1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org> 4 */ 5 6 #ifndef __ASM_CPUFEATURE_H 7 #define __ASM_CPUFEATURE_H 8 9 #include <asm/cpucaps.h> 10 #include <asm/cputype.h> 11 #include <asm/hwcap.h> 12 #include <asm/sysreg.h> 13 14 #define MAX_CPU_FEATURES 64 15 #define cpu_feature(x) KERNEL_HWCAP_ ## x 16 17 #ifndef __ASSEMBLY__ 18 19 #include <linux/bug.h> 20 #include <linux/jump_label.h> 21 #include <linux/kernel.h> 22 23 /* 24 * CPU feature register tracking 25 * 26 * The safe value of a CPUID feature field is dependent on the implications 27 * of the values assigned to it by the architecture. Based on the relationship 28 * between the values, the features are classified into 3 types - LOWER_SAFE, 29 * HIGHER_SAFE and EXACT. 30 * 31 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest 32 * for HIGHER_SAFE. It is expected that all CPUs have the same value for 33 * a field when EXACT is specified, failing which, the safe value specified 34 * in the table is chosen. 35 */ 36 37 enum ftr_type { 38 FTR_EXACT, /* Use a predefined safe value */ 39 FTR_LOWER_SAFE, /* Smaller value is safe */ 40 FTR_HIGHER_SAFE, /* Bigger value is safe */ 41 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */ 42 }; 43 44 #define FTR_STRICT true /* SANITY check strict matching required */ 45 #define FTR_NONSTRICT false /* SANITY check ignored */ 46 47 #define FTR_SIGNED true /* Value should be treated as signed */ 48 #define FTR_UNSIGNED false /* Value should be treated as unsigned */ 49 50 #define FTR_VISIBLE true /* Feature visible to the user space */ 51 #define FTR_HIDDEN false /* Feature is hidden from the user */ 52 53 #define FTR_VISIBLE_IF_IS_ENABLED(config) \ 54 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN) 55 56 struct arm64_ftr_bits { 57 bool sign; /* Value is signed ? */ 58 bool visible; 59 bool strict; /* CPU Sanity check: strict matching required ? */ 60 enum ftr_type type; 61 u8 shift; 62 u8 width; 63 s64 safe_val; /* safe value for FTR_EXACT features */ 64 }; 65 66 /* 67 * @arm64_ftr_reg - Feature register 68 * @strict_mask Bits which should match across all CPUs for sanity. 69 * @sys_val Safe value across the CPUs (system view) 70 */ 71 struct arm64_ftr_reg { 72 const char *name; 73 u64 strict_mask; 74 u64 user_mask; 75 u64 sys_val; 76 u64 user_val; 77 const struct arm64_ftr_bits *ftr_bits; 78 }; 79 80 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0; 81 82 /* 83 * CPU capabilities: 84 * 85 * We use arm64_cpu_capabilities to represent system features, errata work 86 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and 87 * ELF HWCAPs (which are exposed to user). 88 * 89 * To support systems with heterogeneous CPUs, we need to make sure that we 90 * detect the capabilities correctly on the system and take appropriate 91 * measures to ensure there are no incompatibilities. 92 * 93 * This comment tries to explain how we treat the capabilities. 94 * Each capability has the following list of attributes : 95 * 96 * 1) Scope of Detection : The system detects a given capability by 97 * performing some checks at runtime. This could be, e.g, checking the 98 * value of a field in CPU ID feature register or checking the cpu 99 * model. The capability provides a call back ( @matches() ) to 100 * perform the check. Scope defines how the checks should be performed. 101 * There are three cases: 102 * 103 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one 104 * matches. This implies, we have to run the check on all the 105 * booting CPUs, until the system decides that state of the 106 * capability is finalised. (See section 2 below) 107 * Or 108 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs 109 * matches. This implies, we run the check only once, when the 110 * system decides to finalise the state of the capability. If the 111 * capability relies on a field in one of the CPU ID feature 112 * registers, we use the sanitised value of the register from the 113 * CPU feature infrastructure to make the decision. 114 * Or 115 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the 116 * feature. This category is for features that are "finalised" 117 * (or used) by the kernel very early even before the SMP cpus 118 * are brought up. 119 * 120 * The process of detection is usually denoted by "update" capability 121 * state in the code. 122 * 123 * 2) Finalise the state : The kernel should finalise the state of a 124 * capability at some point during its execution and take necessary 125 * actions if any. Usually, this is done, after all the boot-time 126 * enabled CPUs are brought up by the kernel, so that it can make 127 * better decision based on the available set of CPUs. However, there 128 * are some special cases, where the action is taken during the early 129 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with 130 * Virtualisation Host Extensions). The kernel usually disallows any 131 * changes to the state of a capability once it finalises the capability 132 * and takes any action, as it may be impossible to execute the actions 133 * safely. A CPU brought up after a capability is "finalised" is 134 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary 135 * CPUs are treated "late CPUs" for capabilities determined by the boot 136 * CPU. 137 * 138 * At the moment there are two passes of finalising the capabilities. 