1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4  */
5 
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8 
9 #include <asm/cpucaps.h>
10 #include <asm/cputype.h>
11 #include <asm/hwcap.h>
12 #include <asm/sysreg.h>
13 
14 #define MAX_CPU_FEATURES	64
15 #define cpu_feature(x)		KERNEL_HWCAP_ ## x
16 
17 #ifndef __ASSEMBLY__
18 
19 #include <linux/bug.h>
20 #include <linux/jump_label.h>
21 #include <linux/kernel.h>
22 
23 /*
24  * CPU feature register tracking
25  *
26  * The safe value of a CPUID feature field is dependent on the implications
27  * of the values assigned to it by the architecture. Based on the relationship
28  * between the values, the features are classified into 3 types - LOWER_SAFE,
29  * HIGHER_SAFE and EXACT.
30  *
31  * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
32  * for HIGHER_SAFE. It is expected that all CPUs have the same value for
33  * a field when EXACT is specified, failing which, the safe value specified
34  * in the table is chosen.
35  */
36 
37 enum ftr_type {
38 	FTR_EXACT,			/* Use a predefined safe value */
39 	FTR_LOWER_SAFE,			/* Smaller value is safe */
40 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
41 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
42 };
43 
44 #define FTR_STRICT	true	/* SANITY check strict matching required */
45 #define FTR_NONSTRICT	false	/* SANITY check ignored */
46 
47 #define FTR_SIGNED	true	/* Value should be treated as signed */
48 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
49 
50 #define FTR_VISIBLE	true	/* Feature visible to the user space */
51 #define FTR_HIDDEN	false	/* Feature is hidden from the user */
52 
53 #define FTR_VISIBLE_IF_IS_ENABLED(config)		\
54 	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
55 
56 struct arm64_ftr_bits {
57 	bool		sign;	/* Value is signed ? */
58 	bool		visible;
59 	bool		strict;	/* CPU Sanity check: strict matching required ? */
60 	enum ftr_type	type;
61 	u8		shift;
62 	u8		width;
63 	s64		safe_val; /* safe value for FTR_EXACT features */
64 };
65 
66 /*
67  * @arm64_ftr_reg - Feature register
68  * @strict_mask		Bits which should match across all CPUs for sanity.
69  * @sys_val		Safe value across the CPUs (system view)
70  */
71 struct arm64_ftr_reg {
72 	const char			*name;
73 	u64				strict_mask;
74 	u64				user_mask;
75 	u64				sys_val;
76 	u64				user_val;
77 	const struct arm64_ftr_bits	*ftr_bits;
78 };
79 
80 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
81 
82 /*
83  * CPU capabilities:
84  *
85  * We use arm64_cpu_capabilities to represent system features, errata work
86  * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
87  * ELF HWCAPs (which are exposed to user).
88  *
89  * To support systems with heterogeneous CPUs, we need to make sure that we
90  * detect the capabilities correctly on the system and take appropriate
91  * measures to ensure there are no incompatibilities.
92  *
93  * This comment tries to explain how we treat the capabilities.
94  * Each capability has the following list of attributes :
95  *
96  * 1) Scope of Detection : The system detects a given capability by
97  *    performing some checks at runtime. This could be, e.g, checking the
98  *    value of a field in CPU ID feature register or checking the cpu
99  *    model. The capability provides a call back ( @matches() ) to
100  *    perform the check. Scope defines how the checks should be performed.
101  *    There are three cases:
102  *
103  *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
104  *        matches. This implies, we have to run the check on all the
105  *        booting CPUs, until the system decides that state of the
106  *        capability is finalised. (See section 2 below)
107  *		Or
108  *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
109  *        matches. This implies, we run the check only once, when the
110  *        system decides to finalise the state of the capability. If the
111  *        capability relies on a field in one of the CPU ID feature
112  *        registers, we use the sanitised value of the register from the
113  *        CPU feature infrastructure to make the decision.
114  *		Or
115  *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
116  *        feature. This category is for features that are "finalised"
117  *        (or used) by the kernel very early even before the SMP cpus
118  *        are brought up.
119  *
120  *    The process of detection is usually denoted by "update" capability
121  *    state in the code.
