1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org> 4 */ 5 6 #ifndef __ASM_CPUFEATURE_H 7 #define __ASM_CPUFEATURE_H 8 9 #include <asm/cpucaps.h> 10 #include <asm/cputype.h> 11 #include <asm/hwcap.h> 12 #include <asm/sysreg.h> 13 14 #define MAX_CPU_FEATURES 64 15 #define cpu_feature(x) KERNEL_HWCAP_ ## x 16 17 #ifndef __ASSEMBLY__ 18 19 #include <linux/bug.h> 20 #include <linux/jump_label.h> 21 #include <linux/kernel.h> 22 23 /* 24 * CPU feature register tracking 25 * 26 * The safe value of a CPUID feature field is dependent on the implications 27 * of the values assigned to it by the architecture. Based on the relationship 28 * between the values, the features are classified into 3 types - LOWER_SAFE, 29 * HIGHER_SAFE and EXACT. 30 * 31 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest 32 * for HIGHER_SAFE. It is expected that all CPUs have the same value for 33 * a field when EXACT is specified, failing which, the safe value specified 34 * in the table is chosen. 35 */ 36 37 enum ftr_type { 38 FTR_EXACT, /* Use a predefined safe value */ 39 FTR_LOWER_SAFE, /* Smaller value is safe */ 40 FTR_HIGHER_SAFE, /* Bigger value is safe */ 41 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */ 42 }; 43 44 #define FTR_STRICT true /* SANITY check strict matching required */ 45 #define FTR_NONSTRICT false /* SANITY check ignored */ 46 47 #define FTR_SIGNED true /* Value should be treated as signed */ 48 #define FTR_UNSIGNED false /* Value should be treated as unsigned */ 49 50 #define FTR_VISIBLE true /* Feature visible to the user space */ 51 #define FTR_HIDDEN false /* Feature is hidden from the user */ 52 53 #define FTR_VISIBLE_IF_IS_ENABLED(config) \ 54 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN) 55 56 struct arm64_ftr_bits { 57 bool sign; /* Value is signed ? */ 58 bool visible; 59 bool strict; /* CPU Sanity check: strict matching required ? */ 60 enum ftr_type type; 61 u8 shift; 62 u8 width; 63 s64 safe_val; /* safe value for FTR_EXACT features */ 64 }; 65 66 /* 67 * @arm64_ftr_reg - Feature register 68 * @strict_mask Bits which should match across all CPUs for sanity. 69 * @sys_val Safe value across the CPUs (system view) 70 */ 71 struct arm64_ftr_reg { 72 const char *name; 73 u64 strict_mask; 74 u64 user_mask; 75 u64 sys_val; 76 u64 user_val; 77 const struct arm64_ftr_bits *ftr_bits; 78 }; 79 80 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0; 81 82 /* 83 * CPU capabilities: 84 * 85 * We use arm64_cpu_capabilities to represent system features, errata work 86 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and 87 * ELF HWCAPs (which are exposed to user). 88 * 89 * To support systems with heterogeneous CPUs, we need to make sure that we 90 * detect the capabilities correctly on the system and take appropriate 91 * measures to ensure there are no incompatibilities. 92 * 93 * This comment tries to explain how we treat the capabilities. 94 * Each capability has the following list of attributes : 95 * 96 * 1) Scope of Detection : The system detects a given capability by 97 * performing some checks at runtime. This could be, e.g, checking the 98 * value of a field in CPU ID feature register or checking the cpu 99 * model. The capability provides a call back ( @matches() ) to 100 * perform the check. Scope defines how the checks should be performed. 101 * There are three cases: 102 * 103 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one 104 * matches. This implies, we have to run the check on all the 105 * booting CPUs, until the system decides that state of the 106 * capability is finalised. (See section 2 below) 107 * Or 108 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs 109 * matches. This implies, we run the check only once, when the 110 * system decides to finalise the state of the capability. If the 111 * capability relies on a field in one of the CPU ID feature 112 * registers, we use the sanitised value of the register from the 113 * CPU feature infrastructure to make the decision. 114 * Or 115 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the 116 * feature. This category is for features that are "finalised" 117 * (or used) by the kernel very early even before the SMP cpus 118 * are brought up. 119 * 120 * The process of detection is usually denoted by "update" capability 121 * state in the code. 122 * 123 * 2) Finalise the state : The kernel should finalise the state of a 124 * capability at some point during its execution and take necessary 125 * actions if any. Usually, this is done, after all the boot-time 126 * enabled CPUs are brought up by the kernel, so that it can make 127 * better decision based on the available set of CPUs. However, there 128 * are some special cases, where the action is taken during the early 129 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with 130 * Virtualisation Host Extensions). The kernel usually disallows any 131 * changes to the state of a capability once it finalises the capability 132 * and takes any action, as it may be impossible to execute the actions 133 * safely. A CPU brought up after a capability is "finalised" is 134 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary 135 * CPUs are treated "late CPUs" for capabilities determined by the boot 136 * CPU. 137 * 138 * At the moment there are two passes of finalising the capabilities. 