xref: /openbmc/linux/arch/arm64/include/asm/kvm_arm.h (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_ARM_H__
8 #define __ARM64_KVM_ARM_H__
9 
10 #include <asm/esr.h>
11 #include <asm/memory.h>
12 #include <asm/types.h>
13 
14 /* Hyp Configuration Register (HCR) bits */
15 
16 #define HCR_TID5	(UL(1) << 58)
17 #define HCR_DCT		(UL(1) << 57)
18 #define HCR_ATA_SHIFT	56
19 #define HCR_ATA		(UL(1) << HCR_ATA_SHIFT)
20 #define HCR_AMVOFFEN	(UL(1) << 51)
21 #define HCR_FIEN	(UL(1) << 47)
22 #define HCR_FWB		(UL(1) << 46)
23 #define HCR_API		(UL(1) << 41)
24 #define HCR_APK		(UL(1) << 40)
25 #define HCR_TEA		(UL(1) << 37)
26 #define HCR_TERR	(UL(1) << 36)
27 #define HCR_TLOR	(UL(1) << 35)
28 #define HCR_E2H		(UL(1) << 34)
29 #define HCR_ID		(UL(1) << 33)
30 #define HCR_CD		(UL(1) << 32)
31 #define HCR_RW_SHIFT	31
32 #define HCR_RW		(UL(1) << HCR_RW_SHIFT)
33 #define HCR_TRVM	(UL(1) << 30)
34 #define HCR_HCD		(UL(1) << 29)
35 #define HCR_TDZ		(UL(1) << 28)
36 #define HCR_TGE		(UL(1) << 27)
37 #define HCR_TVM		(UL(1) << 26)
38 #define HCR_TTLB	(UL(1) << 25)
39 #define HCR_TPU		(UL(1) << 24)
40 #define HCR_TPC		(UL(1) << 23) /* HCR_TPCP if FEAT_DPB */
41 #define HCR_TSW		(UL(1) << 22)
42 #define HCR_TACR	(UL(1) << 21)
43 #define HCR_TIDCP	(UL(1) << 20)
44 #define HCR_TSC		(UL(1) << 19)
45 #define HCR_TID3	(UL(1) << 18)
46 #define HCR_TID2	(UL(1) << 17)
47 #define HCR_TID1	(UL(1) << 16)
48 #define HCR_TID0	(UL(1) << 15)
49 #define HCR_TWE		(UL(1) << 14)
50 #define HCR_TWI		(UL(1) << 13)
51 #define HCR_DC		(UL(1) << 12)
52 #define HCR_BSU		(3 << 10)
53 #define HCR_BSU_IS	(UL(1) << 10)
54 #define HCR_FB		(UL(1) << 9)
55 #define HCR_VSE		(UL(1) << 8)
56 #define HCR_VI		(UL(1) << 7)
57 #define HCR_VF		(UL(1) << 6)
58 #define HCR_AMO		(UL(1) << 5)
59 #define HCR_IMO		(UL(1) << 4)
60 #define HCR_FMO		(UL(1) << 3)
61 #define HCR_PTW		(UL(1) << 2)
62 #define HCR_SWIO	(UL(1) << 1)
63 #define HCR_VM		(UL(1) << 0)
64 #define HCR_RES0	((UL(1) << 48) | (UL(1) << 39))
65 
66 /*
67  * The bits we set in HCR:
68  * TLOR:	Trap LORegion register accesses
69  * RW:		64bit by default, can be overridden for 32bit VMs
70  * TACR:	Trap ACTLR
71  * TSC:		Trap SMC
72  * TSW:		Trap cache operations by set/way
73  * TWE:		Trap WFE
74  * TWI:		Trap WFI
75  * TIDCP:	Trap L2CTLR/L2ECTLR
76  * BSU_IS:	Upgrade barriers to the inner shareable domain
77  * FB:		Force broadcast of all maintenance operations
78  * AMO:		Override CPSR.A and enable signaling with VA
79  * IMO:		Override CPSR.I and enable signaling with VI
80  * FMO:		Override CPSR.F and enable signaling with VF
81  * SWIO:	Turn set/way invalidates into set/way clean+invalidate
82  * PTW:		Take a stage2 fault if a stage1 walk steps in device memory
83  */
84 #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
85 			 HCR_BSU_IS | HCR_FB | HCR_TACR | \
86 			 HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
87 			 HCR_FMO | HCR_IMO | HCR_PTW )
88 #define HCR_VIRT_EXCP_MASK (HCR_VSE | HCR_VI | HCR_VF)
89 #define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA)
90 #define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC)
91 #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H)
92 
93 /* TCR_EL2 Registers bits */
94 #define TCR_EL2_RES1		((1U << 31) | (1 << 23))
95 #define TCR_EL2_TBI		(1 << 20)
