xref: /openbmc/linux/arch/arm64/include/asm/fpsimd.h (revision 7bd571b274fd15e0e7dc3d79d104f32928010eff)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_FP_H
6 #define __ASM_FP_H
7 
8 #include <asm/errno.h>
9 #include <asm/ptrace.h>
10 #include <asm/processor.h>
11 #include <asm/sigcontext.h>
12 #include <asm/sysreg.h>
13 
14 #ifndef __ASSEMBLY__
15 
16 #include <linux/bitmap.h>
17 #include <linux/build_bug.h>
18 #include <linux/bug.h>
19 #include <linux/cache.h>
20 #include <linux/init.h>
21 #include <linux/stddef.h>
22 #include <linux/types.h>
23 
24 #ifdef CONFIG_COMPAT
25 /* Masks for extracting the FPSR and FPCR from the FPSCR */
26 #define VFP_FPSCR_STAT_MASK	0xf800009f
27 #define VFP_FPSCR_CTRL_MASK	0x07f79f00
28 /*
29  * The VFP state has 32x64-bit registers and a single 32-bit
30  * control/status register.
31  */
32 #define VFP_STATE_SIZE		((32 * 8) + 4)
33 #endif
34 
35 /*
36  * When we defined the maximum SVE vector length we defined the ABI so
37  * that the maximum vector length included all the reserved for future
38  * expansion bits in ZCR rather than those just currently defined by
39  * the architecture. While SME follows a similar pattern the fact that
40  * it includes a square matrix means that any allocations that attempt
41  * to cover the maximum potential vector length (such as happen with
42  * the regset used for ptrace) end up being extremely large. Define
43  * the much lower actual limit for use in such situations.
44  */
45 #define SME_VQ_MAX	16
46 
47 struct task_struct;
48 
49 extern void fpsimd_save_state(struct user_fpsimd_state *state);
50 extern void fpsimd_load_state(struct user_fpsimd_state *state);
51 
52 extern void fpsimd_thread_switch(struct task_struct *next);
53 extern void fpsimd_flush_thread(void);
54 
55 extern void fpsimd_signal_preserve_current_state(void);
56 extern void fpsimd_preserve_current_state(void);
57 extern void fpsimd_restore_current_state(void);
58 extern void fpsimd_update_current_state(struct user_fpsimd_state const *state);
59 extern void fpsimd_kvm_prepare(void);
60 
61 struct cpu_fp_state {
62 	struct user_fpsimd_state *st;
63 	void *sve_state;
64 	void *za_state;
65 	u64 *svcr;
66 	unsigned int sve_vl;
67 	unsigned int sme_vl;
68 	enum fp_type *fp_type;
69 	enum fp_type to_save;
70 };
71 
72 extern void fpsimd_bind_state_to_cpu(struct cpu_fp_state *fp_state);
73 
74 extern void fpsimd_flush_task_state(struct task_struct *target);
75 extern void fpsimd_save_and_flush_cpu_state(void);
76 
77 static inline bool thread_sm_enabled(struct thread_struct *thread)
78 {
79 	return system_supports_sme() && (thread->svcr & SVCR_SM_MASK);
80 }
81 
82 static inline bool thread_za_enabled(struct thread_struct *thread)
83 {
84 	return system_supports_sme() && (thread->svcr & SVCR_ZA_MASK);
85 }
86 
87 /* Maximum VL that SVE/SME VL-agnostic software can transparently support */
88 #define VL_ARCH_MAX 0x100
89 
90 /* Offset of FFR in the SVE register dump */
91 static inline size_t sve_ffr_offset(int vl)
92 {
93 	return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET;
94 }
95 
96 static inline void *sve_pffr(struct thread_struct *thread)
97 {
98 	unsigned int vl;
99 
100 	if (system_supports_sme() && thread_sm_enabled(thread))
101 		vl = thread_get_sme_vl(thread);
102 	else
103 		vl = thread_get_sve_vl(thread);
104 
105 	return (char *)thread->sve_state + sve_ffr_offset(vl);
106 }
107 
108 extern void sve_save_state(void *state, u32 *pfpsr, int save_ffr);
109 extern void sve_load_state(void const *state, u32 const *pfpsr,
110 			   int restore_ffr);
111 extern void sve_flush_live(bool flush_ffr, unsigned long vq_minus_1);
112 extern unsigned int sve_get_vl(void);
113 extern void sve_set_vq(unsigned long vq_minus_1);
114 extern void sme_set_vq(unsigned long vq_minus_1);
115 extern void za_save_state(void *state);
116 extern void za_load_state(void const *state);
117 
118 struct arm64_cpu_capabilities;
119 extern void sve_kernel_enable(const struct arm64_cpu_capabilities *__unused);
120 extern void sme_kernel_enable(const struct arm64_cpu_capabilities *__unused);
121 extern void fa64_kernel_enable(const struct arm64_cpu_capabilities *__unused);
122 
123 extern u64 read_zcr_features(void);
124 extern u64 read_smcr_features(void);
125 
126 /*
127  * Helpers to translate bit indices in sve_vq_map to VQ values (and
128  * vice versa).  This allows find_next_bit() to be used to find the
129  * _maximum_ VQ not exceeding a certain value.
