode is EL2 or 233 * E2H and TGE bits are set. The latter means we are in the user space 234 * of the VHE kernel. ARMv8.1 ARM describes this as 'InHost' 235 * 236 * Note that the HCR_EL2.{E2H,TGE}={0,1} isn't really handled in the 237 * rest of the KVM code, and will result in a misbehaving guest. 238 */ 239 return vcpu_is_el2_ctxt(ctxt) || 240 (__vcpu_el2_e2h_is_set(ctxt) && __vcpu_el2_tge_is_set(ctxt)) || 241 __vcpu_el2_tge_is_set(ctxt); 242 } 243 244 static inline bool is_hyp_ctxt(const struct kvm_vcpu *vcpu) 245 { 246 return __is_hyp_ctxt(&vcpu->arch.ctxt); 247 } 248 249 /* 250 * The layout of SPSR for an AArch32 state is different when observed from an 251 * AArch64 SPSR_ELx or an AArch32 SPSR_*. This function generates the AArch32 252 * view given an AArch64 view. 253 * 254 * In ARM DDI 0487E.a see: 255 * 256 * - The AArch64 view (SPSR_EL2) in section C5.2.18, page C5-426 257 * - The AArch32 view (SPSR_abt) in section G8.2.126, page G8-6256 258 * - The AArch32 view (SPSR_und) in section G8.2.132, page G8-6280 259 * 260 * Which show the following differences: 261 * 262 * | Bit | AA64 | AA32 | Notes | 263 * +-----+------+------+-----------------------------| 264 * | 24 | DIT | J | J is RES0 in ARMv8 | 265 * | 21 | SS | DIT | SS doesn't exist in AArch32 | 266 * 267 * ... and all other bits are (currently) common. 268 */ 269 static inline unsigned long host_spsr_to_spsr32(unsigned long spsr) 270 { 271 const unsigned long overlap = BIT(24) | BIT(21); 272 unsigned long dit = !!(spsr & PSR_AA32_DIT_BIT); 273 274 spsr &= ~overlap; 275 276 spsr |= dit << 21; 277 278 return spsr; 279 } 280 281 static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu) 282 { 283 u32 mode; 284 285 if (vcpu_mode_is_32bit(vcpu)) { 286 mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK; 287 return mode > PSR_AA32_MODE_USR; 288 } 289 290 mode = *vcpu_cpsr(vcpu) & PSR_MODE_MASK; 291 292 return mode != PSR_MODE_EL0t; 293 } 294 295 static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu) 296 { 297 return vcpu->arch.fault.esr_el2; 298 } 299 300 static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu) 301 { 302 u64 esr = kvm_vcpu_get_esr(vcpu); 303 304 if (esr & ESR_ELx_CV) 305 return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT; 306 307 return -1; 308 } 309 310 static __always_inline unsigned long kvm_vcpu_get_hfar(const struct kvm_vcpu *vcpu) 311 { 312 return vcpu->arch.fault.far_el2; 313 } 314 315 static __always_inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu) 316 { 317 return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8; 318 } 319 320 static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu) 321 { 322 return vcpu->arch.fault.disr_el1; 323 } 324 325 static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu) 326 { 327 return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK; 328 } 329 330 static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu) 331 { 332 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV); 333 } 334 335 static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu) 336 { 337 return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC); 338 } 339 340 static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu) 341 { 342 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE); 343 } 344 345 static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu) 346 { 347 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF); 348 } 349 350 static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu) 351 { 352 return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT; 353 } 354 355 static __always_inline