1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org> 4 */ 5 6 #ifndef __ASM_CPUFEATURE_H 7 #define __ASM_CPUFEATURE_H 8 9 #include <asm/cpucaps.h> 10 #include <asm/cputype.h> 11 #include <asm/hwcap.h> 12 #include <asm/sysreg.h> 13 14 #define MAX_CPU_FEATURES 64 15 #define cpu_feature(x) KERNEL_HWCAP_ ## x 16 17 #ifndef __ASSEMBLY__ 18 19 #include <linux/bug.h> 20 #include <linux/jump_label.h> 21 #include <linux/kernel.h> 22 23 /* 24 * CPU feature register tracking 25 * 26 * The safe value of a CPUID feature field is dependent on the implications 27 * of the values assigned to it by the architecture. Based on the relationship 28 * between the values, the features are classified into 3 types - LOWER_SAFE, 29 * HIGHER_SAFE and EXACT. 30 * 31 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest 32 * for HIGHER_SAFE. It is expected that all CPUs have the same value for 33 * a field when EXACT is specified, failing which, the safe value specified 34 * in the table is chosen. 35 */ 36 37 enum ftr_type { 38 FTR_EXACT, /* Use a predefined safe value */ 39 FTR_LOWER_SAFE, /* Smaller value is safe */ 40 FTR_HIGHER_SAFE, /* Bigger value is safe */ 41 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */ 42 }; 43 44 #define FTR_STRICT true /* SANITY check strict matching required */ 45 #define FTR_NONSTRICT false /* SANITY check ignored */ 46 47 #define FTR_SIGNED true /* Value should be treated as signed */ 48 #define FTR_UNSIGNED false /* Value should be treated as unsigned */ 49 50 #define FTR_VISIBLE true /* Feature visible to the user space */ 51 #define FTR_HIDDEN false /* Feature is hidden from the user */ 52 53 #define FTR_VISIBLE_IF_IS_ENABLED(config) \ 54 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN) 55 56 struct arm64_ftr_bits { 57 bool sign; /* Value is signed ? */ 58 bool visible; 59 bool strict; /* CPU Sanity check: strict matching required ? */ 60 enum ftr_type type; 61 u8 shift; 62 u8 width; 63 s64 safe_val; /* safe value for FTR_EXACT features */ 64 }; 65 66 /* 67 * Describe the early feature override to the core override code: 68 * 69 * @val Values that are to be merged into the final 70 * sanitised value of the register. Only the bitfields 71 * set to 1 in @mask are valid 72 * @mask Mask of the features that are overridden by @val 73 * 74 * A @mask field set to full-1 indicates that the corresponding field 75 * in @val is a valid override. 76 * 77 * A @mask field set to full-0 with the corresponding @val field set 78 * to full-0 denotes that this field has no override 79 * 80 * A @mask field set to full-0 with the corresponding @val field set 81 * to full-1 denotes thath this field has an invalid override. 82 */ 83 struct arm64_ftr_override { 84 u64 val; 85 u64 mask; 86 }; 87 88 /* 89 * @arm64_ftr_reg - Feature register 90 * @strict_mask Bits which should match across all CPUs for sanity. 91 * @sys_val Safe value across the CPUs (system view) 92 */ 93 struct arm64_ftr_reg { 94 const char *name; 95 u64 strict_mask; 96 u64 user_mask; 97 u64 sys_val; 98 u64 user_val; 99 struct arm64_ftr_override *override; 100 const struct arm64_ftr_bits *ftr_bits; 101 }; 102 103 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0; 104 105 /* 106 * CPU capabilities: 107 * 108 * We use arm64_cpu_capabilities to represent system features, errata work 109 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and 110 * ELF HWCAPs (which are exposed to user). 111 * 112 * To support systems with heterogeneous CPUs, we need to make sure that we 113 * detect the capabilities correctly on the system and take appropriate 114 * measures to ensure there are no incompatibilities. 115 * 116 * This comment tries to explain how we treat the capabilities. 117 * Each capability has the following list of attributes : 118 * 119 * 1) Scope of Detection : The system detects a given capability by 120 * performing some checks at runtime. This could be, e.g, checking the 121 * value of a field in CPU ID feature register or checking the cpu 122 * model. The capability provides a call back ( @matches() ) to 123 * perform the check. Scope defines how the checks should be performed. 