xref: /openbmc/linux/arch/arm64/include/asm/kvm_arm.h (revision 0c874100)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __ARM64_KVM_ARM_H__
19 #define __ARM64_KVM_ARM_H__
20 
21 #include <asm/esr.h>
22 #include <asm/memory.h>
23 #include <asm/types.h>
24 
25 /* Hyp Configuration Register (HCR) bits */
26 #define HCR_FWB		(UL(1) << 46)
27 #define HCR_TEA		(UL(1) << 37)
28 #define HCR_TERR	(UL(1) << 36)
29 #define HCR_TLOR	(UL(1) << 35)
30 #define HCR_E2H		(UL(1) << 34)
31 #define HCR_ID		(UL(1) << 33)
32 #define HCR_CD		(UL(1) << 32)
33 #define HCR_RW_SHIFT	31
34 #define HCR_RW		(UL(1) << HCR_RW_SHIFT)
35 #define HCR_TRVM	(UL(1) << 30)
36 #define HCR_HCD		(UL(1) << 29)
37 #define HCR_TDZ		(UL(1) << 28)
38 #define HCR_TGE		(UL(1) << 27)
39 #define HCR_TVM		(UL(1) << 26)
40 #define HCR_TTLB	(UL(1) << 25)
41 #define HCR_TPU		(UL(1) << 24)
42 #define HCR_TPC		(UL(1) << 23)
43 #define HCR_TSW		(UL(1) << 22)
44 #define HCR_TAC		(UL(1) << 21)
45 #define HCR_TIDCP	(UL(1) << 20)
46 #define HCR_TSC		(UL(1) << 19)
47 #define HCR_TID3	(UL(1) << 18)
48 #define HCR_TID2	(UL(1) << 17)
49 #define HCR_TID1	(UL(1) << 16)
50 #define HCR_TID0	(UL(1) << 15)
51 #define HCR_TWE		(UL(1) << 14)
52 #define HCR_TWI		(UL(1) << 13)
53 #define HCR_DC		(UL(1) << 12)
54 #define HCR_BSU		(3 << 10)
55 #define HCR_BSU_IS	(UL(1) << 10)
56 #define HCR_FB		(UL(1) << 9)
57 #define HCR_VSE		(UL(1) << 8)
58 #define HCR_VI		(UL(1) << 7)
59 #define HCR_VF		(UL(1) << 6)
60 #define HCR_AMO		(UL(1) << 5)
61 #define HCR_IMO		(UL(1) << 4)
62 #define HCR_FMO		(UL(1) << 3)
63 #define HCR_PTW		(UL(1) << 2)
64 #define HCR_SWIO	(UL(1) << 1)
65 #define HCR_VM		(UL(1) << 0)
66 
67 /*
68  * The bits we set in HCR:
69  * TLOR:	Trap LORegion register accesses
70  * RW:		64bit by default, can be overridden for 32bit VMs
71  * TAC:		Trap ACTLR
72  * TSC:		Trap SMC
73  * TVM:		Trap VM ops (until M+C set in SCTLR_EL1)
74  * TSW:		Trap cache operations by set/way
75  * TWE:		Trap WFE
76  * TWI:		Trap WFI
77  * TIDCP:	Trap L2CTLR/L2ECTLR
78  * BSU_IS:	Upgrade barriers to the inner shareable domain
79  * FB:		Force broadcast of all maintainance operations
80  * AMO:		Override CPSR.A and enable signaling with VA
81  * IMO:		Override CPSR.I and enable signaling with VI
82  * FMO:		Override CPSR.F and enable signaling with VF
83  * SWIO:	Turn set/way invalidates into set/way clean+invalidate
84  */
85 #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
86 			 HCR_TVM | HCR_BSU_IS | HCR_FB | HCR_TAC | \
87 			 HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
88 			 HCR_FMO | HCR_IMO)
89 #define HCR_VIRT_EXCP_MASK (HCR_VSE | HCR_VI | HCR_VF)
90 #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H)
91 
92 /* TCR_EL2 Registers bits */
93 #define TCR_EL2_RES1		((1 << 31) | (1 << 23))
94 #define TCR_EL2_TBI		(1 << 20)
95 #define TCR_EL2_PS_SHIFT	16
96 #define TCR_EL2_PS_MASK		(7 << TCR_EL2_PS_SHIFT)
97 #define TCR_EL2_PS_40B		(2 << TCR_EL2_PS_SHIFT)
98 #define TCR_EL2_TG0_MASK	TCR_TG0_MASK
99 #define TCR_EL2_SH0_MASK	TCR_SH0_MASK
100 #define TCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
