xref: /openbmc/linux/arch/arm64/include/asm/efi.h (revision ad10c920)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_EFI_H
3 #define _ASM_EFI_H
4 
5 #include <asm/boot.h>
6 #include <asm/cpufeature.h>
7 #include <asm/fpsimd.h>
8 #include <asm/io.h>
9 #include <asm/memory.h>
10 #include <asm/mmu_context.h>
11 #include <asm/neon.h>
12 #include <asm/ptrace.h>
13 #include <asm/tlbflush.h>
14 
15 #ifdef CONFIG_EFI
16 extern void efi_init(void);
17 
18 bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg);
19 #else
20 #define efi_init()
21 
22 static inline
23 bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg)
24 {
25 	return false;
26 }
27 #endif
28 
29 int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md);
30 int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md);
31 
32 #define arch_efi_call_virt_setup()					\
33 ({									\
34 	efi_virtmap_load();						\
35 	__efi_fpsimd_begin();						\
36 	spin_lock(&efi_rt_lock);					\
37 })
38 
39 #undef arch_efi_call_virt
40 #define arch_efi_call_virt(p, f, args...)				\
41 	__efi_rt_asm_wrapper((p)->f, #f, args)
42 
43 #define arch_efi_call_virt_teardown()					\
44 ({									\
45 	spin_unlock(&efi_rt_lock);					\
46 	__efi_fpsimd_end();						\
47 	efi_virtmap_unload();						\
48 })
49 
50 extern spinlock_t efi_rt_lock;
51 extern u64 *efi_rt_stack_top;
52 efi_status_t __efi_rt_asm_wrapper(void *, const char *, ...);
53 
54 /*
55  * efi_rt_stack_top[-1] contains the value the stack pointer had before
56  * switching to the EFI runtime stack.
57  */
58 #define current_in_efi()						\
59 	(!preemptible() && efi_rt_stack_top != NULL &&			\
60 	 on_task_stack(current, READ_ONCE(efi_rt_stack_top[-1]), 1))
61 
62 #define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT)
63 
64 /*
65  * Even when Linux uses IRQ priorities for IRQ disabling, EFI does not.
66  * And EFI shouldn't really play around with priority masking as it is not aware
67  * which priorities the OS has assigned to its interrupts.
68  */
69 #define arch_efi_save_flags(state_flags)		\
70 	((void)((state_flags) = read_sysreg(daif)))
71 
72 #define arch_efi_restore_flags(state_flags)	write_sysreg(state_flags, daif)
73 
74 
75 /* arch specific definitions used by the stub code */
76 
77 /*
78  * In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the
79  * kernel need greater alignment than we require the segments to be padded to.
80  */
81 #define EFI_KIMG_ALIGN	\
82 	(SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN)
83 
84 /*
85  * On arm64, we have to ensure that the initrd ends up in the linear region,
86  * which is a 1 GB aligned region of size '1UL << (VA_BITS_MIN - 1)' that is
87  * guaranteed to cover the kernel Image.
88  *
89  * Since the EFI stub is part of the kernel Image, we can relax the
90  * usual requirements in Documentation/arm64/booting.rst, which still
91  * apply to other bootloaders, and are required for some kernel
92  * configurations.
93  */
94 static inline unsigned long efi_get_max_initrd_addr(unsigned long image_addr)
95 {
96 	return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS_MIN - 1));
97 }
98 
99 static inline unsigned long efi_get_kimg_min_align(void)
100 {
101 	extern bool efi_nokaslr;
102 
103 	/*
104 	 * Although relocatable kernels can fix up the misalignment with
105 	 * respect to MIN_KIMG_ALIGN, the resulting virtual text addresses are
106 	 * subtly out of sync with those recorded in the vmlinux when kaslr is
107 	 * disabled but the image required relocation anyway. Therefore retain
108 	 * 2M alignment if KASLR was explicitly disabled, even if it was not
109 	 * going to be activated to begin with.
110 	 */
111 	return efi_nokaslr ? MIN_KIMG_ALIGN : EFI_KIMG_ALIGN;
112 }
113 
114 #define EFI_ALLOC_ALIGN		SZ_64K
115 #define EFI_ALLOC_LIMIT		((1UL << 48) - 1)
116 
117 /*
118  * On ARM systems, virtually remapped UEFI runtime services are set up in two
119  * distinct stages:
120  * - The stub retrieves the final version of the memory map from UEFI, populates
121  *   the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime
122  *   service to communicate the new mapping to the firmware (Note that the new
123  *   mapping is not live at this time)
124  * - During an early initcall(), the EFI system table is permanently remapped
125  *   and the virtual remapping of the UEFI Runtime Services regions is loaded
126  *   into a private set of page tables. If this all succeeds, the Runtime
127  *   Services are enabled and the EFI_RUNTIME_SERVICES bit set.
128  */
129 
130 static inline void efi_set_pgd(struct mm_struct *mm)
131 {
132 	__switch_mm(mm);
133 
134 	if (system_uses_ttbr0_pan()) {
135 		if (mm != current->active_mm) {
136 			/*
137 			 * Update the current thread's saved ttbr0 since it is
138 			 * restored as part of a return from exception. Enable
139 			 * access to the valid TTBR0_EL1 and invoke the errata
140 			 * workaround directly since there is no return from
141 			 * exception when invoking the EFI run-time services.
142 			 */
143 			update_saved_ttbr0(current, mm);
144 			uaccess_ttbr0_enable();
145 			post_ttbr_update_workaround();
146 		} else {
147 			/*
148 			 * Defer the switch to the current thread's TTBR0_EL1
149 			 * until uaccess_enable(). Restore the current
150 			 * thread's saved ttbr0 corresponding to its active_mm
151 			 */
152 			uaccess_ttbr0_disable();
153 			update_saved_ttbr0(current, current->active_mm);
154 		}
155 	}
156 }
157 
158 void efi_virtmap_load(void);
159 void efi_virtmap_unload(void);
160 
161 static inline void efi_capsule_flush_cache_range(void *addr, int size)
162 {
163 	dcache_clean_inval_poc((unsigned long)addr, (unsigned long)addr + size);
164 }
165 
166 #endif /* _ASM_EFI_H */
167