124 * There are three cases: 125 * 126 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one 127 * matches. This implies, we have to run the check on all the 128 * booting CPUs, until the system decides that state of the 129 * capability is finalised. (See section 2 below) 130 * Or 131 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs 132 * matches. This implies, we run the check only once, when the 133 * system decides to finalise the state of the capability. If the 134 * capability relies on a field in one of the CPU ID feature 135 * registers, we use the sanitised value of the register from the 136 * CPU feature infrastructure to make the decision. 137 * Or 138 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the 139 * feature. This category is for features that are "finalised" 140 * (or used) by the kernel very early even before the SMP cpus 141 * are brought up. 142 * 143 * The process of detection is usually denoted by "update" capability 144 * state in the code. 145 * 146 * 2) Finalise the state : The kernel should finalise the state of a 147 * capability at some point during its execution and take necessary 148 * actions if any. Usually, this is done, after all the boot-time 149 * enabled CPUs are brought up by the kernel, so that it can make 150 * better decision based on the available set of CPUs. However, there 151 * are some special cases, where the action is taken during the early 152 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with 153 * Virtualisation Host Extensions). The kernel usually disallows any 154 * changes to the state of a capability once it finalises the capability 155 * and takes any action, as it may be impossible to execute the actions 156 * safely. A CPU brought up after a capability is "finalised" is 157 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary 158 * CPUs are treated "late CPUs" for capabilities determined by the boot 159 * CPU. 160 * 161 * At the moment there are two passes of finalising the capabilities. 162 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via 163 * setup_boot_cpu_capabilities(). 164 * b) Everything except (a) - Run via setup_system_capabilities(). 165 * 166 * 3) Verification: When a CPU is brought online (e.g, by user or by the 167 * kernel), the kernel should make sure that it is safe to use the CPU, 168 * by verifying that the CPU is compliant with the state of the 169 * capabilities finalised already. This happens via : 170 * 171 * secondary_start_kernel()-> check_local_cpu_capabilities() 172 * 173 * As explained in (2) above, capabilities could be finalised at 174 * different points in the execution. Each newly booted CPU is verified 175 * against the capabilities that have been finalised by the time it 176 * boots. 177 * 178 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability 179 * except for the primary boot CPU. 180 * 181 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the 182 * user after the kernel boot are verified against the capability. 183 * 184 * If there is a conflict, the kernel takes an action, based on the 185 * severity (e.g, a CPU could be prevented from booting or cause a 186 * kernel panic). The CPU is allowed to "affect" the state of the 187 * capability, if it has not been finalised already. See section 5 188 * for more details on conflicts. 189 * 190 * 4) Action: As mentioned in (2), the kernel can take an action for each 191 * detected capability, on all CPUs on the system. Appropriate actions 192 * include, turning on an architectural feature, modifying the control 193 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via 194 * alternatives. The kernel patching is batched and performed at later 195 * point. The actions are always initiated only after the capability 196 * is finalised. This is usally denoted by "enabling" the capability. 197 * The actions are initiated as follows : 198 * a) Action is triggered on all online CPUs, after the capability is 199 * finalised, invoked within the stop_machine() context from 200 * enable_cpu_capabilitie(). 