101 #define TCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
102 #define TCR_EL2_T0SZ_MASK	0x3f
103 #define TCR_EL2_MASK	(TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
104 			 TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK)
105 
106 /* VTCR_EL2 Registers bits */
107 #define VTCR_EL2_RES1		(1 << 31)
108 #define VTCR_EL2_HD		(1 << 22)
109 #define VTCR_EL2_HA		(1 << 21)
110 #define VTCR_EL2_PS_SHIFT	TCR_EL2_PS_SHIFT
111 #define VTCR_EL2_PS_MASK	TCR_EL2_PS_MASK
112 #define VTCR_EL2_TG0_MASK	TCR_TG0_MASK
113 #define VTCR_EL2_TG0_4K		TCR_TG0_4K
114 #define VTCR_EL2_TG0_16K	TCR_TG0_16K
115 #define VTCR_EL2_TG0_64K	TCR_TG0_64K
116 #define VTCR_EL2_SH0_MASK	TCR_SH0_MASK
117 #define VTCR_EL2_SH0_INNER	TCR_SH0_INNER
118 #define VTCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
119 #define VTCR_EL2_ORGN0_WBWA	TCR_ORGN0_WBWA
120 #define VTCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
121 #define VTCR_EL2_IRGN0_WBWA	TCR_IRGN0_WBWA
122 #define VTCR_EL2_SL0_SHIFT	6
123 #define VTCR_EL2_SL0_MASK	(3 << VTCR_EL2_SL0_SHIFT)
124 #define VTCR_EL2_T0SZ_MASK	0x3f
125 #define VTCR_EL2_VS_SHIFT	19
126 #define VTCR_EL2_VS_8BIT	(0 << VTCR_EL2_VS_SHIFT)
127 #define VTCR_EL2_VS_16BIT	(1 << VTCR_EL2_VS_SHIFT)
128 
129 #define VTCR_EL2_T0SZ(x)	TCR_T0SZ(x)
130 
131 /*
132  * We configure the Stage-2 page tables to always restrict the IPA space to be
133  * 40 bits wide (T0SZ = 24).  Systems with a PARange smaller than 40 bits are
134  * not known to exist and will break with this configuration.
135  *
136  * The VTCR_EL2 is configured per VM and is initialised in kvm_arm_setup_stage2().
137  *
138  * Note that when using 4K pages, we concatenate two first level page tables
139  * together. With 16K pages, we concatenate 16 first level page tables.
140  *
141  */
142 
143 #define VTCR_EL2_COMMON_BITS	(VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
144 				 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
145 
146 /*
147  * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
148  * Interestingly, it depends on the page size.
149  * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
150  *
151  *	-----------------------------------------
152  *	| Entry level		|  4K  | 16K/64K |
153  *	------------------------------------------
154  *	| Level: 0		|  2   |   -     |
155  *	------------------------------------------
156  *	| Level: 1		|  1   |   2     |
157  *	------------------------------------------
158  *	| Level: 2		|  0   |   1     |
159  *	------------------------------------------
160  *	| Level: 3		|  -   |   0     |
161  *	------------------------------------------
162  *
163  * The table roughly translates to :
164  *
165  *	SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
166  *
167  * Where TGRAN_SL0_BASE is a magic number depending on the page size:
168  * 	TGRAN_SL0_BASE(4K) = 2
169  *	TGRAN_SL0_BASE(16K) = 3
170  *	TGRAN_SL0_BASE(64K) = 3
171  * provided we take care of ruling out the unsupported cases and
172  * Entry_Level = 4 - Number_of_levels.