139 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via 140 * setup_boot_cpu_capabilities(). 141 * b) Everything except (a) - Run via setup_system_capabilities(). 142 * 143 * 3) Verification: When a CPU is brought online (e.g, by user or by the 144 * kernel), the kernel should make sure that it is safe to use the CPU, 145 * by verifying that the CPU is compliant with the state of the 146 * capabilities finalised already. This happens via : 147 * 148 * secondary_start_kernel()-> check_local_cpu_capabilities() 149 * 150 * As explained in (2) above, capabilities could be finalised at 151 * different points in the execution. Each newly booted CPU is verified 152 * against the capabilities that have been finalised by the time it 153 * boots. 154 * 155 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability 156 * except for the primary boot CPU. 157 * 158 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the 159 * user after the kernel boot are verified against the capability. 160 * 161 * If there is a conflict, the kernel takes an action, based on the 162 * severity (e.g, a CPU could be prevented from booting or cause a 163 * kernel panic). The CPU is allowed to "affect" the state of the 164 * capability, if it has not been finalised already. See section 5 165 * for more details on conflicts. 166 * 167 * 4) Action: As mentioned in (2), the kernel can take an action for each 168 * detected capability, on all CPUs on the system. Appropriate actions 169 * include, turning on an architectural feature, modifying the control 170 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via 171 * alternatives. The kernel patching is batched and performed at later 172 * point. The actions are always initiated only after the capability 173 * is finalised. This is usally denoted by "enabling" the capability. 174 * The actions are initiated as follows : 175 * a) Action is triggered on all online CPUs, after the capability is 176 * finalised, invoked within the stop_machine() context from 177 * enable_cpu_capabilitie(). 178 * 179 * b) Any late CPU, brought up after (1), the action is triggered via: 180 * 181 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities() 182 * 183 * 5) Conflicts: Based on the state of the capability on a late CPU vs. 184 * the system state, we could have the following combinations : 185 * 186 * x-----------------------------x 187 * | Type | System | Late CPU | 188 * |-----------------------------| 189 * | a | y | n | 190 * |-----------------------------| 191 * | b | n | y | 192 * x-----------------------------x 193 * 194 * Two separate flag bits are defined to indicate whether each kind of 195 * conflict can be allowed: 196 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed 197 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed 198 * 199 * Case (a) is not permitted for a capability that the system requires 200 * all CPUs to have in order for the capability to be enabled. This is 201 * typical for capabilities that represent enhanced functionality. 202 * 203 * Case (b) is not permitted for a capability that must be enabled 204 * during boot if any CPU in the system requires it in order to run 205 * safely. This is typical for erratum work arounds that cannot be 206 * enabled after the corresponding capability is finalised. 207 * 208 * In some non-typical cases either both (a) and (b), or neither, 209 * should be permitted. This can be described by including neither 210 * or both flags in the capability's type field. 211 */ 212 213 214 /* 215 * Decide how the capability is detected. 