xref: /openbmc/linux/arch/arm64/include/asm/kvm_arm.h (revision 62e59c4e)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __ARM64_KVM_ARM_H__
19 #define __ARM64_KVM_ARM_H__
20 
21 #include <asm/esr.h>
22 #include <asm/memory.h>
23 #include <asm/types.h>
24 
25 /* Hyp Configuration Register (HCR) bits */
26 #define HCR_FWB		(UL(1) << 46)
27 #define HCR_API		(UL(1) << 41)
28 #define HCR_APK		(UL(1) << 40)
29 #define HCR_TEA		(UL(1) << 37)
30 #define HCR_TERR	(UL(1) << 36)
31 #define HCR_TLOR	(UL(1) << 35)
32 #define HCR_E2H		(UL(1) << 34)
33 #define HCR_ID		(UL(1) << 33)
34 #define HCR_CD		(UL(1) << 32)
35 #define HCR_RW_SHIFT	31
36 #define HCR_RW		(UL(1) << HCR_RW_SHIFT)
37 #define HCR_TRVM	(UL(1) << 30)
38 #define HCR_HCD		(UL(1) << 29)
39 #define HCR_TDZ		(UL(1) << 28)
40 #define HCR_TGE		(UL(1) << 27)
41 #define HCR_TVM		(UL(1) << 26)
42 #define HCR_TTLB	(UL(1) << 25)
43 #define HCR_TPU		(UL(1) << 24)
44 #define HCR_TPC		(UL(1) << 23)
45 #define HCR_TSW		(UL(1) << 22)
46 #define HCR_TAC		(UL(1) << 21)
47 #define HCR_TIDCP	(UL(1) << 20)
48 #define HCR_TSC		(UL(1) << 19)
49 #define HCR_TID3	(UL(1) << 18)
50 #define HCR_TID2	(UL(1) << 17)
51 #define HCR_TID1	(UL(1) << 16)
52 #define HCR_TID0	(UL(1) << 15)
53 #define HCR_TWE		(UL(1) << 14)
54 #define HCR_TWI		(UL(1) << 13)
55 #define HCR_DC		(UL(1) << 12)
56 #define HCR_BSU		(3 << 10)
57 #define HCR_BSU_IS	(UL(1) << 10)
58 #define HCR_FB		(UL(1) << 9)
59 #define HCR_VSE		(UL(1) << 8)
60 #define HCR_VI		(UL(1) << 7)
61 #define HCR_VF		(UL(1) << 6)
62 #define HCR_AMO		(UL(1) << 5)
63 #define HCR_IMO		(UL(1) << 4)
64 #define HCR_FMO		(UL(1) << 3)
65 #define HCR_PTW		(UL(1) << 2)
66 #define HCR_SWIO	(UL(1) << 1)
67 #define HCR_VM		(UL(1) << 0)
68 
69 /*
70  * The bits we set in HCR:
71  * TLOR:	Trap LORegion register accesses
72  * RW:		64bit by default, can be overridden for 32bit VMs
73  * TAC:		Trap ACTLR
74  * TSC:		Trap SMC
75  * TVM:		Trap VM ops (until M+C set in SCTLR_EL1)
76  * TSW:		Trap cache operations by set/way
77  * TWE:		Trap WFE
78  * TWI:		Trap WFI
79  * TIDCP:	Trap L2CTLR/L2ECTLR
80  * BSU_IS:	Upgrade barriers to the inner shareable domain
81  * FB:		Force broadcast of all maintainance operations
82  * AMO:		Override CPSR.A and enable signaling with VA
83  * IMO:		Override CPSR.I and enable signaling with VI
84  * FMO:		Override CPSR.F and enable signaling with VF
85  * SWIO:	Turn set/way invalidates into set/way clean+invalidate
86  */
87 #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
88 			 HCR_TVM | HCR_BSU_IS | HCR_FB | HCR_TAC | \
89 			 HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
90 			 HCR_FMO | HCR_IMO)
