1 /*
2  * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #ifndef __ASM_CPUFEATURE_H
10 #define __ASM_CPUFEATURE_H
11 
12 #include <asm/cpucaps.h>
13 #include <asm/cputype.h>
14 #include <asm/fpsimd.h>
15 #include <asm/hwcap.h>
16 #include <asm/sigcontext.h>
17 #include <asm/sysreg.h>
18 
19 /*
20  * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
21  * in the kernel and for user space to keep track of which optional features
22  * are supported by the current system. So let's map feature 'x' to HWCAP_x.
23  * Note that HWCAP_x constants are bit fields so we need to take the log.
24  */
25 
26 #define MAX_CPU_FEATURES	(8 * sizeof(elf_hwcap))
27 #define cpu_feature(x)		ilog2(HWCAP_ ## x)
28 
29 #ifndef __ASSEMBLY__
30 
31 #include <linux/bug.h>
32 #include <linux/jump_label.h>
33 #include <linux/kernel.h>
34 
35 /*
36  * CPU feature register tracking
37  *
38  * The safe value of a CPUID feature field is dependent on the implications
39  * of the values assigned to it by the architecture. Based on the relationship
40  * between the values, the features are classified into 3 types - LOWER_SAFE,
41  * HIGHER_SAFE and EXACT.
42  *
43  * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
44  * for HIGHER_SAFE. It is expected that all CPUs have the same value for
45  * a field when EXACT is specified, failing which, the safe value specified
46  * in the table is chosen.
47  */
48 
49 enum ftr_type {
50 	FTR_EXACT,	/* Use a predefined safe value */
51 	FTR_LOWER_SAFE,	/* Smaller value is safe */
52 	FTR_HIGHER_SAFE,/* Bigger value is safe */
53 };
54 
55 #define FTR_STRICT	true	/* SANITY check strict matching required */
56 #define FTR_NONSTRICT	false	/* SANITY check ignored */
57 
58 #define FTR_SIGNED	true	/* Value should be treated as signed */
59 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
60 
61 #define FTR_VISIBLE	true	/* Feature visible to the user space */
62 #define FTR_HIDDEN	false	/* Feature is hidden from the user */
63 
64 #define FTR_VISIBLE_IF_IS_ENABLED(config)		\
65 	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
66 
67 struct arm64_ftr_bits {
68 	bool		sign;	/* Value is signed ? */
69 	bool		visible;
70 	bool		strict;	/* CPU Sanity check: strict matching required ? */
71 	enum ftr_type	type;
72 	u8		shift;
73 	u8		width;
74 	s64		safe_val; /* safe value for FTR_EXACT features */
75 };
76 
77 /*
78  * @arm64_ftr_reg - Feature register
79  * @strict_mask		Bits which should match across all CPUs for sanity.
80  * @sys_val		Safe value across the CPUs (system view)
81  */
82 struct arm64_ftr_reg {
83 	const char			*name;
84 	u64				strict_mask;
85 	u64				user_mask;
86 	u64				sys_val;
87 	u64				user_val;
88 	const struct arm64_ftr_bits	*ftr_bits;
89 };
90 
91 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
92 
93 /*
94  * CPU capabilities:
95  *
96  * We use arm64_cpu_capabilities to represent system features, errata work
97  * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
98  * ELF HWCAPs (which are exposed to user).
99  *
100  * To support systems with heterogeneous CPUs, we need to make sure that we
101  * detect the capabilities correctly on the system and take appropriate
102  * measures to ensure there are no incompatibilities.
103  *
104  * This comment tries to explain how we treat the capabilities.
105  * Each capability has the following list of attributes :
106  *
107  * 1) Scope of Detection : The system detects a given capability by
108  *    performing some checks at runtime. This could be, e.g, checking the
109  *    value of a field in CPU ID feature register or checking the cpu
110  *    model. The capability provides a call back ( @matches() ) to
111  *    perform the check. Scope defines how the checks should be performed.
112  *    There are three cases:
113  *
114  *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
115  *        matches. This implies, we have to run the check on all the
116  *        booting CPUs, until the system decides that state of the
117  *        capability is finalised. (See section 2 below)
118  *		Or
119  *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
120  *        matches. This implies, we run the check only once, when the
121  *        system decides to finalise the state of the capability. If the
122  *        capability relies on a field in one of the CPU ID feature
123  *        registers, we use the sanitised value of the register from the
124  *        CPU feature infrastructure to make the decision.