bool kvm_vcpu_abt_iss1tw(const struct kvm_vcpu *vcpu) 356 { 357 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW); 358 } 359 360 /* Always check for S1PTW *before* using this. */ 361 static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu) 362 { 363 return kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR; 364 } 365 366 static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu) 367 { 368 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM); 369 } 370 371 static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu) 372 { 373 return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT); 374 } 375 376 /* This one is not specific to Data Abort */ 377 static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu) 378 { 379 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL); 380 } 381 382 static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu) 383 { 384 return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu)); 385 } 386 387 static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu) 388 { 389 return kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_IABT_LOW; 390 } 391 392 static inline bool kvm_vcpu_trap_is_exec_fault(const struct kvm_vcpu *vcpu) 393 { 394 return kvm_vcpu_trap_is_iabt(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu); 395 } 396 397 static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu) 398 { 399 return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC; 400 } 401 402 static __always_inline u8 kvm_vcpu_trap_get_fault_type(const struct kvm_vcpu *vcpu) 403 { 404 return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC_TYPE; 405 } 406 407 static __always_inline u8 kvm_vcpu_trap_get_fault_level(const struct kvm_vcpu *vcpu) 408 { 409 return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC_LEVEL; 410 } 411 412 static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu) 413 { 414 switch (kvm_vcpu_trap_get_fault(vcpu)) { 415 case ESR_ELx_FSC_EXTABT: 416 case ESR_ELx_FSC_SEA_TTW0: 417 case ESR_ELx_FSC_SEA_TTW1: 418 case ESR_ELx_FSC_SEA_TTW2: 419 case ESR_ELx_FSC_SEA_TTW3: 420 case ESR_ELx_FSC_SECC: 421 case ESR_ELx_FSC_SECC_TTW0: 422 case ESR_ELx_FSC_SECC_TTW1: 423 case ESR_ELx_FSC_SECC_TTW2: 424 case ESR_ELx_FSC_SECC_TTW3: 425 return true; 426 default: 427 return false; 428 } 429 } 430 431 static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu) 432 { 433 u64 esr = kvm_vcpu_get_esr(vcpu); 434 return ESR_ELx_SYS64_ISS_RT(esr); 435 } 436 437 static inline bool kvm_is_write_fault(struct kvm_vcpu *vcpu) 438 { 439 if (kvm_vcpu_abt_iss1tw(vcpu)) { 440 /* 441 * Only a permission fault on a S1PTW should be 442 * considered as a write. Otherwise, page tables baked 443 * in a read-only memslot will result in an exception 444 * being delivered in the guest. 445 * 446 * The drawback is that we end-up faulting twice if the 447 * guest is using any of HW AF/DB: a translation fault 448 * to map the page containing the PT (read only at 449 * first), then a permission fault to allow the flags 450 * to be set. 451 */ 452 switch (kvm_vcpu_trap_get_fault_type(vcpu)) { 453 case ESR_ELx_FSC_PERM: 454 return true; 455 default: 456 return false; 457 } 458 } 459 460 if (kvm_vcpu_trap_is_iabt(vcpu)) 461 return false; 462 463 return kvm_vcpu_dabt_iswrite(vcpu); 464 } 465 466 static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu) 467 { 468 return vcpu_read_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK; 469 } 470 471 static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu) 472 { 473 if (vcpu_mode_is_32bit(vcpu)) { 474 *vcpu_cpsr(vcpu) |= PSR_AA32_E_BIT; 475 } else { 476 u64 sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1); 477 sctlr |= SCTLR_ELx_EE; 478 vcpu_write_sys_reg(vcpu, sctlr, SCTLR_EL1); 479 } 480 } 481 482 static inline bool kvm_vcpu_is_be(struct kvm_vcpu *vcpu) 483 { 484 if (vcpu_mode_is_32bit(vcpu)) 485 return !!