139 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via 140 * setup_boot_cpu_capabilities(). 141 * b) Everything except (a) - Run via setup_system_capabilities(). 142 * 143 * 3) Verification: When a CPU is brought online (e.g, by user or by the 144 * kernel), the kernel should make sure that it is safe to use the CPU, 145 * by verifying that the CPU is compliant with the state of the 146 * capabilities finalised already. This happens via : 147 * 148 * secondary_start_kernel()-> check_local_cpu_capabilities() 149 * 150 * As explained in (2) above, capabilities could be finalised at 151 * different points in the execution. Each newly booted CPU is verified 152 * against the capabilities that have been finalised by the time it 153 * boots. 154 * 155 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability 156 * except for the primary boot CPU. 157 * 158 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the 159 * user after the kernel boot are verified against the capability. 160 * 161 * If there is a conflict, the kernel takes an action, based on the 162 * severity (e.g, a CPU could be prevented from booting or cause a 163 * kernel panic). The CPU is allowed to "affect" the state of the 164 * capability, if it has not been finalised already. See section 5 165 * for more details on conflicts. 166 * 167 * 4) Action: As mentioned in (2), the kernel can take an action for each 168 * detected capability, on all CPUs on the system. Appropriate actions 169 * include, turning on an architectural feature, modifying the control 170 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via 171 * alternatives. The kernel patching is batched and performed at later 172 * point. The actions are always initiated only after the capability 173 * is finalised. This is usally denoted by "enabling" the capability. 174 * The actions are initiated as follows : 175 * a) Action is triggered on all online CPUs, after the capability is 176 * finalised, invoked within the stop_machine() context from 177 * enable_cpu_capabilitie(). 178 * 179 * b) Any late CPU, brought up after (1), the action is triggered via: 180 * 181 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities() 182 * 183 * 5) Conflicts: Based on the state of the capability on a late CPU vs. 184 * the system state, we could have the following combinations : 185 * 186 * x-----------------------------x 187 * | Type | System | Late CPU | 188 * |-----------------------------| 189 * | a | y | n | 190 * |-----------------------------| 191 * | b | n | y | 192 * x-----------------------------x 193 * 194 * Two separate flag bits are defined to indicate whether each kind of 195 * conflict can be allowed: 196 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed 197 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed 198 * 199 * Case (a) is not permitted for a capability that the system requires 200 * all CPUs to have in order for the capability to be enabled. This is 201 * typical for capabilities that represent enhanced functionality. 202 * 203 * Case (b) is not permitted for a capability that must be enabled 204 * during boot if any CPU in the system requires it in order to run 205 * safely. This is typical for erratum work arounds that cannot be 206 * enabled after the corresponding capability is finalised. 207 * 208 * In some non-typical cases either both (a) and (b), or neither, 209 * should be permitted. This can be described by including neither 210 * or both flags in the capability's type field. 211 */ 212 213 214 /* 215 * Decide how the capability is detected. 216 * On any local CPU vs System wide vs the primary boot CPU 217 */ 218 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0)) 219 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1)) 220 /* 221 * The capabilitiy is detected on the Boot CPU and is used by kernel 222 * during early boot. i.e, the capability should be "detected" and 223 * "enabled" as early as possibly on all booting CPUs. 224 */ 225 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2)) 226 #define ARM64_CPUCAP_SCOPE_MASK \ 227 (ARM64_CPUCAP_SCOPE_SYSTEM | \ 228 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 229 ARM64_CPUCAP_SCOPE_BOOT_CPU) 230 231 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM 232 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU 233 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU 234 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK 235 236 /* 237 * Is it permitted for a late CPU to have this capability when system 238 * hasn't already enabled it ? 