122  *
123  * 2) Finalise the state : The kernel should finalise the state of a
124  *    capability at some point during its execution and take necessary
125  *    actions if any. Usually, this is done, after all the boot-time
126  *    enabled CPUs are brought up by the kernel, so that it can make
127  *    better decision based on the available set of CPUs. However, there
128  *    are some special cases, where the action is taken during the early
129  *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
130  *    Virtualisation Host Extensions). The kernel usually disallows any
131  *    changes to the state of a capability once it finalises the capability
132  *    and takes any action, as it may be impossible to execute the actions
133  *    safely. A CPU brought up after a capability is "finalised" is
134  *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
135  *    CPUs are treated "late CPUs" for capabilities determined by the boot
136  *    CPU.
137  *
138  *    At the moment there are two passes of finalising the capabilities.
139  *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
140  *         setup_boot_cpu_capabilities().
141  *      b) Everything except (a) - Run via setup_system_capabilities().
142  *
143  * 3) Verification: When a CPU is brought online (e.g, by user or by the
144  *    kernel), the kernel should make sure that it is safe to use the CPU,
145  *    by verifying that the CPU is compliant with the state of the
146  *    capabilities finalised already. This happens via :
147  *
148  *	secondary_start_kernel()-> check_local_cpu_capabilities()
149  *
150  *    As explained in (2) above, capabilities could be finalised at
151  *    different points in the execution. Each newly booted CPU is verified
152  *    against the capabilities that have been finalised by the time it
153  *    boots.
154  *
155  *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
156  *	except for the primary boot CPU.
157  *
158  *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
159  *	user after the kernel boot are verified against the capability.
160  *
161  *    If there is a conflict, the kernel takes an action, based on the
162  *    severity (e.g, a CPU could be prevented from booting or cause a
163  *    kernel panic). The CPU is allowed to "affect" the state of the
164  *    capability, if it has not been finalised already. See section 5
165  *    for more details on conflicts.
166  *
167  * 4) Action: As mentioned in (2), the kernel can take an action for each
168  *    detected capability, on all CPUs on the system. Appropriate actions
169  *    include, turning on an architectural feature, modifying the control
170  *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
171  *    alternatives. The kernel patching is batched and performed at later
172  *    point. The actions are always initiated only after the capability
173  *    is finalised. This is usally denoted by "enabling" the capability.
174  *    The actions are initiated as follows :
175  *	a) Action is triggered on all online CPUs, after the capability is
176  *	finalised, invoked within the stop_machine() context from
177  *	enable_cpu_capabilitie().
178  *
179  *	b) Any late CPU, brought up after (1), the action is triggered via:
180  *
181  *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
182  *
183  * 5) Conflicts: Based on the state of the capability on a late CPU vs.
184  *    the system state, we could have the following combinations :
185  *
186  *		x-----------------------------x
187  *		| Type  | System   | Late CPU |
188  *		|-----------------------------|
189  *		|  a    |   y      |    n     |
190  *		|-----------------------------|
191  *		|  b    |   n      |    y     |
192  *		x-----------------------------x
193  *
194  *     Two separate flag bits are defined to indicate whether each kind of
195  *     conflict can be allowed:
196  *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
197  *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
198  *
199  *     Case (a) is not permitted for a capability that the system requires
200  *     all CPUs to have in order for the capability to be enabled. This is
201  *     typical for capabilities that represent enhanced functionality.
202  *
203  *     Case (b) is not permitted for a capability that must be enabled
204  *     during boot if any CPU in the system requires it in order to run
205  *     safely. This is typical for erratum work arounds that cannot be
206  *     enabled after the corresponding capability is finalised.
207  *
208  *     In some non-typical cases either both (a) and (b), or neither,
209  *     should be permitted. This can be described by including neither
210  *     or both flags in the capability's type field.
211  *
212  *     In case of a conflict, the CPU is prevented from booting. If the
213  *     ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
214  *     then a kernel panic is triggered.
215  */
216 
217 
218 /*
219  * Decide how the capability is detected.
220  * On any local CPU vs System wide vs the primary boot CPU
221  */
222 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
223 #define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
224 /*
225  * The capabilitiy is detected on the Boot CPU and is used by kernel
226  * during early boot. i.e, the capability should be "detected" and
227  * "enabled" as early as possibly on all booting CPUs.