201 * 202 * b) Any late CPU, brought up after (1), the action is triggered via: 203 * 204 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities() 205 * 206 * 5) Conflicts: Based on the state of the capability on a late CPU vs. 207 * the system state, we could have the following combinations : 208 * 209 * x-----------------------------x 210 * | Type | System | Late CPU | 211 * |-----------------------------| 212 * | a | y | n | 213 * |-----------------------------| 214 * | b | n | y | 215 * x-----------------------------x 216 * 217 * Two separate flag bits are defined to indicate whether each kind of 218 * conflict can be allowed: 219 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed 220 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed 221 * 222 * Case (a) is not permitted for a capability that the system requires 223 * all CPUs to have in order for the capability to be enabled. This is 224 * typical for capabilities that represent enhanced functionality. 225 * 226 * Case (b) is not permitted for a capability that must be enabled 227 * during boot if any CPU in the system requires it in order to run 228 * safely. This is typical for erratum work arounds that cannot be 229 * enabled after the corresponding capability is finalised. 230 * 231 * In some non-typical cases either both (a) and (b), or neither, 232 * should be permitted. This can be described by including neither 233 * or both flags in the capability's type field. 234 * 235 * In case of a conflict, the CPU is prevented from booting. If the 236 * ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability, 237 * then a kernel panic is triggered. 238 */ 239 240 241 /* 242 * Decide how the capability is detected. 243 * On any local CPU vs System wide vs the primary boot CPU 244 */ 245 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0)) 246 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1)) 247 /* 248 * The capabilitiy is detected on the Boot CPU and is used by kernel 249 * during early boot. i.e, the capability should be "detected" and 250 * "enabled" as early as possibly on all booting CPUs. 251 */ 252 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2)) 253 #define ARM64_CPUCAP_SCOPE_MASK \ 254 (ARM64_CPUCAP_SCOPE_SYSTEM | \ 255 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 256 ARM64_CPUCAP_SCOPE_BOOT_CPU) 257 258 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM 259 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU 260 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU 261 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK 262 263 /* 264 * Is it permitted for a late CPU to have this capability when system 265 * hasn't already enabled it ? 266 */ 267 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4)) 268 /* Is it safe for a late CPU to miss this capability when system has it */ 269 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5)) 270 /* Panic when a conflict is detected */ 271 #define ARM64_CPUCAP_PANIC_ON_CONFLICT ((u16)BIT(6)) 272 273 /* 274 * CPU errata workarounds that need to be enabled at boot time if one or 275 * more CPUs in the system requires it. When one of these capabilities 276 * has been enabled, it is safe to allow any CPU to boot that doesn't 277 * require the workaround. However, it is not safe if a "late" CPU 278 * requires a workaround and the system hasn't enabled it already. 279 */ 280 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \ 281 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU) 282 /* 283 * CPU feature detected at boot time based on system-wide value of a 284 * feature. It is safe for a late CPU to have this feature even though 285 * the system hasn't enabled it, although the feature will not be used 286 * by Linux in this case. If the system has enabled this feature already, 287 * then every late CPU must have it. 288 */ 289 #define ARM64_CPUCAP_SYSTEM_FEATURE \ 290 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 291 /* 292 * CPU feature detected at boot time based on feature of one or more CPUs. 293 * All possible conflicts for a late CPU are ignored. 294 * NOTE: this means that a late CPU with the feature will *not* cause the 295 * capability to be advertised by cpus_have_*cap()! 296 */ 297 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \ 298 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 299 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \ 300 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 301 302 /* 303 * CPU feature detected at boot time, on one or more CPUs. A late CPU 304 * is not allowed to have the capability when the system doesn't have it. 305 * It is Ok for a late CPU to miss the feature. 