91 #define HCR_VIRT_EXCP_MASK (HCR_VSE | HCR_VI | HCR_VF)
92 #define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK)
93 #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H)
94 
95 /* TCR_EL2 Registers bits */
96 #define TCR_EL2_RES1		((1 << 31) | (1 << 23))
97 #define TCR_EL2_TBI		(1 << 20)
98 #define TCR_EL2_PS_SHIFT	16
99 #define TCR_EL2_PS_MASK		(7 << TCR_EL2_PS_SHIFT)
100 #define TCR_EL2_PS_40B		(2 << TCR_EL2_PS_SHIFT)
101 #define TCR_EL2_TG0_MASK	TCR_TG0_MASK
102 #define TCR_EL2_SH0_MASK	TCR_SH0_MASK
103 #define TCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
104 #define TCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
105 #define TCR_EL2_T0SZ_MASK	0x3f
106 #define TCR_EL2_MASK	(TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
107 			 TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK)
108 
109 /* VTCR_EL2 Registers bits */
110 #define VTCR_EL2_RES1		(1U << 31)
111 #define VTCR_EL2_HD		(1 << 22)
112 #define VTCR_EL2_HA		(1 << 21)
113 #define VTCR_EL2_PS_SHIFT	TCR_EL2_PS_SHIFT
114 #define VTCR_EL2_PS_MASK	TCR_EL2_PS_MASK
115 #define VTCR_EL2_TG0_MASK	TCR_TG0_MASK
116 #define VTCR_EL2_TG0_4K		TCR_TG0_4K
117 #define VTCR_EL2_TG0_16K	TCR_TG0_16K
118 #define VTCR_EL2_TG0_64K	TCR_TG0_64K
119 #define VTCR_EL2_SH0_MASK	TCR_SH0_MASK
120 #define VTCR_EL2_SH0_INNER	TCR_SH0_INNER
121 #define VTCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
122 #define VTCR_EL2_ORGN0_WBWA	TCR_ORGN0_WBWA
123 #define VTCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
124 #define VTCR_EL2_IRGN0_WBWA	TCR_IRGN0_WBWA
125 #define VTCR_EL2_SL0_SHIFT	6
126 #define VTCR_EL2_SL0_MASK	(3 << VTCR_EL2_SL0_SHIFT)
127 #define VTCR_EL2_T0SZ_MASK	0x3f
128 #define VTCR_EL2_VS_SHIFT	19
129 #define VTCR_EL2_VS_8BIT	(0 << VTCR_EL2_VS_SHIFT)
130 #define VTCR_EL2_VS_16BIT	(1 << VTCR_EL2_VS_SHIFT)
131 
132 #define VTCR_EL2_T0SZ(x)	TCR_T0SZ(x)
133 
134 /*
135  * We configure the Stage-2 page tables to always restrict the IPA space to be
136  * 40 bits wide (T0SZ = 24).  Systems with a PARange smaller than 40 bits are
137  * not known to exist and will break with this configuration.
138  *
139  * The VTCR_EL2 is configured per VM and is initialised in kvm_arm_setup_stage2().
140  *
141  * Note that when using 4K pages, we concatenate two first level page tables
142  * together. With 16K pages, we concatenate 16 first level page tables.
143  *
144  */
145 
146 #define VTCR_EL2_COMMON_BITS	(VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
147 				 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
148 
149 /*
150  * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
151  * Interestingly, it depends on the page size.