228  */
229 #define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
230 #define ARM64_CPUCAP_SCOPE_MASK			\
231 	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
232 	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
233 	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
234 
235 #define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
236 #define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
237 #define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
238 #define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
239 
240 /*
241  * Is it permitted for a late CPU to have this capability when system
242  * hasn't already enabled it ?
243  */
244 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
245 /* Is it safe for a late CPU to miss this capability when system has it */
246 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
247 /* Panic when a conflict is detected */
248 #define ARM64_CPUCAP_PANIC_ON_CONFLICT		((u16)BIT(6))
249 
250 /*
251  * CPU errata workarounds that need to be enabled at boot time if one or
252  * more CPUs in the system requires it. When one of these capabilities
253  * has been enabled, it is safe to allow any CPU to boot that doesn't
254  * require the workaround. However, it is not safe if a "late" CPU
255  * requires a workaround and the system hasn't enabled it already.
256  */
257 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
258 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
259 /*
260  * CPU feature detected at boot time based on system-wide value of a
261  * feature. It is safe for a late CPU to have this feature even though
262  * the system hasn't enabled it, although the feature will not be used
263  * by Linux in this case. If the system has enabled this feature already,
264  * then every late CPU must have it.
265  */
266 #define ARM64_CPUCAP_SYSTEM_FEATURE	\
267 	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
268 /*
269  * CPU feature detected at boot time based on feature of one or more CPUs.
270  * All possible conflicts for a late CPU are ignored.
271  */
272 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
273 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
274 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
275 	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
276 
277 /*
278  * CPU feature detected at boot time, on one or more CPUs. A late CPU
279  * is not allowed to have the capability when the system doesn't have it.
280  * It is Ok for a late CPU to miss the feature.
281  */
282 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
283 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
284 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
285 
286 /*
287  * CPU feature used early in the boot based on the boot CPU. All secondary
288  * CPUs must match the state of the capability as detected by the boot CPU. In
289  * case of a conflict, a kernel panic is triggered.
290  */
291 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE		\
292 	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
293 
294 /*
295  * CPU feature used early in the boot based on the boot CPU. It is safe for a
296  * late CPU to have this feature even though the boot CPU hasn't enabled it,
297  * although the feature will not be used by Linux in this case. If the boot CPU
298  * has enabled this feature already, then every late CPU must have it.
299  */
300 #define ARM64_CPUCAP_BOOT_CPU_FEATURE                  \
301 	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
302 
303 struct arm64_cpu_capabilities {
304 	const char *desc;
305 	u16 capability;
306 	u16 type;
307 	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
308 	/*
309 	 * Take the appropriate actions to configure this capability
310 	 * for this CPU. If the capability is detected by the kernel
311 	 * this will be called on all the CPUs in the system,
312 	 * including the hotplugged CPUs, regardless of whether the
313 	 * capability is available on that specific CPU. This is
314 	 * useful for some capabilities (e.g, working around CPU
315 	 * errata), where all the CPUs must take some action (e.g,
316 	 * changing system control/configuration). Thus, if an action
317 	 * is required only if the CPU has the capability, then the
318 	 * routine must check it before taking any action.
319 	 */
320 	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
321 	union {
322 		struct {	/* To be used for erratum handling only */
323 			struct midr_range midr_range;
324 			const struct arm64_midr_revidr {
325 				u32 midr_rv;		/* revision/variant */
326 				u32 revidr_mask;
327 			} * const fixed_revs;
328 		};
329 
330 		const struct midr_range *midr_range_list;
331 		struct {	/* Feature register checking */
332 			u32 sys_reg;
333 			u8 field_pos;
334 			u8 min_field_value;
335 			u8 hwcap_type;
336 			bool sign;
337 			unsigned long hwcap;
338 		};
339 	};
340 
341 	/*
342 	 * An optional list of "matches/cpu_enable" pair for the same
343 	 * "capability" of the same "type" as described by the parent.
344 	 * Only matches(), cpu_enable() and fields relevant to these
345 	 * methods are significant in the list. The cpu_enable is
346 	 * invoked only if the corresponding entry "matches()".