96 #define TCR_EL2_PS_SHIFT	16
97 #define TCR_EL2_PS_MASK		(7 << TCR_EL2_PS_SHIFT)
98 #define TCR_EL2_PS_40B		(2 << TCR_EL2_PS_SHIFT)
99 #define TCR_EL2_TG0_MASK	TCR_TG0_MASK
100 #define TCR_EL2_SH0_MASK	TCR_SH0_MASK
101 #define TCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
102 #define TCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
103 #define TCR_EL2_T0SZ_MASK	0x3f
104 #define TCR_EL2_MASK	(TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
105 			 TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK)
106 
107 /* VTCR_EL2 Registers bits */
108 #define VTCR_EL2_RES1		(1U << 31)
109 #define VTCR_EL2_HD		(1 << 22)
110 #define VTCR_EL2_HA		(1 << 21)
111 #define VTCR_EL2_PS_SHIFT	TCR_EL2_PS_SHIFT
112 #define VTCR_EL2_PS_MASK	TCR_EL2_PS_MASK
113 #define VTCR_EL2_TG0_MASK	TCR_TG0_MASK
114 #define VTCR_EL2_TG0_4K		TCR_TG0_4K
115 #define VTCR_EL2_TG0_16K	TCR_TG0_16K
116 #define VTCR_EL2_TG0_64K	TCR_TG0_64K
117 #define VTCR_EL2_SH0_MASK	TCR_SH0_MASK
118 #define VTCR_EL2_SH0_INNER	TCR_SH0_INNER
119 #define VTCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
120 #define VTCR_EL2_ORGN0_WBWA	TCR_ORGN0_WBWA
121 #define VTCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
122 #define VTCR_EL2_IRGN0_WBWA	TCR_IRGN0_WBWA
123 #define VTCR_EL2_SL0_SHIFT	6
124 #define VTCR_EL2_SL0_MASK	(3 << VTCR_EL2_SL0_SHIFT)
125 #define VTCR_EL2_T0SZ_MASK	0x3f
126 #define VTCR_EL2_VS_SHIFT	19
127 #define VTCR_EL2_VS_8BIT	(0 << VTCR_EL2_VS_SHIFT)
128 #define VTCR_EL2_VS_16BIT	(1 << VTCR_EL2_VS_SHIFT)
129 
130 #define VTCR_EL2_T0SZ(x)	TCR_T0SZ(x)
131 
132 /*
133  * We configure the Stage-2 page tables to always restrict the IPA space to be
134  * 40 bits wide (T0SZ = 24).  Systems with a PARange smaller than 40 bits are
135  * not known to exist and will break with this configuration.
136  *
137  * The VTCR_EL2 is configured per VM and is initialised in kvm_arm_setup_stage2().
138  *
139  * Note that when using 4K pages, we concatenate two first level page tables
140  * together. With 16K pages, we concatenate 16 first level page tables.
141  *
142  */
143 
144 #define VTCR_EL2_COMMON_BITS	(VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
145 				 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
146 
147 /*
148  * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
149  * Interestingly, it depends on the page size.
150  * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
151  *
152  *	-----------------------------------------
153  *	| Entry level		|  4K  | 16K/64K |
154  *	------------------------------------------
155  *	| Level: 0		|  2   |   -     |
156  *	------------------------------------------
157  *	| Level: 1		|  1   |   2     |
158  *	------------------------------------------
159  *	| Level: 2		|  0   |   1     |
160  *	------------------------------------------
161  *	| Level: 3		|  -   |   0     |
162  *	------------------------------------------
163  *
164  * The table roughly translates to :
165  *
166  *	SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
167  *
168  * Where TGRAN_SL0_BASE is a magic number depending on the page size:
169  * 	TGRAN_SL0_BASE(4K) = 2
170  *	TGRAN_SL0_BASE(16K) = 3
171  *	TGRAN_SL0_BASE(64K) = 3
172  * provided we take care of ruling out the unsupported cases and
173  * Entry_Level = 4 - Number_of_levels.