306 */ 307 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \ 308 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 309 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU) 310 311 /* 312 * CPU feature used early in the boot based on the boot CPU. All secondary 313 * CPUs must match the state of the capability as detected by the boot CPU. In 314 * case of a conflict, a kernel panic is triggered. 315 */ 316 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE \ 317 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT) 318 319 /* 320 * CPU feature used early in the boot based on the boot CPU. It is safe for a 321 * late CPU to have this feature even though the boot CPU hasn't enabled it, 322 * although the feature will not be used by Linux in this case. If the boot CPU 323 * has enabled this feature already, then every late CPU must have it. 324 */ 325 #define ARM64_CPUCAP_BOOT_CPU_FEATURE \ 326 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 327 328 struct arm64_cpu_capabilities { 329 const char *desc; 330 u16 capability; 331 u16 type; 332 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope); 333 /* 334 * Take the appropriate actions to configure this capability 335 * for this CPU. If the capability is detected by the kernel 336 * this will be called on all the CPUs in the system, 337 * including the hotplugged CPUs, regardless of whether the 338 * capability is available on that specific CPU. This is 339 * useful for some capabilities (e.g, working around CPU 340 * errata), where all the CPUs must take some action (e.g, 341 * changing system control/configuration). Thus, if an action 342 * is required only if the CPU has the capability, then the 343 * routine must check it before taking any action. 344 */ 345 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap); 346 union { 347 struct { /* To be used for erratum handling only */ 348 struct midr_range midr_range; 349 const struct arm64_midr_revidr { 350 u32 midr_rv; /* revision/variant */ 351 u32 revidr_mask; 352 } * const fixed_revs; 353 }; 354 355 const struct midr_range *midr_range_list; 356 struct { /* Feature register checking */ 357 u32 sys_reg; 358 u8 field_pos; 359 u8 min_field_value; 360 u8 hwcap_type; 361 bool sign; 362 unsigned long hwcap; 363 }; 364 }; 365 366 /* 367 * An optional list of "matches/cpu_enable" pair for the same 368 * "capability" of the same "type" as described by the parent. 369 * Only matches(), cpu_enable() and fields relevant to these 370 * methods are significant in the list. The cpu_enable is 371 * invoked only if the corresponding entry "matches()". 372 * However, if a cpu_enable() method is associated 373 * with multiple matches(), care should be taken that either 374 * the match criteria are mutually exclusive, or that the 375 * method is robust against being called multiple times. 376 */ 377 const struct arm64_cpu_capabilities *match_list; 378 }; 379 380 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap) 381 { 382 return cap->type & ARM64_CPUCAP_SCOPE_MASK; 383 } 384 385 /* 386 * Generic helper for handling capabilities with multiple (match,enable) pairs 387 * of call backs, sharing the same capability bit. 388 * Iterate over each entry to see if at least one matches. 389 */ 390 static inline bool 391 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry, 392 int scope) 393 { 394 const struct arm64_cpu_capabilities *caps; 395 396 for (caps = entry->match_list; caps->matches; caps++) 397 if (caps->matches(caps, scope)) 398 return true; 399 400 return false; 401 } 402 403 static __always_inline bool is_vhe_hyp_code(void) 404 { 405 /* Only defined for code run in VHE hyp context */ 406 return __is_defined(__KVM_VHE_HYPERVISOR__); 407 } 408 409 static __always_inline bool is_nvhe_hyp_code(void) 410 { 411 /* Only defined for code run in NVHE hyp context */ 412 return __is_defined(__KVM_NVHE_HYPERVISOR__); 413 } 414 415 static __always_inline bool is_hyp_code(void) 416 { 417 return is_vhe_hyp_code() || is_nvhe_hyp_code(); 418 } 419 420 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); 421 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS]; 422 extern struct static_key_false arm64_const_caps_ready; 423 424 /* ARM64 CAPS + alternative_cb */ 425 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1) 