347 	 * However, if a cpu_enable() method is associated
348 	 * with multiple matches(), care should be taken that either
349 	 * the match criteria are mutually exclusive, or that the
350 	 * method is robust against being called multiple times.
351 	 */
352 	const struct arm64_cpu_capabilities *match_list;
353 };
354 
355 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
356 {
357 	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
358 }
359 
360 /*
361  * Generic helper for handling capabilities with multiple (match,enable) pairs
362  * of call backs, sharing the same capability bit.
363  * Iterate over each entry to see if at least one matches.
364  */
365 static inline bool
366 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
367 			       int scope)
368 {
369 	const struct arm64_cpu_capabilities *caps;
370 
371 	for (caps = entry->match_list; caps->matches; caps++)
372 		if (caps->matches(caps, scope))
373 			return true;
374 
375 	return false;
376 }
377 
378 static __always_inline bool is_vhe_hyp_code(void)
379 {
380 	/* Only defined for code run in VHE hyp context */
381 	return __is_defined(__KVM_VHE_HYPERVISOR__);
382 }
383 
384 static __always_inline bool is_nvhe_hyp_code(void)
385 {
386 	/* Only defined for code run in NVHE hyp context */
387 	return __is_defined(__KVM_NVHE_HYPERVISOR__);
388 }
389 
390 static __always_inline bool is_hyp_code(void)
391 {
392 	return is_vhe_hyp_code() || is_nvhe_hyp_code();
393 }
394 
395 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
396 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
397 extern struct static_key_false arm64_const_caps_ready;
398 
399 /* ARM64 CAPS + alternative_cb */
400 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
401 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
402 
403 #define for_each_available_cap(cap)		\
404 	for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
405 
406 bool this_cpu_has_cap(unsigned int cap);
407 void cpu_set_feature(unsigned int num);
408 bool cpu_have_feature(unsigned int num);
409 unsigned long cpu_get_elf_hwcap(void);
410 unsigned long cpu_get_elf_hwcap2(void);
411 
412 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
413 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
414 
415 static __always_inline bool system_capabilities_finalized(void)
416 {
417 	return static_branch_likely(&arm64_const_caps_ready);
418 }
419 
420 /*
421  * Test for a capability with a runtime check.
422  *
423  * Before the capability is detected, this returns false.
424  */
425 static inline bool cpus_have_cap(unsigned int num)
426 {
427 	if (num >= ARM64_NCAPS)
428 		return false;
429 	return test_bit(num, cpu_hwcaps);
430 }
431 
432 /*
433  * Test for a capability without a runtime check.
434  *
435  * Before capabilities are finalized, this returns false.
436  * After capabilities are finalized, this is patched to avoid a runtime check.
437  *
438  * @num must be a compile-time constant.
439  */
440 static __always_inline bool __cpus_have_const_cap(int num)
441 {
442 	if (num >= ARM64_NCAPS)
443 		return false;
444 	return static_branch_unlikely(&cpu_hwcap_keys[num]);
445 }
446 
447 /*
448  * Test for a capability without a runtime check.
449  *
450  * Before capabilities are finalized, this will BUG().
451  * After capabilities are finalized, this is patched to avoid a runtime check.
452  *
453  * @num must be a compile-time constant.
454  */
455 static __always_inline bool cpus_have_final_cap(int num)
456 {
457 	if (system_capabilities_finalized())
458 		return __cpus_have_const_cap(num);
459 	else
460 		BUG();
461 }
462 
463 /*
464  * Test for a capability, possibly with a runtime check for non-hyp code.
465  *
466  * For hyp code, this behaves the same as cpus_have_final_cap().
467  *
468  * For non-hyp code:
469  * Before capabilities are finalized, this behaves as cpus_have_cap().
470  * After capabilities are finalized, this is patched to avoid a runtime check.
471  *
472  * @num must be a compile-time constant.