(*vcpu_cpsr(vcpu) & PSR_AA32_E_BIT); 486 487 if (vcpu_mode_priv(vcpu)) 488 return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_EE); 489 else 490 return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_EL1_E0E); 491 } 492 493 static inline unsigned long vcpu_data_guest_to_host(struct kvm_vcpu *vcpu, 494 unsigned long data, 495 unsigned int len) 496 { 497 if (kvm_vcpu_is_be(vcpu)) { 498 switch (len) { 499 case 1: 500 return data & 0xff; 501 case 2: 502 return be16_to_cpu(data & 0xffff); 503 case 4: 504 return be32_to_cpu(data & 0xffffffff); 505 default: 506 return be64_to_cpu(data); 507 } 508 } else { 509 switch (len) { 510 case 1: 511 return data & 0xff; 512 case 2: 513 return le16_to_cpu(data & 0xffff); 514 case 4: 515 return le32_to_cpu(data & 0xffffffff); 516 default: 517 return le64_to_cpu(data); 518 } 519 } 520 521 return data; /* Leave LE untouched */ 522 } 523 524 static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu, 525 unsigned long data, 526 unsigned int len) 527 { 528 if (kvm_vcpu_is_be(vcpu)) { 529 switch (len) { 530 case 1: 531 return data & 0xff; 532 case 2: 533 return cpu_to_be16(data & 0xffff); 534 case 4: 535 return cpu_to_be32(data & 0xffffffff); 536 default: 537 return cpu_to_be64(data); 538 } 539 } else { 540 switch (len) { 541 case 1: 542 return data & 0xff; 543 case 2: 544 return cpu_to_le16(data & 0xffff); 545 case 4: 546 return cpu_to_le32(data & 0xffffffff); 547 default: 548 return cpu_to_le64(data); 549 } 550 } 551 552 return data; /* Leave LE untouched */ 553 } 554 555 static __always_inline void kvm_incr_pc(struct kvm_vcpu *vcpu) 556 { 557 WARN_ON(vcpu_get_flag(vcpu, PENDING_EXCEPTION)); 558 vcpu_set_flag(vcpu, INCREMENT_PC); 559 } 560 561 #define kvm_pend_exception(v, e) \ 562 do { \ 563 WARN_ON(vcpu_get_flag((v), INCREMENT_PC)); \ 564 vcpu_set_flag((v), PENDING_EXCEPTION); \ 565 vcpu_set_flag((v), e); \ 566 } while (0) 567 568 569 static inline bool vcpu_has_feature(struct kvm_vcpu *vcpu, int feature) 570 { 571 return test_bit(feature, vcpu->arch.features); 572 } 573 574 static __always_inline void kvm_write_cptr_el2(u64 val) 575 { 576 if (has_vhe() || has_hvhe()) 577 write_sysreg(val, cpacr_el1); 578 else 579 write_sysreg(val, cptr_el2); 580 } 581 582 static __always_inline u64 kvm_get_reset_cptr_el2(struct kvm_vcpu *vcpu) 583 { 584 u64 val; 585 586 if (has_vhe()) { 587 val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN | 588 CPACR_EL1_ZEN_EL1EN); 589 if (cpus_have_final_cap(ARM64_SME)) 590 val |= CPACR_EL1_SMEN_EL1EN; 591 } else if (has_hvhe()) { 592 val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN); 593 594 if (!vcpu_has_sve(vcpu) || 595 (vcpu->arch.fp_state != FP_STATE_GUEST_OWNED)) 596 val |= CPACR_EL1_ZEN_EL1EN | CPACR_EL1_ZEN_EL0EN; 597 if (cpus_have_final_cap(ARM64_SME)) 598 val |= CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN; 599 } else { 600 val = CPTR_NVHE_EL2_RES1; 601 602 if (vcpu_has_sve(vcpu) && 603 (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)) 604 val |= CPTR_EL2_TZ; 605 if (cpus_have_final_cap(ARM64_SME)) 606 val &= ~CPTR_EL2_TSM; 607 } 608 609 return val; 610 } 611 612 static __always_inline void kvm_reset_cptr_el2(struct kvm_vcpu *vcpu) 613 { 614 u64 val = kvm_get_reset_cptr_el2(vcpu); 615 616 kvm_write_cptr_el2(val); 617 } 618 #endif /* __ARM64_KVM_EMULATE_H__ */ 619