125  *		Or
126  *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
127  *        feature. This category is for features that are "finalised"
128  *        (or used) by the kernel very early even before the SMP cpus
129  *        are brought up.
130  *
131  *    The process of detection is usually denoted by "update" capability
132  *    state in the code.
133  *
134  * 2) Finalise the state : The kernel should finalise the state of a
135  *    capability at some point during its execution and take necessary
136  *    actions if any. Usually, this is done, after all the boot-time
137  *    enabled CPUs are brought up by the kernel, so that it can make
138  *    better decision based on the available set of CPUs. However, there
139  *    are some special cases, where the action is taken during the early
140  *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
141  *    Virtualisation Host Extensions). The kernel usually disallows any
142  *    changes to the state of a capability once it finalises the capability
143  *    and takes any action, as it may be impossible to execute the actions
144  *    safely. A CPU brought up after a capability is "finalised" is
145  *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
146  *    CPUs are treated "late CPUs" for capabilities determined by the boot
147  *    CPU.
148  *
149  *    At the moment there are two passes of finalising the capabilities.
150  *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
151  *         setup_boot_cpu_capabilities().
152  *      b) Everything except (a) - Run via setup_system_capabilities().
153  *
154  * 3) Verification: When a CPU is brought online (e.g, by user or by the
155  *    kernel), the kernel should make sure that it is safe to use the CPU,
156  *    by verifying that the CPU is compliant with the state of the
157  *    capabilities finalised already. This happens via :
158  *
159  *	secondary_start_kernel()-> check_local_cpu_capabilities()
160  *
161  *    As explained in (2) above, capabilities could be finalised at
162  *    different points in the execution. Each newly booted CPU is verified
163  *    against the capabilities that have been finalised by the time it
164  *    boots.
165  *
166  *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
167  *	except for the primary boot CPU.
168  *
169  *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
170  *	user after the kernel boot are verified against the capability.
171  *
172  *    If there is a conflict, the kernel takes an action, based on the
173  *    severity (e.g, a CPU could be prevented from booting or cause a
174  *    kernel panic). The CPU is allowed to "affect" the state of the
175  *    capability, if it has not been finalised already. See section 5
176  *    for more details on conflicts.
177  *
178  * 4) Action: As mentioned in (2), the kernel can take an action for each
179  *    detected capability, on all CPUs on the system. Appropriate actions
180  *    include, turning on an architectural feature, modifying the control
181  *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
182  *    alternatives. The kernel patching is batched and performed at later
183  *    point. The actions are always initiated only after the capability
184  *    is finalised. This is usally denoted by "enabling" the capability.
185  *    The actions are initiated as follows :
186  *	a) Action is triggered on all online CPUs, after the capability is
187  *	finalised, invoked within the stop_machine() context from
188  *	enable_cpu_capabilitie().
189  *
190  *	b) Any late CPU, brought up after (1), the action is triggered via:
191  *
192  *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
193  *
194  * 5) Conflicts: Based on the state of the capability on a late CPU vs.
195  *    the system state, we could have the following combinations :
196  *
197  *		x-----------------------------x
198  *		| Type  | System   | Late CPU |
199  *		|-----------------------------|
200  *		|  a    |   y      |    n     |
201  *		|-----------------------------|
202  *		|  b    |   n      |    y     |
203  *		x-----------------------------x
204  *
205  *     Two separate flag bits are defined to indicate whether each kind of
206  *     conflict can be allowed:
207  *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
208  *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
209  *
210  *     Case (a) is not permitted for a capability that the system requires
211  *     all CPUs to have in order for the capability to be enabled. This is
212  *     typical for capabilities that represent enhanced functionality.
213  *
214  *     Case (b) is not permitted for a capability that must be enabled
215  *     during boot if any CPU in the system requires it in order to run
216  *     safely. This is typical for erratum work arounds that cannot be
217  *     enabled after the corresponding capability is finalised.
218  *
219  *     In some non-typical cases either both (a) and (b), or neither,
220  *     should be permitted. This can be described by including neither
221  *     or both flags in the capability's type field.