216 * On any local CPU vs System wide vs the primary boot CPU 217 */ 218 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0)) 219 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1)) 220 /* 221 * The capabilitiy is detected on the Boot CPU and is used by kernel 222 * during early boot. i.e, the capability should be "detected" and 223 * "enabled" as early as possibly on all booting CPUs. 224 */ 225 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2)) 226 #define ARM64_CPUCAP_SCOPE_MASK \ 227 (ARM64_CPUCAP_SCOPE_SYSTEM | \ 228 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 229 ARM64_CPUCAP_SCOPE_BOOT_CPU) 230 231 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM 232 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU 233 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU 234 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK 235 236 /* 237 * Is it permitted for a late CPU to have this capability when system 238 * hasn't already enabled it ? 239 */ 240 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4)) 241 /* Is it safe for a late CPU to miss this capability when system has it */ 242 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5)) 243 244 /* 245 * CPU errata workarounds that need to be enabled at boot time if one or 246 * more CPUs in the system requires it. When one of these capabilities 247 * has been enabled, it is safe to allow any CPU to boot that doesn't 248 * require the workaround. However, it is not safe if a "late" CPU 249 * requires a workaround and the system hasn't enabled it already. 250 */ 251 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \ 252 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU) 253 /* 254 * CPU feature detected at boot time based on system-wide value of a 255 * feature. It is safe for a late CPU to have this feature even though 256 * the system hasn't enabled it, although the feature will not be used 257 * by Linux in this case. If the system has enabled this feature already, 258 * then every late CPU must have it. 259 */ 260 #define ARM64_CPUCAP_SYSTEM_FEATURE \ 261 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 262 /* 263 * CPU feature detected at boot time based on feature of one or more CPUs. 264 * All possible conflicts for a late CPU are ignored. 265 */ 266 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \ 267 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 268 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \ 269 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 270 271 /* 272 * CPU feature detected at boot time, on one or more CPUs. A late CPU 273 * is not allowed to have the capability when the system doesn't have it. 274 * It is Ok for a late CPU to miss the feature. 275 */ 276 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \ 277 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 278 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU) 279 280 /* 281 * CPU feature used early in the boot based on the boot CPU. All secondary 282 * CPUs must match the state of the capability as detected by the boot CPU. 283 */ 284 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU 285 286 struct arm64_cpu_capabilities { 287 const char *desc; 288 u16 capability; 289 u16 type; 290 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope); 291 /* 292 * Take the appropriate actions to enable this capability for this CPU. 293 * For each successfully booted CPU, this method is called for each 294 * globally detected capability. 295 */ 296 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap); 297 union { 298 struct { /* To be used for erratum handling only */ 299 struct midr_range midr_range; 300 const struct arm64_midr_revidr { 301 u32 midr_rv; /* revision/variant */ 302 u32 revidr_mask; 303 } * const fixed_revs; 304 }; 305 306 const struct midr_range *midr_range_list; 307 struct { /* Feature register checking */ 308 u32 sys_reg; 309 u8 field_pos; 310 u8 min_field_value; 311 u8 hwcap_type; 312 bool sign; 313 unsigned long hwcap; 314 }; 315 }; 316 317 /* 318 * An optional list of "matches/cpu_enable" pair for the same 319 * "capability" of the same "type" as described by the parent. 320 * Only matches(), cpu_enable() and fields relevant to these 321 * methods are significant in the list. The cpu_enable is 322 * invoked only if the corresponding entry "matches()". 323 * However, if a cpu_enable() method is associated 324 * with multiple matches(), care should be taken that either 325 * the match criteria are mutually exclusive, or that the 326 * method is robust against being called multiple times. 327 */ 328 const struct arm64_cpu_capabilities *match_list; 329 }; 330 331 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap) 332 { 333 return cap->type & ARM64_CPUCAP_SCOPE_MASK; 334 } 335 336 static inline bool 337 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap) 338 { 339 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU); 340 } 341 342 static inline bool 343 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap) 344 { 345 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU); 346 } 347 348 /* 349 * Generic helper for handling capabilties with multiple (match,enable) pairs 350 * of call backs, sharing the same capability bit. 351 * Iterate over each entry to see if at least one matches. 