173  *
174  */
175 #ifdef CONFIG_ARM64_64K_PAGES
176 
177 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_64K
178 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
179 
180 #elif defined(CONFIG_ARM64_16K_PAGES)
181 
182 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_16K
183 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
184 
185 #else	/* 4K */
186 
187 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_4K
188 #define VTCR_EL2_TGRAN_SL0_BASE		2UL
189 
190 #endif
191 
192 #define VTCR_EL2_LVLS_TO_SL0(levels)	\
193 	((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
194 #define VTCR_EL2_SL0_TO_LVLS(sl0)	\
195 	((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
196 #define VTCR_EL2_LVLS(vtcr)		\
197 	VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
198 
199 #define VTCR_EL2_FLAGS			(VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
200 #define VTCR_EL2_IPA(vtcr)		(64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
201 
202 /*
203  * ARM VMSAv8-64 defines an algorithm for finding the translation table
204  * descriptors in section D4.2.8 in ARM DDI 0487C.a.
205  *
206  * The algorithm defines the expectations on the translation table
207  * addresses for each level, based on PAGE_SIZE, entry level
208  * and the translation table size (T0SZ). The variable "x" in the
209  * algorithm determines the alignment of a table base address at a given
210  * level and thus determines the alignment of VTTBR:BADDR for stage2
211  * page table entry level.
212  * Since the number of bits resolved at the entry level could vary
213  * depending on the T0SZ, the value of "x" is defined based on a
214  * Magic constant for a given PAGE_SIZE and Entry Level. The
215  * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
216  * x = PAGE_SHIFT).
217  *
218  * The value of "x" for entry level is calculated as :
219  *    x = Magic_N - T0SZ
220  *
221  * where Magic_N is an integer depending on the page size and the entry
222  * level of the page table as below:
223  *
224  *	--------------------------------------------
225  *	| Entry level		|  4K    16K   64K |
226  *	--------------------------------------------
227  *	| Level: 0 (4 levels)	| 28   |  -  |  -  |
228  *	--------------------------------------------
229  *	| Level: 1 (3 levels)	| 37   | 31  | 25  |
230  *	--------------------------------------------
231  *	| Level: 2 (2 levels)	| 46   | 42  | 38  |
232  *	--------------------------------------------
233  *	| Level: 3 (1 level)	| -    | 53  | 51  |
234  *	--------------------------------------------
235  *
236  * We have a magic formula for the Magic_N below:
237  *
238  *  Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
239  *
240  * where Number_of_levels = (4 - Level). We are only interested in the
241  * value for Entry_Level for the stage2 page table.