152  * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
153  *
154  *	-----------------------------------------
155  *	| Entry level		|  4K  | 16K/64K |
156  *	------------------------------------------
157  *	| Level: 0		|  2   |   -     |
158  *	------------------------------------------
159  *	| Level: 1		|  1   |   2     |
160  *	------------------------------------------
161  *	| Level: 2		|  0   |   1     |
162  *	------------------------------------------
163  *	| Level: 3		|  -   |   0     |
164  *	------------------------------------------
165  *
166  * The table roughly translates to :
167  *
168  *	SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
169  *
170  * Where TGRAN_SL0_BASE is a magic number depending on the page size:
171  * 	TGRAN_SL0_BASE(4K) = 2
172  *	TGRAN_SL0_BASE(16K) = 3
173  *	TGRAN_SL0_BASE(64K) = 3
174  * provided we take care of ruling out the unsupported cases and
175  * Entry_Level = 4 - Number_of_levels.
176  *
177  */
178 #ifdef CONFIG_ARM64_64K_PAGES
179 
180 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_64K
181 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
182 
183 #elif defined(CONFIG_ARM64_16K_PAGES)
184 
185 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_16K
186 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
187 
188 #else	/* 4K */
189 
190 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_4K
191 #define VTCR_EL2_TGRAN_SL0_BASE		2UL
192 
193 #endif
194 
195 #define VTCR_EL2_LVLS_TO_SL0(levels)	\
196 	((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
197 #define VTCR_EL2_SL0_TO_LVLS(sl0)	\
198 	((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
199 #define VTCR_EL2_LVLS(vtcr)		\
200 	VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
201 
202 #define VTCR_EL2_FLAGS			(VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
203 #define VTCR_EL2_IPA(vtcr)		(64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
204 
205 /*
206  * ARM VMSAv8-64 defines an algorithm for finding the translation table
207  * descriptors in section D4.2.8 in ARM DDI 0487C.a.
208  *
209  * The algorithm defines the expectations on the translation table
210  * addresses for each level, based on PAGE_SIZE, entry level
211  * and the translation table size (T0SZ). The variable "x" in the
212  * algorithm determines the alignment of a table base address at a given
213  * level and thus determines the alignment of VTTBR:BADDR for stage2
214  * page table entry level.
215  * Since the number of bits resolved at the entry level could vary
216  * depending on the T0SZ, the value of "x" is defined based on a
217  * Magic constant for a given PAGE_SIZE and Entry Level. The
218  * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
219  * x = PAGE_SHIFT).
220  *
221  * The value of "x" for entry level is calculated as :
222  *    x = Magic_N - T0SZ
223  *
224  * where Magic_N is an integer depending on the page size and the entry
225  * level of the page table as below:
226  *
227  *	--------------------------------------------
228  *	| Entry level		|  4K    16K   64K |
229  *	--------------------------------------------
230  *	| Level: 0 (4 levels)	| 28   |  -  |  -  |
231  *	--------------------------------------------
232  *	| Level: 1 (3 levels)	| 37   | 31  | 25  |
233  *	--------------------------------------------
234  *	| Level: 2 (2 levels)	| 46   | 42  | 38  |
235  *	--------------------------------------------
236  *	| Level: 3 (1 level)	| -    | 53  | 51  |
237  *	--------------------------------------------
238  *
239  * We have a magic formula for the Magic_N below:
240  *
241  *  Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
242  *
243  * where Number_of_levels = (4 - Level). We are only interested in the
244  * value for Entry_Level for the stage2 page table.