352 */ 353 static inline bool 354 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry, 355 int scope) 356 { 357 const struct arm64_cpu_capabilities *caps; 358 359 for (caps = entry->match_list; caps->matches; caps++) 360 if (caps->matches(caps, scope)) 361 return true; 362 363 return false; 364 } 365 366 /* 367 * Take appropriate action for all matching entries in the shared capability 368 * entry. 369 */ 370 static inline void 371 cpucap_multi_entry_cap_cpu_enable(const struct arm64_cpu_capabilities *entry) 372 { 373 const struct arm64_cpu_capabilities *caps; 374 375 for (caps = entry->match_list; caps->matches; caps++) 376 if (caps->matches(caps, SCOPE_LOCAL_CPU) && 377 caps->cpu_enable) 378 caps->cpu_enable(caps); 379 } 380 381 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); 382 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS]; 383 extern struct static_key_false arm64_const_caps_ready; 384 385 /* ARM64 CAPS + alternative_cb */ 386 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1) 387 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE); 388 389 #define for_each_available_cap(cap) \ 390 for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS) 391 392 bool this_cpu_has_cap(unsigned int cap); 393 void cpu_set_feature(unsigned int num); 394 bool cpu_have_feature(unsigned int num); 395 unsigned long cpu_get_elf_hwcap(void); 396 unsigned long cpu_get_elf_hwcap2(void); 397 398 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name)) 399 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name)) 400 401 /* System capability check for constant caps */ 402 static __always_inline bool __cpus_have_const_cap(int num) 403 { 404 if (num >= ARM64_NCAPS) 405 return false; 406 return static_branch_unlikely(&cpu_hwcap_keys[num]); 407 } 408 409 static inline bool cpus_have_cap(unsigned int num) 410 { 411 if (num >= ARM64_NCAPS) 412 return false; 413 return test_bit(num, cpu_hwcaps); 414 } 415 416 static __always_inline bool cpus_have_const_cap(int num) 417 { 418 if (static_branch_likely(&arm64_const_caps_ready)) 419 return __cpus_have_const_cap(num); 420 else 421 return cpus_have_cap(num); 422 } 423 424 static inline void cpus_set_cap(unsigned int num) 425 { 426 if (num >= ARM64_NCAPS) { 427 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n", 428 num, ARM64_NCAPS); 429 } else { 430 __set_bit(num, cpu_hwcaps); 431 } 432 } 433 434 static inline int __attribute_const__ 435 cpuid_feature_extract_signed_field_width(u64 features, int field, int width) 436 { 437 return (s64)(features << (64 - width - field)) >> (64 - width); 438 } 439 440 static inline int __attribute_const__ 441 cpuid_feature_extract_signed_field(u64 features, int field) 442 { 443 return cpuid_feature_extract_signed_field_width(features, field, 4); 444 } 445 446 static inline unsigned int __attribute_const__ 447 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width) 448 { 449 return (u64)(features << (64 - width - field)) >> (64 - width); 450 } 451 452 static inline unsigned int __attribute_const__ 453 cpuid_feature_extract_unsigned_field(u64 features, int field) 454 { 455 return cpuid_feature_extract_unsigned_field_width(features, field, 4); 456 } 457 458 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp) 459 { 460 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift); 461 } 462 463 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg) 464 { 465 return (reg->user_val | (reg->sys_val & reg->user_mask)); 466 } 467 468 static inline int __attribute_const__ 469 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign) 470 { 471 return (sign) ? 472 cpuid_feature_extract_signed_field_width(features, field, width) : 473 cpuid_feature_extract_unsigned_field_width(features, field, width); 474 } 475 476 static inline int __attribute_const__ 477 cpuid_feature_extract_field(u64 features, int field, bool sign) 478 { 479 return cpuid_feature_extract_field_width(features, field, 4, sign); 480 } 481 482 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val) 483 { 484 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign); 485 } 486 487 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0) 488 { 489 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 || 490 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1; 491 } 492 493 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0) 494 { 495 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT); 496 497 return val == ID_AA64PFR0_EL0_32BIT_64BIT; 498 } 499 500 static inline bool id_aa64pfr0_sve(u64 