174  *
175  */
176 #ifdef CONFIG_ARM64_64K_PAGES
177 
178 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_64K
179 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
180 
181 #elif defined(CONFIG_ARM64_16K_PAGES)
182 
183 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_16K
184 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
185 
186 #else	/* 4K */
187 
188 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_4K
189 #define VTCR_EL2_TGRAN_SL0_BASE		2UL
190 
191 #endif
192 
193 #define VTCR_EL2_LVLS_TO_SL0(levels)	\
194 	((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
195 #define VTCR_EL2_SL0_TO_LVLS(sl0)	\
196 	((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
197 #define VTCR_EL2_LVLS(vtcr)		\
198 	VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
199 
200 #define VTCR_EL2_FLAGS			(VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
201 #define VTCR_EL2_IPA(vtcr)		(64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
202 
203 /*
204  * ARM VMSAv8-64 defines an algorithm for finding the translation table
205  * descriptors in section D4.2.8 in ARM DDI 0487C.a.
206  *
207  * The algorithm defines the expectations on the translation table
208  * addresses for each level, based on PAGE_SIZE, entry level
209  * and the translation table size (T0SZ). The variable "x" in the
210  * algorithm determines the alignment of a table base address at a given
211  * level and thus determines the alignment of VTTBR:BADDR for stage2
212  * page table entry level.
213  * Since the number of bits resolved at the entry level could vary
214  * depending on the T0SZ, the value of "x" is defined based on a
215  * Magic constant for a given PAGE_SIZE and Entry Level. The
216  * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
217  * x = PAGE_SHIFT).
218  *
219  * The value of "x" for entry level is calculated as :
220  *    x = Magic_N - T0SZ
221  *
222  * where Magic_N is an integer depending on the page size and the entry
223  * level of the page table as below:
224  *
225  *	--------------------------------------------
226  *	| Entry level		|  4K    16K   64K |
227  *	--------------------------------------------
228  *	| Level: 0 (4 levels)	| 28   |  -  |  -  |
229  *	--------------------------------------------
230  *	| Level: 1 (3 levels)	| 37   | 31  | 25  |
231  *	--------------------------------------------
232  *	| Level: 2 (2 levels)	| 46   | 42  | 38  |
233  *	--------------------------------------------
234  *	| Level: 3 (1 level)	| -    | 53  | 51  |
235  *	--------------------------------------------
236  *
237  * We have a magic formula for the Magic_N below:
238  *
239  *  Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
240  *
241  * where Number_of_levels = (4 - Level). We are only interested in the
242  * value for Entry_Level for the stage2 page table.
243  *
244  * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
245  *
246  *	x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
247  *	  = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
248  *
249  * Here is one way to explain the Magic Formula:
250  *
251  *  x = log2(Size_of_Entry_Level_Table)
252  *
253  * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
254  * PAGE_SHIFT bits in the PTE, we have :
255  *
256  *  Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
257  *		     = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
258  *  where n = number of levels, and since each pointer is 8bytes, we have:
259  *
260  *  x = Bits_Entry_Level + 3
261  *    = IPA_SHIFT - (PAGE_SHIFT - 3) * n
262  *
263  * The only constraint here is that, we have to find the number of page table