242  *
243  * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
244  *
245  *	x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
246  *	  = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
247  *
248  * Here is one way to explain the Magic Formula:
249  *
250  *  x = log2(Size_of_Entry_Level_Table)
251  *
252  * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
253  * PAGE_SHIFT bits in the PTE, we have :
254  *
255  *  Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
256  *		     = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
257  *  where n = number of levels, and since each pointer is 8bytes, we have:
258  *
259  *  x = Bits_Entry_Level + 3
260  *    = IPA_SHIFT - (PAGE_SHIFT - 3) * n
261  *
262  * The only constraint here is that, we have to find the number of page table
263  * levels for a given IPA size (which we do, see stage2_pt_levels())
264  */
265 #define ARM64_VTTBR_X(ipa, levels)	((ipa) - ((levels) * (PAGE_SHIFT - 3)))
266 
267 #define VTTBR_CNP_BIT     (UL(1))
268 #define VTTBR_VMID_SHIFT  (UL(48))
269 #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
270 
271 /* Hyp System Trap Register */
272 #define HSTR_EL2_T(x)	(1 << x)
273 
274 /* Hyp Coprocessor Trap Register Shifts */
275 #define CPTR_EL2_TFP_SHIFT 10
276 
277 /* Hyp Coprocessor Trap Register */
278 #define CPTR_EL2_TCPAC	(1 << 31)
279 #define CPTR_EL2_TTA	(1 << 20)
280 #define CPTR_EL2_TFP	(1 << CPTR_EL2_TFP_SHIFT)
281 #define CPTR_EL2_TZ	(1 << 8)
282 #define CPTR_EL2_RES1	0x000032ff /* known RES1 bits in CPTR_EL2 */
283 #define CPTR_EL2_DEFAULT	CPTR_EL2_RES1
284 
285 /* Hyp Debug Configuration Register bits */
286 #define MDCR_EL2_TPMS		(1 << 14)
287 #define MDCR_EL2_E2PB_MASK	(UL(0x3))
288 #define MDCR_EL2_E2PB_SHIFT	(UL(12))
289 #define MDCR_EL2_TDRA		(1 << 11)
290 #define MDCR_EL2_TDOSA		(1 << 10)
291 #define MDCR_EL2_TDA		(1 << 9)
292 #define MDCR_EL2_TDE		(1 << 8)
293 #define MDCR_EL2_HPME		(1 << 7)
294 #define MDCR_EL2_TPM		(1 << 6)
295 #define MDCR_EL2_TPMCR		(1 << 5)
296 #define MDCR_EL2_HPMN_MASK	(0x1F)
297 
298 /* For compatibility with fault code shared with 32-bit */
299 #define FSC_FAULT	ESR_ELx_FSC_FAULT
300 #define FSC_ACCESS	ESR_ELx_FSC_ACCESS
301 #define FSC_PERM	ESR_ELx_FSC_PERM
302 #define FSC_SEA		ESR_ELx_FSC_EXTABT
303 #define FSC_SEA_TTW0	(0x14)
304 #define FSC_SEA_TTW1	(0x15)
305 #define FSC_SEA_TTW2	(0x16)
306 #define FSC_SEA_TTW3	(0x17)
307 #define FSC_SECC	(0x18)
308 #define FSC_SECC_TTW0	(0x1c)
309 #define FSC_SECC_TTW1	(0x1d)
310 #define FSC_SECC_TTW2	(0x1e)
311 #define FSC_SECC_TTW3	(0x1f)
312 
313 /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
314 #define HPFAR_MASK	(~UL(0xf))
315 /*
316  * We have
317  *	PAR	[PA_Shift - 1	: 12] = PA	[PA_Shift - 1 : 12]
318  *	HPFAR	[PA_Shift - 9	: 4]  = FIPA	[PA_Shift - 1 : 12]
319  */
320 #define PAR_TO_HPFAR(par)		\
321 	(((par) & GENMASK_ULL(PHYS_MASK_SHIFT - 1, 12)) >> 8)
322 
323 #define kvm_arm_exception_type	\
324 	{0, "IRQ" }, 		\
325 	{1, "TRAP" }
326 
327 #define ECN(x) { ESR_ELx_EC_##x, #x }
328 
329 #define kvm_arm_exception_class \
330 	ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
331 	ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(CP14_64), ECN(SVC64), \
332 	ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(IMP_DEF), ECN(IABT_LOW), \
333 	ECN(IABT_CUR), ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
334 	ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
335 	ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
336 	ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
337 	ECN(BKPT32), ECN(VECTOR32), ECN(BRK64)
338 
339 #define CPACR_EL1_FPEN		(3 << 20)
340 #define CPACR_EL1_TTA		(1 << 28)
341 #define CPACR_EL1_DEFAULT	(CPACR_EL1_FPEN | CPACR_EL1_ZEN_EL1EN)
342 
343 #endif /* __ARM64_KVM_ARM_H__ */
344