426 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE); 427 428 #define for_each_available_cap(cap) \ 429 for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS) 430 431 bool this_cpu_has_cap(unsigned int cap); 432 void cpu_set_feature(unsigned int num); 433 bool cpu_have_feature(unsigned int num); 434 unsigned long cpu_get_elf_hwcap(void); 435 unsigned long cpu_get_elf_hwcap2(void); 436 437 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name)) 438 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name)) 439 440 static __always_inline bool system_capabilities_finalized(void) 441 { 442 return static_branch_likely(&arm64_const_caps_ready); 443 } 444 445 /* 446 * Test for a capability with a runtime check. 447 * 448 * Before the capability is detected, this returns false. 449 */ 450 static inline bool cpus_have_cap(unsigned int num) 451 { 452 if (num >= ARM64_NCAPS) 453 return false; 454 return test_bit(num, cpu_hwcaps); 455 } 456 457 /* 458 * Test for a capability without a runtime check. 459 * 460 * Before capabilities are finalized, this returns false. 461 * After capabilities are finalized, this is patched to avoid a runtime check. 462 * 463 * @num must be a compile-time constant. 464 */ 465 static __always_inline bool __cpus_have_const_cap(int num) 466 { 467 if (num >= ARM64_NCAPS) 468 return false; 469 return static_branch_unlikely(&cpu_hwcap_keys[num]); 470 } 471 472 /* 473 * Test for a capability without a runtime check. 474 * 475 * Before capabilities are finalized, this will BUG(). 476 * After capabilities are finalized, this is patched to avoid a runtime check. 477 * 478 * @num must be a compile-time constant. 479 */ 480 static __always_inline bool cpus_have_final_cap(int num) 481 { 482 if (system_capabilities_finalized()) 483 return __cpus_have_const_cap(num); 484 else 485 BUG(); 486 } 487 488 /* 489 * Test for a capability, possibly with a runtime check for non-hyp code. 490 * 491 * For hyp code, this behaves the same as cpus_have_final_cap(). 492 * 493 * For non-hyp code: 494 * Before capabilities are finalized, this behaves as cpus_have_cap(). 495 * After capabilities are finalized, this is patched to avoid a runtime check. 496 * 497 * @num must be a compile-time constant. 498 */ 499 static __always_inline bool cpus_have_const_cap(int num) 500 { 501 if (is_hyp_code()) 502 return cpus_have_final_cap(num); 503 else if (system_capabilities_finalized()) 504 return __cpus_have_const_cap(num); 505 else 506 return cpus_have_cap(num); 507 } 508 509 static inline void cpus_set_cap(unsigned int num) 510 { 511 if (num >= ARM64_NCAPS) { 512 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n", 513 num, ARM64_NCAPS); 514 } else { 515 __set_bit(num, cpu_hwcaps); 516 } 517 } 518 519 static inline int __attribute_const__ 520 cpuid_feature_extract_signed_field_width(u64 features, int field, int width) 521 { 522 return (s64)(features << (64 - width - field)) >> (64 - width); 523 } 524 525 static inline int __attribute_const__ 526 cpuid_feature_extract_signed_field(u64 features, int field) 527 { 528 return cpuid_feature_extract_signed_field_width(features, field, 4); 529 } 530 531 static __always_inline unsigned int __attribute_const__ 532 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width) 533 { 534 return (u64)(features << (64 - width - field)) >> (64 - width); 535 } 536 537 static __always_inline unsigned int __attribute_const__ 538 cpuid_feature_extract_unsigned_field(u64 features, int field) 539 { 540 return cpuid_feature_extract_unsigned_field_width(features, field, 4); 541 } 542 543 /* 544 * Fields that identify the version of the Performance Monitors Extension do 545 * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825, 546 * "Alternative ID scheme used for the Performance Monitors Extension version". 547 */ 548 static inline u64 __attribute_const__ 549 cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap) 550 { 551 u64 val = cpuid_feature_extract_unsigned_field(features, field); 552 u64 mask = GENMASK_ULL(field + 3, field); 553 554 /* Treat IMPLEMENTATION DEFINED functionality as unimplemented */ 555 if (val == ID_AA64DFR0_PMUVER_IMP_DEF) 556 val = 0; 557 558 if (val > cap) { 559 features &= ~mask; 560 features |= (cap << field) & mask; 561 } 562 563 return features; 564 } 565 566 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp) 567 { 568 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift); 569 } 570 571 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg) 572 { 573 return (reg->user_val | (reg->sys_val & reg->user_mask)); 574 } 575 576 static inline int __attribute_const__ 577 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign) 578 { 579 return (sign) ? 