222  */
223 
224 
225 /*
226  * Decide how the capability is detected.
227  * On any local CPU vs System wide vs the primary boot CPU
228  */
229 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
230 #define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
231 /*
232  * The capabilitiy is detected on the Boot CPU and is used by kernel
233  * during early boot. i.e, the capability should be "detected" and
234  * "enabled" as early as possibly on all booting CPUs.
235  */
236 #define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
237 #define ARM64_CPUCAP_SCOPE_MASK			\
238 	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
239 	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
240 	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
241 
242 #define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
243 #define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
244 #define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
245 #define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
246 
247 /*
248  * Is it permitted for a late CPU to have this capability when system
249  * hasn't already enabled it ?
250  */
251 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
252 /* Is it safe for a late CPU to miss this capability when system has it */
253 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
254 
255 /*
256  * CPU errata workarounds that need to be enabled at boot time if one or
257  * more CPUs in the system requires it. When one of these capabilities
258  * has been enabled, it is safe to allow any CPU to boot that doesn't
259  * require the workaround. However, it is not safe if a "late" CPU
260  * requires a workaround and the system hasn't enabled it already.
261  */
262 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
263 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
264 /*
265  * CPU feature detected at boot time based on system-wide value of a
266  * feature. It is safe for a late CPU to have this feature even though
267  * the system hasn't enabled it, although the featuer will not be used
268  * by Linux in this case. If the system has enabled this feature already,
269  * then every late CPU must have it.
270  */
271 #define ARM64_CPUCAP_SYSTEM_FEATURE	\
272 	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
273 /*
274  * CPU feature detected at boot time based on feature of one or more CPUs.
275  * All possible conflicts for a late CPU are ignored.
276  */
277 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
278 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
279 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
280 	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
281 
282 /*
283  * CPU feature detected at boot time, on one or more CPUs. A late CPU
284  * is not allowed to have the capability when the system doesn't have it.
285  * It is Ok for a late CPU to miss the feature.
286  */
287 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
288 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
289 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
290 
291 /*
292  * CPU feature used early in the boot based on the boot CPU. All secondary
293  * CPUs must match the state of the capability as detected by the boot CPU.
294  */
295 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU
296 
297 struct arm64_cpu_capabilities {
298 	const char *desc;
299 	u16 capability;
300 	u16 type;
301 	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
302 	/*
303 	 * Take the appropriate actions to enable this capability for this CPU.
304 	 * For each successfully booted CPU, this method is called for each
305 	 * globally detected capability.
306 	 */
307 	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
308 	union {
309 		struct {	/* To be used for erratum handling only */
310 			struct midr_range midr_range;
311 			const struct arm64_midr_revidr {
312 				u32 midr_rv;		/* revision/variant */
313 				u32 revidr_mask;
314 			} * const fixed_revs;
315 		};
316 
317 		const struct midr_range *midr_range_list;
318 		struct {	/* Feature register checking */
319 			u32 sys_reg;
320 			u8 field_pos;
321 			u8 min_field_value;
322 			u8 hwcap_type;
323 			bool sign;
324 			unsigned long hwcap;
325 		};
326 		/*
327 		 * A list of "matches/cpu_enable" pair for the same
328 		 * "capability" of the same "type" as described by the parent.
329 		 * Only matches(), cpu_enable() and fields relevant to these
330 		 * methods are significant in the list. The cpu_enable is
331 		 * invoked only if the corresponding entry "matches()".
332 		 * However, if a cpu_enable() method is associated
333 		 * with multiple matches(), care should be taken that either
334 		 * the match criteria are mutually exclusive, or that the
335 		 * method is robust against being called multiple times.