pfr0) 501 { 502 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT); 503 504 return val > 0; 505 } 506 507 void __init setup_cpu_features(void); 508 void check_local_cpu_capabilities(void); 509 510 u64 read_sanitised_ftr_reg(u32 id); 511 512 static inline bool cpu_supports_mixed_endian_el0(void) 513 { 514 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1)); 515 } 516 517 static inline bool system_supports_32bit_el0(void) 518 { 519 return cpus_have_const_cap(ARM64_HAS_32BIT_EL0); 520 } 521 522 static inline bool system_supports_4kb_granule(void) 523 { 524 u64 mmfr0; 525 u32 val; 526 527 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 528 val = cpuid_feature_extract_unsigned_field(mmfr0, 529 ID_AA64MMFR0_TGRAN4_SHIFT); 530 531 return val == ID_AA64MMFR0_TGRAN4_SUPPORTED; 532 } 533 534 static inline bool system_supports_64kb_granule(void) 535 { 536 u64 mmfr0; 537 u32 val; 538 539 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 540 val = cpuid_feature_extract_unsigned_field(mmfr0, 541 ID_AA64MMFR0_TGRAN64_SHIFT); 542 543 return val == ID_AA64MMFR0_TGRAN64_SUPPORTED; 544 } 545 546 static inline bool system_supports_16kb_granule(void) 547 { 548 u64 mmfr0; 549 u32 val; 550 551 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 552 val = cpuid_feature_extract_unsigned_field(mmfr0, 553 ID_AA64MMFR0_TGRAN16_SHIFT); 554 555 return val == ID_AA64MMFR0_TGRAN16_SUPPORTED; 556 } 557 558 static inline bool system_supports_mixed_endian_el0(void) 559 { 560 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1)); 561 } 562 563 static inline bool system_supports_mixed_endian(void) 564 { 565 u64 mmfr0; 566 u32 val; 567 568 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 569 val = cpuid_feature_extract_unsigned_field(mmfr0, 570 ID_AA64MMFR0_BIGENDEL_SHIFT); 571 572 return val == 0x1; 573 } 574 575 static inline bool system_supports_fpsimd(void) 576 { 577 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD); 578 } 579 580 static inline bool system_uses_ttbr0_pan(void) 581 { 582 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) && 583 !cpus_have_const_cap(ARM64_HAS_PAN); 584 } 585 586 static inline bool system_supports_sve(void) 587 { 588 return IS_ENABLED(CONFIG_ARM64_SVE) && 589 cpus_have_const_cap(ARM64_SVE); 590 } 591 592 static inline bool system_supports_cnp(void) 593 { 594 return IS_ENABLED(CONFIG_ARM64_CNP) && 595 cpus_have_const_cap(ARM64_HAS_CNP); 596 } 597 598 static inline bool system_supports_address_auth(void) 599 { 600 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) && 601 (cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) || 602 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF)); 603 } 604 605 static inline bool system_supports_generic_auth(void) 606 { 607 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) && 608 (cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_ARCH) || 609 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF)); 610 } 611 612 static inline bool system_uses_irq_prio_masking(void) 613 { 614 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && 615 cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING); 616 } 617 618 static inline bool system_has_prio_mask_debugging(void) 619 { 620 return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) && 621 system_uses_irq_prio_masking(); 622 } 623 624 #define ARM64_BP_HARDEN_UNKNOWN -1 625 #define ARM64_BP_HARDEN_WA_NEEDED 0 626 #define ARM64_BP_HARDEN_NOT_REQUIRED 1 627 628 int get_spectre_v2_workaround_state(void); 629 630 #define ARM64_SSBD_UNKNOWN -1 631 #define ARM64_SSBD_FORCE_DISABLE 0 632 #define ARM64_SSBD_KERNEL 1 633 #define ARM64_SSBD_FORCE_ENABLE 2 634 #define ARM64_SSBD_MITIGATED 3 635 636 static inline int arm64_get_ssbd_state(void) 637 { 638 #ifdef CONFIG_ARM64_SSBD 639 extern int ssbd_state; 640 return ssbd_state; 641 #else 642 return ARM64_SSBD_UNKNOWN; 643 #endif 644 } 645 646 void arm64_set_ssbd_mitigation(bool state); 647 648 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt); 649 650 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange) 651 { 652 switch (parange) { 653 case 0: return 32; 654 case 1: return 36; 655 case 2: return 40; 656 case 3: return 42; 657 case 4: return 44; 658 case 5: return 48; 659 case 6: return 52; 660 /* 661 * A future PE could use a value unknown to the kernel. 662 * However, by the "D10.1.4 Principles of the ID scheme 663 * for fields in ID registers", ARM DDI 0487C.a, any new 664 * value is guaranteed to be higher than what we know already. 665 * As a safe limit, we return the limit supported by the kernel. 666 */ 667 default: return CONFIG_ARM64_PA_BITS; 668 } 669 } 670 #endif /* __ASSEMBLY__ */ 671 672 #endif 673