580 cpuid_feature_extract_signed_field_width(features, field, width) : 581 cpuid_feature_extract_unsigned_field_width(features, field, width); 582 } 583 584 static inline int __attribute_const__ 585 cpuid_feature_extract_field(u64 features, int field, bool sign) 586 { 587 return cpuid_feature_extract_field_width(features, field, 4, sign); 588 } 589 590 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val) 591 { 592 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign); 593 } 594 595 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0) 596 { 597 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 || 598 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1; 599 } 600 601 static inline bool id_aa64pfr0_32bit_el1(u64 pfr0) 602 { 603 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SHIFT); 604 605 return val == ID_AA64PFR0_ELx_32BIT_64BIT; 606 } 607 608 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0) 609 { 610 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT); 611 612 return val == ID_AA64PFR0_ELx_32BIT_64BIT; 613 } 614 615 static inline bool id_aa64pfr0_sve(u64 pfr0) 616 { 617 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT); 618 619 return val > 0; 620 } 621 622 static inline bool id_aa64pfr1_mte(u64 pfr1) 623 { 624 u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_MTE_SHIFT); 625 626 return val >= ID_AA64PFR1_MTE; 627 } 628 629 void __init setup_cpu_features(void); 630 void check_local_cpu_capabilities(void); 631 632 u64 read_sanitised_ftr_reg(u32 id); 633 u64 __read_sysreg_by_encoding(u32 sys_id); 634 635 static inline bool cpu_supports_mixed_endian_el0(void) 636 { 637 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1)); 638 } 639 640 const struct cpumask *system_32bit_el0_cpumask(void); 641 DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0); 642 643 static inline bool system_supports_32bit_el0(void) 644 { 645 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 646 647 return static_branch_unlikely(&arm64_mismatched_32bit_el0) || 648 id_aa64pfr0_32bit_el0(pfr0); 649 } 650 651 static inline bool system_supports_4kb_granule(void) 652 { 653 u64 mmfr0; 654 u32 val; 655 656 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 657 val = cpuid_feature_extract_unsigned_field(mmfr0, 658 ID_AA64MMFR0_TGRAN4_SHIFT); 659 660 return (val >= ID_AA64MMFR0_TGRAN4_SUPPORTED_MIN) && 661 (val <= ID_AA64MMFR0_TGRAN4_SUPPORTED_MAX); 662 } 663 664 static inline bool system_supports_64kb_granule(void) 665 { 666 u64 mmfr0; 667 u32 val; 668 669 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 670 val = cpuid_feature_extract_unsigned_field(mmfr0, 671 ID_AA64MMFR0_TGRAN64_SHIFT); 672 673 return (val >= ID_AA64MMFR0_TGRAN64_SUPPORTED_MIN) && 674 (val <= ID_AA64MMFR0_TGRAN64_SUPPORTED_MAX); 675 } 676 677 static inline bool system_supports_16kb_granule(void) 678 { 679 u64 mmfr0; 680 u32 val; 681 682 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 683 val = cpuid_feature_extract_unsigned_field(mmfr0, 684 ID_AA64MMFR0_TGRAN16_SHIFT); 685 686 return (val >= ID_AA64MMFR0_TGRAN16_SUPPORTED_MIN) && 687 (val <= ID_AA64MMFR0_TGRAN16_SUPPORTED_MAX); 688 } 689 690 static inline bool system_supports_mixed_endian_el0(void) 691 { 692 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1)); 693 } 694 695 static inline bool system_supports_mixed_endian(void) 696 { 697 u64 mmfr0; 698 u32 val; 699 700 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 701 val = cpuid_feature_extract_unsigned_field(mmfr0, 702 ID_AA64MMFR0_BIGENDEL_SHIFT); 703 704 return val == 0x1; 705 } 706 707 static __always_inline bool system_supports_fpsimd(void) 708 { 709 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD); 710 } 711 712 static inline bool system_uses_hw_pan(void) 713 { 714 return IS_ENABLED(CONFIG_ARM64_PAN) && 715 cpus_have_const_cap(ARM64_HAS_PAN); 716 } 717 718 static inline bool