264  * levels for a given IPA size (which we do, see stage2_pt_levels())
265  */
266 #define ARM64_VTTBR_X(ipa, levels)	((ipa) - ((levels) * (PAGE_SHIFT - 3)))
267 
268 #define VTTBR_CNP_BIT     (UL(1))
269 #define VTTBR_VMID_SHIFT  (UL(48))
270 #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
271 
272 /* Hyp System Trap Register */
273 #define HSTR_EL2_T(x)	(1 << x)
274 
275 /* Hyp Coprocessor Trap Register Shifts */
276 #define CPTR_EL2_TFP_SHIFT 10
277 
278 /* Hyp Coprocessor Trap Register */
279 #define CPTR_EL2_TCPAC	(1U << 31)
280 #define CPTR_EL2_TAM	(1 << 30)
281 #define CPTR_EL2_TTA	(1 << 20)
282 #define CPTR_EL2_TFP	(1 << CPTR_EL2_TFP_SHIFT)
283 #define CPTR_EL2_TZ	(1 << 8)
284 #define CPTR_NVHE_EL2_RES1	0x000032ff /* known RES1 bits in CPTR_EL2 (nVHE) */
285 #define CPTR_EL2_DEFAULT	CPTR_NVHE_EL2_RES1
286 #define CPTR_NVHE_EL2_RES0	(GENMASK(63, 32) |	\
287 				 GENMASK(29, 21) |	\
288 				 GENMASK(19, 14) |	\
289 				 BIT(11))
290 
291 /* Hyp Debug Configuration Register bits */
292 #define MDCR_EL2_E2TB_MASK	(UL(0x3))
293 #define MDCR_EL2_E2TB_SHIFT	(UL(24))
294 #define MDCR_EL2_HPMFZS		(UL(1) << 36)
295 #define MDCR_EL2_HPMFZO		(UL(1) << 29)
296 #define MDCR_EL2_MTPME		(UL(1) << 28)
297 #define MDCR_EL2_TDCC		(UL(1) << 27)
298 #define MDCR_EL2_HLP		(UL(1) << 26)
299 #define MDCR_EL2_HCCD		(UL(1) << 23)
300 #define MDCR_EL2_TTRF		(UL(1) << 19)
301 #define MDCR_EL2_HPMD		(UL(1) << 17)
302 #define MDCR_EL2_TPMS		(UL(1) << 14)
303 #define MDCR_EL2_E2PB_MASK	(UL(0x3))
304 #define MDCR_EL2_E2PB_SHIFT	(UL(12))
305 #define MDCR_EL2_TDRA		(UL(1) << 11)
306 #define MDCR_EL2_TDOSA		(UL(1) << 10)
307 #define MDCR_EL2_TDA		(UL(1) << 9)
308 #define MDCR_EL2_TDE		(UL(1) << 8)
309 #define MDCR_EL2_HPME		(UL(1) << 7)
310 #define MDCR_EL2_TPM		(UL(1) << 6)
311 #define MDCR_EL2_TPMCR		(UL(1) << 5)
312 #define MDCR_EL2_HPMN_MASK	(UL(0x1F))
313 #define MDCR_EL2_RES0		(GENMASK(63, 37) |	\
314 				 GENMASK(35, 30) |	\
315 				 GENMASK(25, 24) |	\
316 				 GENMASK(22, 20) |	\
317 				 BIT(18) |		\
318 				 GENMASK(16, 15))
319 
320 /* For compatibility with fault code shared with 32-bit */
321 #define FSC_FAULT	ESR_ELx_FSC_FAULT
322 #define FSC_ACCESS	ESR_ELx_FSC_ACCESS
323 #define FSC_PERM	ESR_ELx_FSC_PERM
324 #define FSC_SEA		ESR_ELx_FSC_EXTABT
325 #define FSC_SEA_TTW0	(0x14)
326 #define FSC_SEA_TTW1	(0x15)
327 #define FSC_SEA_TTW2	(0x16)
328 #define FSC_SEA_TTW3	(0x17)
329 #define FSC_SECC	(0x18)
330 #define FSC_SECC_TTW0	(0x1c)
331 #define FSC_SECC_TTW1	(0x1d)
332 #define FSC_SECC_TTW2	(0x1e)
333 #define FSC_SECC_TTW3	(0x1f)
334 
335 /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
336 #define HPFAR_MASK	(~UL(0xf))
337 /*
338  * We have
339  *	PAR	[PA_Shift - 1	: 12] = PA	[PA_Shift - 1 : 12]
340  *	HPFAR	[PA_Shift - 9	: 4]  = FIPA	[PA_Shift - 1 : 12]
341  */
342 #define PAR_TO_HPFAR(par)		\
343 	(((par) & GENMASK_ULL(PHYS_MASK_SHIFT - 1, 12)) >> 8)
344 
345 #define ECN(x) { ESR_ELx_EC_##x, #x }
346 
347 #define kvm_arm_exception_class \
348 	ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
349 	ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \
350 	ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \
351 	ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \
352 	ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
353 	ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
354 	ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
355 	ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
356 	ECN(BKPT32), ECN(VECTOR32), ECN(BRK64)
357 
358 #define CPACR_EL1_TTA		(1 << 28)
359 #define CPACR_EL1_DEFAULT	(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |\
360 				 CPACR_EL1_ZEN_EL1EN)
361 
362 #endif /* __ARM64_KVM_ARM_H__ */
363