239 */ 240 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4)) 241 /* Is it safe for a late CPU to miss this capability when system has it */ 242 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5)) 243 244 /* 245 * CPU errata workarounds that need to be enabled at boot time if one or 246 * more CPUs in the system requires it. When one of these capabilities 247 * has been enabled, it is safe to allow any CPU to boot that doesn't 248 * require the workaround. However, it is not safe if a "late" CPU 249 * requires a workaround and the system hasn't enabled it already. 250 */ 251 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \ 252 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU) 253 /* 254 * CPU feature detected at boot time based on system-wide value of a 255 * feature. It is safe for a late CPU to have this feature even though 256 * the system hasn't enabled it, although the feature will not be used 257 * by Linux in this case. If the system has enabled this feature already, 258 * then every late CPU must have it. 259 */ 260 #define ARM64_CPUCAP_SYSTEM_FEATURE \ 261 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 262 /* 263 * CPU feature detected at boot time based on feature of one or more CPUs. 264 * All possible conflicts for a late CPU are ignored. 265 */ 266 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \ 267 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 268 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \ 269 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 270 271 /* 272 * CPU feature detected at boot time, on one or more CPUs. A late CPU 273 * is not allowed to have the capability when the system doesn't have it. 274 * It is Ok for a late CPU to miss the feature. 275 */ 276 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \ 277 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 278 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU) 279 280 /* 281 * CPU feature used early in the boot based on the boot CPU. All secondary 282 * CPUs must match the state of the capability as detected by the boot CPU. 283 */ 284 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU 285 286 struct arm64_cpu_capabilities { 287 const char *desc; 288 u16 capability; 289 u16 type; 290 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope); 291 /* 292 * Take the appropriate actions to configure this capability 293 * for this CPU. If the capability is detected by the kernel 294 * this will be called on all the CPUs in the system, 295 * including the hotplugged CPUs, regardless of whether the 296 * capability is available on that specific CPU. This is 297 * useful for some capabilities (e.g, working around CPU 298 * errata), where all the CPUs must take some action (e.g, 299 * changing system control/configuration). Thus, if an action 300 * is required only if the CPU has the capability, then the 301 * routine must check it before taking any action. 302 */ 303 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap); 304 union { 305 struct { /* To be used for erratum handling only */ 306 struct midr_range midr_range; 307 const struct arm64_midr_revidr { 308 u32 midr_rv; /* revision/variant */ 309 u32 revidr_mask; 310 } * const fixed_revs; 311 }; 312 313 const struct midr_range *midr_range_list; 314 struct { /* Feature register checking */ 315 u32 sys_reg; 316 u8 field_pos; 317 u8 min_field_value; 318 u8 hwcap_type; 319 bool sign; 320 unsigned long hwcap; 321 }; 322 }; 323 324 /* 325 * An optional list of "matches/cpu_enable" pair for the same 326 * "capability" of the same "type" as described by the parent. 327 * Only matches(), cpu_enable() and fields relevant to these 328 * methods are significant in the list. The cpu_enable is 329 * invoked only if the corresponding entry "matches()". 330 * However, if a cpu_enable() method is associated 331 * with multiple matches(), care should be taken that either 332 * the match criteria are mutually exclusive, or that the 333 * method is robust against being called multiple times. 334 */ 335 const struct arm64_cpu_capabilities *match_list; 336 }; 337 338 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap) 339 { 340 return cap->type & ARM64_CPUCAP_SCOPE_MASK; 341 } 342 343 static inline bool 344 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap) 345 { 346 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU); 347 } 348 349 static inline bool 350 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap) 351 { 352 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU); 353 } 354 355 /* 356 * Generic helper for handling capabilties with multiple (match,enable) pairs 357 * of call backs, sharing the same capability bit. 358 * Iterate over each entry to see if at least one matches. 