245  *
246  * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
247  *
248  *	x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
249  *	  = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
250  *
251  * Here is one way to explain the Magic Formula:
252  *
253  *  x = log2(Size_of_Entry_Level_Table)
254  *
255  * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
256  * PAGE_SHIFT bits in the PTE, we have :
257  *
258  *  Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
259  *		     = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
260  *  where n = number of levels, and since each pointer is 8bytes, we have:
261  *
262  *  x = Bits_Entry_Level + 3
263  *    = IPA_SHIFT - (PAGE_SHIFT - 3) * n
264  *
265  * The only constraint here is that, we have to find the number of page table
266  * levels for a given IPA size (which we do, see stage2_pt_levels())
267  */
268 #define ARM64_VTTBR_X(ipa, levels)	((ipa) - ((levels) * (PAGE_SHIFT - 3)))
269 
270 #define VTTBR_CNP_BIT     (UL(1))
271 #define VTTBR_VMID_SHIFT  (UL(48))
272 #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
273 
274 /* Hyp System Trap Register */
275 #define HSTR_EL2_T(x)	(1 << x)
276 
277 /* Hyp Coprocessor Trap Register Shifts */
278 #define CPTR_EL2_TFP_SHIFT 10
279 
280 /* Hyp Coprocessor Trap Register */
281 #define CPTR_EL2_TCPAC	(1 << 31)
282 #define CPTR_EL2_TTA	(1 << 20)
283 #define CPTR_EL2_TFP	(1 << CPTR_EL2_TFP_SHIFT)
284 #define CPTR_EL2_TZ	(1 << 8)
285 #define CPTR_EL2_RES1	0x000032ff /* known RES1 bits in CPTR_EL2 */
286 #define CPTR_EL2_DEFAULT	CPTR_EL2_RES1
287 
288 /* Hyp Debug Configuration Register bits */
289 #define MDCR_EL2_TPMS		(1 << 14)
290 #define MDCR_EL2_E2PB_MASK	(UL(0x3))
291 #define MDCR_EL2_E2PB_SHIFT	(UL(12))
292 #define MDCR_EL2_TDRA		(1 << 11)
293 #define MDCR_EL2_TDOSA		(1 << 10)
294 #define MDCR_EL2_TDA		(1 << 9)
295 #define MDCR_EL2_TDE		(1 << 8)
296 #define MDCR_EL2_HPME		(1 << 7)
297 #define MDCR_EL2_TPM		(1 << 6)
298 #define MDCR_EL2_TPMCR		(1 << 5)
299 #define MDCR_EL2_HPMN_MASK	(0x1F)
300 
301 /* For compatibility with fault code shared with 32-bit */
302 #define FSC_FAULT	ESR_ELx_FSC_FAULT
303 #define FSC_ACCESS	ESR_ELx_FSC_ACCESS
304 #define FSC_PERM	ESR_ELx_FSC_PERM
305 #define FSC_SEA		ESR_ELx_FSC_EXTABT
306 #define FSC_SEA_TTW0	(0x14)
307 #define FSC_SEA_TTW1	(0x15)
308 #define FSC_SEA_TTW2	(0x16)
309 #define FSC_SEA_TTW3	(0x17)
310 #define FSC_SECC	(0x18)
311 #define FSC_SECC_TTW0	(0x1c)
312 #define FSC_SECC_TTW1	(0x1d)
313 #define FSC_SECC_TTW2	(0x1e)
314 #define FSC_SECC_TTW3	(0x1f)
315 
316 /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
317 #define HPFAR_MASK	(~UL(0xf))
318 /*
319  * We have
320  *	PAR	[PA_Shift - 1	: 12] = PA	[PA_Shift - 1 : 12]
321  *	HPFAR	[PA_Shift - 9	: 4]  = FIPA	[PA_Shift - 1 : 12]
322  */
323 #define PAR_TO_HPFAR(par)		\
324 	(((par) & GENMASK_ULL(PHYS_MASK_SHIFT - 1, 12)) >> 8)
325 
326 #define ECN(x) { ESR_ELx_EC_##x, #x }
327 
328 #define kvm_arm_exception_class \
329 	ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
330 	ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(CP14_64), ECN(SVC64), \
331 	ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(IMP_DEF), ECN(IABT_LOW), \
332 	ECN(IABT_CUR), ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
333 	ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
334 	ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
335 	ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
336 	ECN(BKPT32), ECN(VECTOR32), ECN(BRK64)
337 
338 #define CPACR_EL1_FPEN		(3 << 20)
339 #define CPACR_EL1_TTA		(1 << 28)
340 #define CPACR_EL1_DEFAULT	(CPACR_EL1_FPEN | CPACR_EL1_ZEN_EL1EN)
341 
342 #endif /* __ARM64_KVM_ARM_H__ */
343