system_uses_ttbr0_pan(void) 719 { 720 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) && 721 !system_uses_hw_pan(); 722 } 723 724 static __always_inline bool system_supports_sve(void) 725 { 726 return IS_ENABLED(CONFIG_ARM64_SVE) && 727 cpus_have_const_cap(ARM64_SVE); 728 } 729 730 static __always_inline bool system_supports_cnp(void) 731 { 732 return IS_ENABLED(CONFIG_ARM64_CNP) && 733 cpus_have_const_cap(ARM64_HAS_CNP); 734 } 735 736 static inline bool system_supports_address_auth(void) 737 { 738 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) && 739 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH); 740 } 741 742 static inline bool system_supports_generic_auth(void) 743 { 744 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) && 745 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH); 746 } 747 748 static inline bool system_has_full_ptr_auth(void) 749 { 750 return system_supports_address_auth() && system_supports_generic_auth(); 751 } 752 753 static __always_inline bool system_uses_irq_prio_masking(void) 754 { 755 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && 756 cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING); 757 } 758 759 static inline bool system_supports_mte(void) 760 { 761 return IS_ENABLED(CONFIG_ARM64_MTE) && 762 cpus_have_const_cap(ARM64_MTE); 763 } 764 765 static inline bool system_has_prio_mask_debugging(void) 766 { 767 return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) && 768 system_uses_irq_prio_masking(); 769 } 770 771 static inline bool system_supports_bti(void) 772 { 773 return IS_ENABLED(CONFIG_ARM64_BTI) && cpus_have_const_cap(ARM64_BTI); 774 } 775 776 static inline bool system_supports_tlb_range(void) 777 { 778 return IS_ENABLED(CONFIG_ARM64_TLB_RANGE) && 779 cpus_have_const_cap(ARM64_HAS_TLB_RANGE); 780 } 781 782 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt); 783 784 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange) 785 { 786 switch (parange) { 787 case ID_AA64MMFR0_PARANGE_32: return 32; 788 case ID_AA64MMFR0_PARANGE_36: return 36; 789 case ID_AA64MMFR0_PARANGE_40: return 40; 790 case ID_AA64MMFR0_PARANGE_42: return 42; 791 case ID_AA64MMFR0_PARANGE_44: return 44; 792 case ID_AA64MMFR0_PARANGE_48: return 48; 793 case ID_AA64MMFR0_PARANGE_52: return 52; 794 /* 795 * A future PE could use a value unknown to the kernel. 796 * However, by the "D10.1.4 Principles of the ID scheme 797 * for fields in ID registers", ARM DDI 0487C.a, any new 798 * value is guaranteed to be higher than what we know already. 799 * As a safe limit, we return the limit supported by the kernel. 800 */ 801 default: return CONFIG_ARM64_PA_BITS; 802 } 803 } 804 805 /* Check whether hardware update of the Access flag is supported */ 806 static inline bool cpu_has_hw_af(void) 807 { 808 u64 mmfr1; 809 810 if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM)) 811 return false; 812 813 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); 814 return cpuid_feature_extract_unsigned_field(mmfr1, 815 ID_AA64MMFR1_HADBS_SHIFT); 816 } 817 818 static inline bool cpu_has_pan(void) 819 { 820 u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); 821 return cpuid_feature_extract_unsigned_field(mmfr1, 822 ID_AA64MMFR1_PAN_SHIFT); 823 } 824 825 #ifdef CONFIG_ARM64_AMU_EXTN 826 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */ 827 extern bool cpu_has_amu_feat(int cpu); 828 #else 829 static inline bool cpu_has_amu_feat(int cpu) 830 { 831 return false; 832 } 833 #endif 834 835 /* Get a cpu that supports the Activity Monitors Unit (AMU) */ 836 extern int get_cpu_with_amu_feat(void); 837 838 static inline unsigned int get_vmid_bits(u64 mmfr1) 839 { 840 int vmid_bits; 841 842 vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1, 843 ID_AA64MMFR1_VMIDBITS_SHIFT); 844 if (vmid_bits == ID_AA64MMFR1_VMIDBITS_16) 845 return 16; 846 847 /* 848 * Return the default here even if any reserved 849 * value is fetched from the system register. 850 */ 851 return 8; 852 } 853 854 extern struct arm64_ftr_override id_aa64mmfr1_override; 855 extern struct arm64_ftr_override id_aa64pfr1_override; 856 extern struct arm64_ftr_override id_aa64isar1_override; 857 858 u32 get_kvm_ipa_limit(void); 859 void dump_cpu_features(void); 860 861 #endif /* __ASSEMBLY__ */ 862 863 #endif 864