359 */ 360 static inline bool 361 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry, 362 int scope) 363 { 364 const struct arm64_cpu_capabilities *caps; 365 366 for (caps = entry->match_list; caps->matches; caps++) 367 if (caps->matches(caps, scope)) 368 return true; 369 370 return false; 371 } 372 373 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); 374 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS]; 375 extern struct static_key_false arm64_const_caps_ready; 376 377 /* ARM64 CAPS + alternative_cb */ 378 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1) 379 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE); 380 381 #define for_each_available_cap(cap) \ 382 for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS) 383 384 bool this_cpu_has_cap(unsigned int cap); 385 void cpu_set_feature(unsigned int num); 386 bool cpu_have_feature(unsigned int num); 387 unsigned long cpu_get_elf_hwcap(void); 388 unsigned long cpu_get_elf_hwcap2(void); 389 390 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name)) 391 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name)) 392 393 /* System capability check for constant caps */ 394 static __always_inline bool __cpus_have_const_cap(int num) 395 { 396 if (num >= ARM64_NCAPS) 397 return false; 398 return static_branch_unlikely(&cpu_hwcap_keys[num]); 399 } 400 401 static inline bool cpus_have_cap(unsigned int num) 402 { 403 if (num >= ARM64_NCAPS) 404 return false; 405 return test_bit(num, cpu_hwcaps); 406 } 407 408 static __always_inline bool cpus_have_const_cap(int num) 409 { 410 if (static_branch_likely(&arm64_const_caps_ready)) 411 return __cpus_have_const_cap(num); 412 else 413 return cpus_have_cap(num); 414 } 415 416 static inline void cpus_set_cap(unsigned int num) 417 { 418 if (num >= ARM64_NCAPS) { 419 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n", 420 num, ARM64_NCAPS); 421 } else { 422 __set_bit(num, cpu_hwcaps); 423 } 424 } 425 426 static inline int __attribute_const__ 427 cpuid_feature_extract_signed_field_width(u64 features, int field, int width) 428 { 429 return (s64)(features << (64 - width - field)) >> (64 - width); 430 } 431 432 static inline int __attribute_const__ 433 cpuid_feature_extract_signed_field(u64 features, int field) 434 { 435 return cpuid_feature_extract_signed_field_width(features, field, 4); 436 } 437 438 static inline unsigned int __attribute_const__ 439 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width) 440 { 441 return (u64)(features << (64 - width - field)) >> (64 - width); 442 } 443 444 static inline unsigned int __attribute_const__ 445 cpuid_feature_extract_unsigned_field(u64 features, int field) 446 { 447 return cpuid_feature_extract_unsigned_field_width(features, field, 4); 448 } 449 450 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp) 451 { 452 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift); 453 } 454 455 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg) 456 { 457 return (reg->user_val | (reg->sys_val & reg->user_mask)); 458 } 459 460 static inline int __attribute_const__ 461 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign) 462 { 463 return (sign) ? 464 cpuid_feature_extract_signed_field_width(features, field, width) : 465 cpuid_feature_extract_unsigned_field_width(features, field, width); 466 } 467 468 static inline int __attribute_const__ 469 cpuid_feature_extract_field(u64 features, int field, bool sign) 470 { 471 return cpuid_feature_extract_field_width(features, field, 4, sign); 472 } 473 474 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val) 475 { 476 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign); 477 } 478 479 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0) 480 { 481 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 || 482 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1; 483 } 484 485 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0) 486 { 487 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT); 488 489 return val == ID_AA64PFR0_EL0_32BIT_64BIT; 490 } 491 492 static inline bool id_aa64pfr0_sve(u64 pfr0) 493 { 494 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT); 495 496 return val > 0; 497 } 498 499 void __init setup_cpu_features(void); 500 void check_local_cpu_capabilities(void); 501 502 u64 read_sanitised_ftr_reg(u32 id); 503 504 static inline bool cpu_supports_mixed_endian_el0(void) 505 { 506 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1)); 507 } 508 509 static inline bool