130  */
131 static inline unsigned int __vq_to_bit(unsigned int vq)
132 {
133 	return SVE_VQ_MAX - vq;
134 }
135 
136 static inline unsigned int __bit_to_vq(unsigned int bit)
137 {
138 	return SVE_VQ_MAX - bit;
139 }
140 
141 
142 struct vl_info {
143 	enum vec_type type;
144 	const char *name;		/* For display purposes */
145 
146 	/* Minimum supported vector length across all CPUs */
147 	int min_vl;
148 
149 	/* Maximum supported vector length across all CPUs */
150 	int max_vl;
151 	int max_virtualisable_vl;
152 
153 	/*
154 	 * Set of available vector lengths,
155 	 * where length vq encoded as bit __vq_to_bit(vq):
156 	 */
157 	DECLARE_BITMAP(vq_map, SVE_VQ_MAX);
158 
159 	/* Set of vector lengths present on at least one cpu: */
160 	DECLARE_BITMAP(vq_partial_map, SVE_VQ_MAX);
161 };
162 
163 #ifdef CONFIG_ARM64_SVE
164 
165 extern void sve_alloc(struct task_struct *task, bool flush);
166 extern void fpsimd_release_task(struct task_struct *task);
167 extern void fpsimd_sync_to_sve(struct task_struct *task);
168 extern void fpsimd_force_sync_to_sve(struct task_struct *task);
169 extern void sve_sync_to_fpsimd(struct task_struct *task);
170 extern void sve_sync_from_fpsimd_zeropad(struct task_struct *task);
171 
172 extern int vec_set_vector_length(struct task_struct *task, enum vec_type type,
173 				 unsigned long vl, unsigned long flags);
174 
175 extern int sve_set_current_vl(unsigned long arg);
176 extern int sve_get_current_vl(void);
177 
178 static inline void sve_user_disable(void)
179 {
180 	sysreg_clear_set(cpacr_el1, CPACR_EL1_ZEN_EL0EN, 0);
181 }
182 
183 static inline void sve_user_enable(void)
184 {
185 	sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_ZEN_EL0EN);
186 }
187 
188 #define sve_cond_update_zcr_vq(val, reg)		\
189 	do {						\
190 		u64 __zcr = read_sysreg_s((reg));	\
191 		u64 __new = __zcr & ~ZCR_ELx_LEN_MASK;	\
192 		__new |= (val) & ZCR_ELx_LEN_MASK;	\
193 		if (__zcr != __new)			\
194 			write_sysreg_s(__new, (reg));	\
195 	} while (0)
196 
197 /*
198  * Probing and setup functions.
199  * Calls to these functions must be serialised with one another.
200  */
201 enum vec_type;
202 
203 extern void __init vec_init_vq_map(enum vec_type type);
204 extern void vec_update_vq_map(enum vec_type type);
205 extern int vec_verify_vq_map(enum vec_type type);
206 extern void __init sve_setup(void);
207 
208 extern __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX];
209 
210 static inline void write_vl(enum vec_type type, u64 val)
211 {
212 	u64 tmp;
213 
214 	switch (type) {
215 #ifdef CONFIG_ARM64_SVE
216 	case ARM64_VEC_SVE:
217 		tmp = read_sysreg_s(SYS_ZCR_EL1) & ~ZCR_ELx_LEN_MASK;
218 		write_sysreg_s(tmp | val, SYS_ZCR_EL1);
219 		break;
220 #endif
221 #ifdef CONFIG_ARM64_SME
222 	case ARM64_VEC_SME:
223 		tmp = read_sysreg_s(SYS_SMCR_EL1) & ~SMCR_ELx_LEN_MASK;
224 		write_sysreg_s(tmp | val, SYS_SMCR_EL1);
225 		break;
226 #endif
227 	default:
228 		WARN_ON_ONCE(1);
229 		break;
230 	}
231 }
232 
233 static inline int vec_max_vl(enum vec_type type)
234 {
235 	return vl_info[type].max_vl;
236 }
237 
238 static inline int vec_max_virtualisable_vl(enum vec_type type)
239 {
240 	return vl_info[type].max_virtualisable_vl;
241 }
242 
243 static inline int sve_max_vl(void)
244 {
245 	return vec_max_vl(ARM64_VEC_SVE);
246 }
247 
248 static inline int sve_max_virtualisable_vl(void)
249 {
250 	return vec_max_virtualisable_vl(ARM64_VEC_SVE);
251 }
252 
253 /* Ensure vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX before calling this function */
254 static inline bool vq_available(enum vec_type type, unsigned int vq)
255 {
256 	return test_bit(__vq_to_bit(vq), vl_info[type].vq_map);
257 }
258 
259 static inline bool sve_vq_available(unsigned int vq)
260 {
261 	return vq_available(ARM64_VEC_SVE, vq);
262 }
263 
264 size_t sve_state_size(struct task_struct const *task);
265 