473  */
474 static __always_inline bool cpus_have_const_cap(int num)
475 {
476 	if (is_hyp_code())
477 		return cpus_have_final_cap(num);
478 	else if (system_capabilities_finalized())
479 		return __cpus_have_const_cap(num);
480 	else
481 		return cpus_have_cap(num);
482 }
483 
484 static inline void cpus_set_cap(unsigned int num)
485 {
486 	if (num >= ARM64_NCAPS) {
487 		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
488 			num, ARM64_NCAPS);
489 	} else {
490 		__set_bit(num, cpu_hwcaps);
491 	}
492 }
493 
494 static inline int __attribute_const__
495 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
496 {
497 	return (s64)(features << (64 - width - field)) >> (64 - width);
498 }
499 
500 static inline int __attribute_const__
501 cpuid_feature_extract_signed_field(u64 features, int field)
502 {
503 	return cpuid_feature_extract_signed_field_width(features, field, 4);
504 }
505 
506 static __always_inline unsigned int __attribute_const__
507 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
508 {
509 	return (u64)(features << (64 - width - field)) >> (64 - width);
510 }
511 
512 static __always_inline unsigned int __attribute_const__
513 cpuid_feature_extract_unsigned_field(u64 features, int field)
514 {
515 	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
516 }
517 
518 /*
519  * Fields that identify the version of the Performance Monitors Extension do
520  * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
521  * "Alternative ID scheme used for the Performance Monitors Extension version".
522  */
523 static inline u64 __attribute_const__
524 cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
525 {
526 	u64 val = cpuid_feature_extract_unsigned_field(features, field);
527 	u64 mask = GENMASK_ULL(field + 3, field);
528 
529 	/* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
530 	if (val == 0xf)
531 		val = 0;
532 
533 	if (val > cap) {
534 		features &= ~mask;
535 		features |= (cap << field) & mask;
536 	}
537 
538 	return features;
539 }
540 
541 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
542 {
543 	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
544 }
545 
546 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
547 {
548 	return (reg->user_val | (reg->sys_val & reg->user_mask));
549 }
550 
551 static inline int __attribute_const__
552 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
553 {
554 	return (sign) ?
555 		cpuid_feature_extract_signed_field_width(features, field, width) :
556 		cpuid_feature_extract_unsigned_field_width(features, field, width);
557 }
558 
559 static inline int __attribute_const__
560 cpuid_feature_extract_field(u64 features, int field, bool sign)
561 {
562 	return cpuid_feature_extract_field_width(features, field, 4, sign);
563 }
564 
565 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
566 {
567 	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
568 }
569 
570 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
571 {
572 	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
573 		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
574 }
575 
576 static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
577 {
578 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SHIFT);
579 
580 	return val == ID_AA64PFR0_EL1_32BIT_64BIT;
581 }
582 
583 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
584 {
585 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
586 
587 	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
588 }
589 
590 static inline bool id_aa64pfr0_sve(u64 pfr0)
591 {
592 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
593 
594 	return val > 0;
595 }
596 
597 void __init setup_cpu_features(void);
598 void check_local_cpu_capabilities(void);
599 
600 u64 read_sanitised_ftr_reg(u32 id);
601 
602 static inline bool cpu_supports_mixed_endian_el0(void)
603 {
604 	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
605 }
606 
607 static inline bool system_supports_32bit_el0(void)
608 {
609 	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
610 }
611 
612 static inline bool system_supports_4kb_granule(void)
613 {
614 	u64 mmfr0;
615 	u32 val;
616 
617 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
618 	val = cpuid_feature_extract_unsigned_field(mmfr0,
619 						ID_AA64MMFR0_TGRAN4_SHIFT);
620 
621 	return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
622 }
623 
624 static inline bool system_supports_64kb_granule(void)
625 {
626 	u64 mmfr0;
627 	u32 val;
628 
629 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
630 	val = cpuid_feature_extract_unsigned_field(mmfr0,
