1 #ifndef _ASM_EFI_H 2 #define _ASM_EFI_H 3 4 #include <asm/boot.h> 5 #include <asm/cpufeature.h> 6 #include <asm/fpsimd.h> 7 #include <asm/io.h> 8 #include <asm/memory.h> 9 #include <asm/mmu_context.h> 10 #include <asm/neon.h> 11 #include <asm/ptrace.h> 12 #include <asm/tlbflush.h> 13 14 #ifdef CONFIG_EFI 15 extern void efi_init(void); 16 #else 17 #define efi_init() 18 #endif 19 20 int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md); 21 int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md); 22 23 #define arch_efi_call_virt_setup() \ 24 ({ \ 25 efi_virtmap_load(); \ 26 __efi_fpsimd_begin(); \ 27 }) 28 29 #define arch_efi_call_virt(p, f, args...) \ 30 ({ \ 31 efi_##f##_t *__f; \ 32 __f = p->f; \ 33 __f(args); \ 34 }) 35 36 #define arch_efi_call_virt_teardown() \ 37 ({ \ 38 __efi_fpsimd_end(); \ 39 efi_virtmap_unload(); \ 40 }) 41 42 #define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT) 43 44 /* arch specific definitions used by the stub code */ 45 46 /* 47 * AArch64 requires the DTB to be 8-byte aligned in the first 512MiB from 48 * start of kernel and may not cross a 2MiB boundary. We set alignment to 49 * 2MiB so we know it won't cross a 2MiB boundary. 50 */ 51 #define EFI_FDT_ALIGN SZ_2M /* used by allocate_new_fdt_and_exit_boot() */ 52 53 /* 54 * In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the 55 * kernel need greater alignment than we require the segments to be padded to. 56 */ 57 #define EFI_KIMG_ALIGN \ 58 (SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN) 59 60 /* on arm64, the FDT may be located anywhere in system RAM */ 61 static inline unsigned long efi_get_max_fdt_addr(unsigned long dram_base) 62 { 63 return ULONG_MAX; 64 } 65 66 /* 67 * On arm64, we have to ensure that the initrd ends up in the linear region, 68 * which is a 1 GB aligned region of size '1UL << (VA_BITS - 1)' that is 69 * guaranteed to cover the kernel Image. 70 * 71 * Since the EFI stub is part of the kernel Image, we can relax the 72 * usual requirements in Documentation/arm64/booting.txt, which still 73 * apply to other bootloaders, and are required for some kernel 74 * configurations. 75 */ 76 static inline unsigned long efi_get_max_initrd_addr(unsigned long dram_base, 77 unsigned long image_addr) 78 { 79 return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS - 1)); 80 } 81 82 #define efi_call_early(f, ...) sys_table_arg->boottime->f(__VA_ARGS__) 83 #define __efi_call_early(f, ...) f(__VA_ARGS__) 84 #define efi_call_runtime(f, ...) sys_table_arg->runtime->f(__VA_ARGS__) 85 #define efi_is_64bit() (true) 86 87 #define efi_call_proto(protocol, f, instance, ...) \ 88 ((protocol##_t *)instance)->f(instance, ##__VA_ARGS__) 89 90 #define alloc_screen_info(x...) &screen_info 91 #define free_screen_info(x...) 92 93 /* redeclare as 'hidden' so the compiler will generate relative references */ 94 extern struct screen_info screen_info __attribute__((__visibility__("hidden"))); 95 96 static inline void efifb_setup_from_dmi(struct screen_info *si, const char *opt) 97 { 98 } 99 100 #define EFI_ALLOC_ALIGN SZ_64K 101 102 /* 103 * On ARM systems, virtually remapped UEFI runtime services are set up in two 104 * distinct stages: 105 * - The stub retrieves the final version of the memory map from UEFI, populates 106 * the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime 107 * service to communicate the new mapping to the firmware (Note that the new 108 * mapping is not live at this time) 109 * - During an early initcall(), the EFI system table is permanently remapped 110 * and the virtual remapping of the UEFI Runtime Services regions is loaded 111 * into a private set of page tables. If this all succeeds, the Runtime 112 * Services are enabled and the EFI_RUNTIME_SERVICES bit set. 113 */ 114 115 static inline void efi_set_pgd(struct mm_struct *mm) 116 { 117 __switch_mm(mm); 118 119 if (system_uses_ttbr0_pan()) { 120 if (mm != current->active_mm) { 121 /* 122 * Update the current thread's saved ttbr0 since it is 123 * restored as part of a return from exception. Set 124 * the hardware TTBR0_EL1 using cpu_switch_mm() 125 * directly to enable potential errata workarounds. 126 */ 127 update_saved_ttbr0(current, mm); 128 cpu_switch_mm(mm->pgd, mm); 129 } else { 130 /* 131 * Defer the switch to the current thread's TTBR0_EL1 132 * until uaccess_enable(). Restore the current 133 * thread's saved ttbr0 corresponding to its active_mm 134 * (if different from init_mm). 135 */ 136 cpu_set_reserved_ttbr0(); 137 if (current->active_mm != &init_mm) 138 update_saved_ttbr0(current, current->active_mm); 139 } 140 } 141 } 142 143 void efi_virtmap_load(void); 144 void efi_virtmap_unload(void); 145 146 #endif /* _ASM_EFI_H */ 147