266 #else /* ! CONFIG_ARM64_SVE */
267 
268 static inline void sve_alloc(struct task_struct *task, bool flush) { }
269 static inline void fpsimd_release_task(struct task_struct *task) { }
270 static inline void sve_sync_to_fpsimd(struct task_struct *task) { }
271 static inline void sve_sync_from_fpsimd_zeropad(struct task_struct *task) { }
272 
273 static inline int sve_max_virtualisable_vl(void)
274 {
275 	return 0;
276 }
277 
278 static inline int sve_set_current_vl(unsigned long arg)
279 {
280 	return -EINVAL;
281 }
282 
283 static inline int sve_get_current_vl(void)
284 {
285 	return -EINVAL;
286 }
287 
288 static inline int sve_max_vl(void)
289 {
290 	return -EINVAL;
291 }
292 
293 static inline bool sve_vq_available(unsigned int vq) { return false; }
294 
295 static inline void sve_user_disable(void) { BUILD_BUG(); }
296 static inline void sve_user_enable(void) { BUILD_BUG(); }
297 
298 #define sve_cond_update_zcr_vq(val, reg) do { } while (0)
299 
300 static inline void vec_init_vq_map(enum vec_type t) { }
301 static inline void vec_update_vq_map(enum vec_type t) { }
302 static inline int vec_verify_vq_map(enum vec_type t) { return 0; }
303 static inline void sve_setup(void) { }
304 
305 static inline size_t sve_state_size(struct task_struct const *task)
306 {
307 	return 0;
308 }
309 
310 #endif /* ! CONFIG_ARM64_SVE */
311 
312 #ifdef CONFIG_ARM64_SME
313 
314 static inline void sme_user_disable(void)
315 {
316 	sysreg_clear_set(cpacr_el1, CPACR_EL1_SMEN_EL0EN, 0);
317 }
318 
319 static inline void sme_user_enable(void)
320 {
321 	sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_SMEN_EL0EN);
322 }
323 
324 static inline void sme_smstart_sm(void)
325 {
326 	asm volatile(__msr_s(SYS_SVCR_SMSTART_SM_EL0, "xzr"));
327 }
328 
329 static inline void sme_smstop_sm(void)
330 {
331 	asm volatile(__msr_s(SYS_SVCR_SMSTOP_SM_EL0, "xzr"));
332 }
333 
334 static inline void sme_smstop(void)
335 {
336 	asm volatile(__msr_s(SYS_SVCR_SMSTOP_SMZA_EL0, "xzr"));
337 }
338 
339 extern void __init sme_setup(void);
340 
341 static inline int sme_max_vl(void)
342 {
343 	return vec_max_vl(ARM64_VEC_SME);
344 }
345 
346 static inline int sme_max_virtualisable_vl(void)
347 {
348 	return vec_max_virtualisable_vl(ARM64_VEC_SME);
349 }
350 
351 extern void sme_alloc(struct task_struct *task);
352 extern unsigned int sme_get_vl(void);
353 extern int sme_set_current_vl(unsigned long arg);
354 extern int sme_get_current_vl(void);
355 
356 /*
357  * Return how many bytes of memory are required to store the full SME
358  * specific state (currently just ZA) for task, given task's currently
359  * configured vector length.
360  */
361 static inline size_t za_state_size(struct task_struct const *task)
362 {
363 	unsigned int vl = task_get_sme_vl(task);
364 
365 	return ZA_SIG_REGS_SIZE(sve_vq_from_vl(vl));
366 }
367 
368 #else
369 
370 static inline void sme_user_disable(void) { BUILD_BUG(); }
371 static inline void sme_user_enable(void) { BUILD_BUG(); }
372 
373 static inline void sme_smstart_sm(void) { }
374 static inline void sme_smstop_sm(void) { }
375 static inline void sme_smstop(void) { }
376 
377 static inline void sme_alloc(struct task_struct *task) { }
378 static inline void sme_setup(void) { }
379 static inline unsigned int sme_get_vl(void) { return 0; }
380 static inline int sme_max_vl(void) { return 0; }
381 static inline int sme_max_virtualisable_vl(void) { return 0; }
382 static inline int sme_set_current_vl(unsigned long arg) { return -EINVAL; }
383 static inline int sme_get_current_vl(void) { return -EINVAL; }
384 
385 static inline size_t za_state_size(struct task_struct const *task)
386 {
387 	return 0;
388 }
389 
390 #endif /* ! CONFIG_ARM64_SME */
391 
392 /* For use by EFI runtime services calls only */
393 extern void __efi_fpsimd_begin(void);
394 extern void __efi_fpsimd_end(void);
395 
396 #endif
397 
398 #endif
399