631 						ID_AA64MMFR0_TGRAN64_SHIFT);
632 
633 	return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
634 }
635 
636 static inline bool system_supports_16kb_granule(void)
637 {
638 	u64 mmfr0;
639 	u32 val;
640 
641 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
642 	val = cpuid_feature_extract_unsigned_field(mmfr0,
643 						ID_AA64MMFR0_TGRAN16_SHIFT);
644 
645 	return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
646 }
647 
648 static inline bool system_supports_mixed_endian_el0(void)
649 {
650 	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
651 }
652 
653 static inline bool system_supports_mixed_endian(void)
654 {
655 	u64 mmfr0;
656 	u32 val;
657 
658 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
659 	val = cpuid_feature_extract_unsigned_field(mmfr0,
660 						ID_AA64MMFR0_BIGENDEL_SHIFT);
661 
662 	return val == 0x1;
663 }
664 
665 static __always_inline bool system_supports_fpsimd(void)
666 {
667 	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
668 }
669 
670 static inline bool system_uses_ttbr0_pan(void)
671 {
672 	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
673 		!cpus_have_const_cap(ARM64_HAS_PAN);
674 }
675 
676 static __always_inline bool system_supports_sve(void)
677 {
678 	return IS_ENABLED(CONFIG_ARM64_SVE) &&
679 		cpus_have_const_cap(ARM64_SVE);
680 }
681 
682 static __always_inline bool system_supports_cnp(void)
683 {
684 	return IS_ENABLED(CONFIG_ARM64_CNP) &&
685 		cpus_have_const_cap(ARM64_HAS_CNP);
686 }
687 
688 static inline bool system_supports_address_auth(void)
689 {
690 	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
691 		cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH);
692 }
693 
694 static inline bool system_supports_generic_auth(void)
695 {
696 	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
697 		cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH);
698 }
699 
700 static __always_inline bool system_uses_irq_prio_masking(void)
701 {
702 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
703 	       cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
704 }
705 
706 static inline bool system_supports_mte(void)
707 {
708 	return IS_ENABLED(CONFIG_ARM64_MTE) &&
709 		cpus_have_const_cap(ARM64_MTE);
710 }
711 
712 static inline bool system_has_prio_mask_debugging(void)
713 {
714 	return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
715 	       system_uses_irq_prio_masking();
716 }
717 
718 static inline bool system_supports_bti(void)
719 {
720 	return IS_ENABLED(CONFIG_ARM64_BTI) && cpus_have_const_cap(ARM64_BTI);
721 }
722 
723 static inline bool system_supports_tlb_range(void)
724 {
725 	return IS_ENABLED(CONFIG_ARM64_TLB_RANGE) &&
726 		cpus_have_const_cap(ARM64_HAS_TLB_RANGE);
727 }
728 
729 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
730 
731 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
732 {
733 	switch (parange) {
734 	case 0: return 32;
735 	case 1: return 36;
736 	case 2: return 40;
737 	case 3: return 42;
738 	case 4: return 44;
739 	case 5: return 48;
740 	case 6: return 52;
741 	/*
742 	 * A future PE could use a value unknown to the kernel.
743 	 * However, by the "D10.1.4 Principles of the ID scheme
744 	 * for fields in ID registers", ARM DDI 0487C.a, any new
745 	 * value is guaranteed to be higher than what we know already.
746 	 * As a safe limit, we return the limit supported by the kernel.
747 	 */
748 	default: return CONFIG_ARM64_PA_BITS;
749 	}
750 }
751 
752 /* Check whether hardware update of the Access flag is supported */
753 static inline bool cpu_has_hw_af(void)
754 {
755 	u64 mmfr1;
756 
757 	if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
758 		return false;
759 
760 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
761 	return cpuid_feature_extract_unsigned_field(mmfr1,
762 						ID_AA64MMFR1_HADBS_SHIFT);
763 }
764 
765 #ifdef CONFIG_ARM64_AMU_EXTN
766 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */
767 extern bool cpu_has_amu_feat(int cpu);
768 #endif
769 
770 static inline unsigned int get_vmid_bits(u64 mmfr1)
771 {
772 	int vmid_bits;
773 
774 	vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
775 						ID_AA64MMFR1_VMIDBITS_SHIFT);
776 	if (vmid_bits == ID_AA64MMFR1_VMIDBITS_16)
777 		return 16;
778 
779 	/*
780 	 * Return the default here even if any reserved
781 	 * value is fetched from the system register.
782 	 */
783 	return 8;
784 }
785 
786 u32 get_kvm_ipa_limit(void);
787 void dump_cpu_features(void);
788 
789 #endif /* __ASSEMBLY__ */
790 
791 #endif
792