336 		 */
337 		const struct arm64_cpu_capabilities *match_list;
338 	};
339 };
340 
341 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
342 {
343 	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
344 }
345 
346 static inline bool
347 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
348 {
349 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
350 }
351 
352 static inline bool
353 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
354 {
355 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
356 }
357 
358 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
359 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
360 extern struct static_key_false arm64_const_caps_ready;
361 
362 bool this_cpu_has_cap(unsigned int cap);
363 
364 static inline bool cpu_have_feature(unsigned int num)
365 {
366 	return elf_hwcap & (1UL << num);
367 }
368 
369 /* System capability check for constant caps */
370 static inline bool __cpus_have_const_cap(int num)
371 {
372 	if (num >= ARM64_NCAPS)
373 		return false;
374 	return static_branch_unlikely(&cpu_hwcap_keys[num]);
375 }
376 
377 static inline bool cpus_have_cap(unsigned int num)
378 {
379 	if (num >= ARM64_NCAPS)
380 		return false;
381 	return test_bit(num, cpu_hwcaps);
382 }
383 
384 static inline bool cpus_have_const_cap(int num)
385 {
386 	if (static_branch_likely(&arm64_const_caps_ready))
387 		return __cpus_have_const_cap(num);
388 	else
389 		return cpus_have_cap(num);
390 }
391 
392 static inline void cpus_set_cap(unsigned int num)
393 {
394 	if (num >= ARM64_NCAPS) {
395 		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
396 			num, ARM64_NCAPS);
397 	} else {
398 		__set_bit(num, cpu_hwcaps);
399 	}
400 }
401 
402 static inline int __attribute_const__
403 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
404 {
405 	return (s64)(features << (64 - width - field)) >> (64 - width);
406 }
407 
408 static inline int __attribute_const__
409 cpuid_feature_extract_signed_field(u64 features, int field)
410 {
411 	return cpuid_feature_extract_signed_field_width(features, field, 4);
412 }
413 
414 static inline unsigned int __attribute_const__
415 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
416 {
417 	return (u64)(features << (64 - width - field)) >> (64 - width);
418 }
419 
420 static inline unsigned int __attribute_const__
421 cpuid_feature_extract_unsigned_field(u64 features, int field)
422 {
423 	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
424 }
425 
426 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
427 {
428 	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
429 }
430 
431 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
432 {
433 	return (reg->user_val | (reg->sys_val & reg->user_mask));
434 }
435 
436 static inline int __attribute_const__
437 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
438 {
439 	return (sign) ?
440 		cpuid_feature_extract_signed_field_width(features, field, width) :
441 		cpuid_feature_extract_unsigned_field_width(features, field, width);
442 }
443 
444 static inline int __attribute_const__
445 cpuid_feature_extract_field(u64 features, int field, bool sign)
446 {
447 	return cpuid_feature_extract_field_width(features, field, 4, sign);
448 }
449 
450 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
451 {
452 	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
453 }
454 
455 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
456 {
457 	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
458 		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
459 }
460 
461 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
462 {
463 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
464 
465 	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
466 }
467 
468 static inline bool id_aa64pfr0_sve(u64 pfr0)
469 {
470 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
471 
472 	return val > 0;
473 }
474 
475 void __init setup_cpu_features(void);
476 void check_local_cpu_capabilities(void);
477 
478 
479 u64 read_sanitised_ftr_reg(u32 id);
480 
481 static inline bool cpu_supports_mixed_endian_el0(void)
482 {
483 	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
484 }
485 
486 static inline bool system_supports_32bit_el0(void)
487 {
488 	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
489 }
490 
491 static inline bool system_supports_mixed_endian_el0(void)
492 {
493 	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
494 }
495 
496 static inline bool system_supports_fpsimd(void)
497 {
498 	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
499 }
500 
501 static inline bool system_uses_ttbr0_pan(void)
502 {
503 	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
504 		!cpus_have_const_cap(ARM64_HAS_PAN);
505 }
506 
507 static inline bool system_supports_sve(void)
508 {
509 	return IS_ENABLED(CONFIG_ARM64_SVE) &&
510 		cpus_have_const_cap(ARM64_SVE);
511 }
512 
513 /*
514  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
515  * vector length.
516  *
517  * Use only if SVE is present.
518  * This function clobbers the SVE vector length.
519  */
520 static inline u64 read_zcr_features(void)
521 {
522 	u64 zcr;
523 	unsigned int vq_max;
524 
525 	/*
526 	 * Set the maximum possible VL, and write zeroes to all other
527 	 * bits to see if they stick.
528 	 */
529 	sve_kernel_enable(NULL);
530 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
531 
532 	zcr = read_sysreg_s(SYS_ZCR_EL1);
533 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
534 	vq_max = sve_vq_from_vl(sve_get_vl());
535 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
536 
537 	return zcr;
538 }
539 
540 #endif /* __ASSEMBLY__ */
541 
542 #endif
543