system_supports_32bit_el0(void) 510 { 511 return cpus_have_const_cap(ARM64_HAS_32BIT_EL0); 512 } 513 514 static inline bool system_supports_4kb_granule(void) 515 { 516 u64 mmfr0; 517 u32 val; 518 519 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 520 val = cpuid_feature_extract_unsigned_field(mmfr0, 521 ID_AA64MMFR0_TGRAN4_SHIFT); 522 523 return val == ID_AA64MMFR0_TGRAN4_SUPPORTED; 524 } 525 526 static inline bool system_supports_64kb_granule(void) 527 { 528 u64 mmfr0; 529 u32 val; 530 531 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 532 val = cpuid_feature_extract_unsigned_field(mmfr0, 533 ID_AA64MMFR0_TGRAN64_SHIFT); 534 535 return val == ID_AA64MMFR0_TGRAN64_SUPPORTED; 536 } 537 538 static inline bool system_supports_16kb_granule(void) 539 { 540 u64 mmfr0; 541 u32 val; 542 543 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 544 val = cpuid_feature_extract_unsigned_field(mmfr0, 545 ID_AA64MMFR0_TGRAN16_SHIFT); 546 547 return val == ID_AA64MMFR0_TGRAN16_SUPPORTED; 548 } 549 550 static inline bool system_supports_mixed_endian_el0(void) 551 { 552 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1)); 553 } 554 555 static inline bool system_supports_mixed_endian(void) 556 { 557 u64 mmfr0; 558 u32 val; 559 560 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 561 val = cpuid_feature_extract_unsigned_field(mmfr0, 562 ID_AA64MMFR0_BIGENDEL_SHIFT); 563 564 return val == 0x1; 565 } 566 567 static inline bool system_supports_fpsimd(void) 568 { 569 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD); 570 } 571 572 static inline bool system_uses_ttbr0_pan(void) 573 { 574 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) && 575 !cpus_have_const_cap(ARM64_HAS_PAN); 576 } 577 578 static inline bool system_supports_sve(void) 579 { 580 return IS_ENABLED(CONFIG_ARM64_SVE) && 581 cpus_have_const_cap(ARM64_SVE); 582 } 583 584 static inline bool system_supports_cnp(void) 585 { 586 return IS_ENABLED(CONFIG_ARM64_CNP) && 587 cpus_have_const_cap(ARM64_HAS_CNP); 588 } 589 590 static inline bool system_supports_address_auth(void) 591 { 592 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) && 593 (cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) || 594 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF)); 595 } 596 597 static inline bool system_supports_generic_auth(void) 598 { 599 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) && 600 (cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_ARCH) || 601 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF)); 602 } 603 604 static inline bool system_uses_irq_prio_masking(void) 605 { 606 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && 607 cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING); 608 } 609 610 static inline bool system_has_prio_mask_debugging(void) 611 { 612 return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) && 613 system_uses_irq_prio_masking(); 614 } 615 616 static inline bool system_capabilities_finalized(void) 617 { 618 return static_branch_likely(&arm64_const_caps_ready); 619 } 620 621 #define ARM64_BP_HARDEN_UNKNOWN -1 622 #define ARM64_BP_HARDEN_WA_NEEDED 0 623 #define ARM64_BP_HARDEN_NOT_REQUIRED 1 624 625 int get_spectre_v2_workaround_state(void); 626 627 #define ARM64_SSBD_UNKNOWN -1 628 #define ARM64_SSBD_FORCE_DISABLE 0 629 #define ARM64_SSBD_KERNEL 1 630 #define ARM64_SSBD_FORCE_ENABLE 2 631 #define ARM64_SSBD_MITIGATED 3 632 633 static inline int arm64_get_ssbd_state(void) 634 { 635 #ifdef CONFIG_ARM64_SSBD 636 extern int ssbd_state; 637 return ssbd_state; 638 #else 639 return ARM64_SSBD_UNKNOWN; 640 #endif 641 } 642 643 void arm64_set_ssbd_mitigation(bool state); 644 645 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt); 646 647 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange) 648 { 649 switch (parange) { 650 case 0: return 32; 651 case 1: return 36; 652 case 2: return 40; 653 case 3: return 42; 654 case 4: return 44; 655 case 5: return 48; 656 case 6: return 52; 657 /* 658 * A future PE could use a value unknown to the kernel. 659 * However, by the "D10.1.4 Principles of the ID scheme 660 * for fields in ID registers", ARM DDI 0487C.a, any new 661 * value is guaranteed to be higher than what we know already. 662 * As a safe limit, we return the limit supported by the kernel. 663 */ 664 default: return CONFIG_ARM64_PA_BITS; 665 } 666 } 667 668 /* Check whether hardware update of the Access flag is supported */ 669 static inline bool cpu_has_hw_af(void) 670 { 671 u64 mmfr1; 672 673 if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM)) 674 return false; 675 676 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); 677 return cpuid_feature_extract_unsigned_field(mmfr1, 678 ID_AA64MMFR1_HADBS_SHIFT); 679 } 680 681 #endif /* __ASSEMBLY__ */ 682 683 #endif 684