xref: /openbmc/linux/arch/arm64/include/asm/cpufeature.h (revision 943126417891372d56aa3fe46295cbf53db31370)
1 /*
2  * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #ifndef __ASM_CPUFEATURE_H
10 #define __ASM_CPUFEATURE_H
11 
12 #include <asm/cpucaps.h>
13 #include <asm/cputype.h>
14 #include <asm/hwcap.h>
15 #include <asm/sysreg.h>
16 
17 /*
18  * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
19  * in the kernel and for user space to keep track of which optional features
20  * are supported by the current system. So let's map feature 'x' to HWCAP_x.
21  * Note that HWCAP_x constants are bit fields so we need to take the log.
22  */
23 
24 #define MAX_CPU_FEATURES	(8 * sizeof(elf_hwcap))
25 #define cpu_feature(x)		ilog2(HWCAP_ ## x)
26 
27 #ifndef __ASSEMBLY__
28 
29 #include <linux/bug.h>
30 #include <linux/jump_label.h>
31 #include <linux/kernel.h>
32 
33 /*
34  * CPU feature register tracking
35  *
36  * The safe value of a CPUID feature field is dependent on the implications
37  * of the values assigned to it by the architecture. Based on the relationship
38  * between the values, the features are classified into 3 types - LOWER_SAFE,
39  * HIGHER_SAFE and EXACT.
40  *
41  * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
42  * for HIGHER_SAFE. It is expected that all CPUs have the same value for
43  * a field when EXACT is specified, failing which, the safe value specified
44  * in the table is chosen.
45  */
46 
47 enum ftr_type {
48 	FTR_EXACT,	/* Use a predefined safe value */
49 	FTR_LOWER_SAFE,	/* Smaller value is safe */
50 	FTR_HIGHER_SAFE,/* Bigger value is safe */
51 };
52 
53 #define FTR_STRICT	true	/* SANITY check strict matching required */
54 #define FTR_NONSTRICT	false	/* SANITY check ignored */
55 
56 #define FTR_SIGNED	true	/* Value should be treated as signed */
57 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
58 
59 #define FTR_VISIBLE	true	/* Feature visible to the user space */
60 #define FTR_HIDDEN	false	/* Feature is hidden from the user */
61 
62 #define FTR_VISIBLE_IF_IS_ENABLED(config)		\
63 	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
64 
65 struct arm64_ftr_bits {
66 	bool		sign;	/* Value is signed ? */
67 	bool		visible;
68 	bool		strict;	/* CPU Sanity check: strict matching required ? */
69 	enum ftr_type	type;
70 	u8		shift;
71 	u8		width;
72 	s64		safe_val; /* safe value for FTR_EXACT features */
73 };
74 
75 /*
76  * @arm64_ftr_reg - Feature register
77  * @strict_mask		Bits which should match across all CPUs for sanity.
78  * @sys_val		Safe value across the CPUs (system view)
79  */
80 struct arm64_ftr_reg {
81 	const char			*name;
82 	u64				strict_mask;
83 	u64				user_mask;
84 	u64				sys_val;
85 	u64				user_val;
86 	const struct arm64_ftr_bits	*ftr_bits;
87 };
88 
89 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
90 
91 /*
92  * CPU capabilities:
93  *
94  * We use arm64_cpu_capabilities to represent system features, errata work
95  * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
96  * ELF HWCAPs (which are exposed to user).
97  *
98  * To support systems with heterogeneous CPUs, we need to make sure that we
99  * detect the capabilities correctly on the system and take appropriate
100  * measures to ensure there are no incompatibilities.
101  *
102  * This comment tries to explain how we treat the capabilities.
103  * Each capability has the following list of attributes :
104  *
105  * 1) Scope of Detection : The system detects a given capability by
106  *    performing some checks at runtime. This could be, e.g, checking the
107  *    value of a field in CPU ID feature register or checking the cpu
108  *    model. The capability provides a call back ( @matches() ) to
109  *    perform the check. Scope defines how the checks should be performed.
110  *    There are three cases:
111  *
112  *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
113  *        matches. This implies, we have to run the check on all the
114  *        booting CPUs, until the system decides that state of the
115  *        capability is finalised. (See section 2 below)
116  *		Or
117  *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
118  *        matches. This implies, we run the check only once, when the
119  *        system decides to finalise the state of the capability. If the
120  *        capability relies on a field in one of the CPU ID feature
121  *        registers, we use the sanitised value of the register from the
122  *        CPU feature infrastructure to make the decision.
123  *		Or
124  *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
125  *        feature. This category is for features that are "finalised"
126  *        (or used) by the kernel very early even before the SMP cpus
127  *        are brought up.
128  *
129  *    The process of detection is usually denoted by "update" capability
130  *    state in the code.
131  *
132  * 2) Finalise the state : The kernel should finalise the state of a
133  *    capability at some point during its execution and take necessary
134  *    actions if any. Usually, this is done, after all the boot-time
135  *    enabled CPUs are brought up by the kernel, so that it can make
136  *    better decision based on the available set of CPUs. However, there
137  *    are some special cases, where the action is taken during the early
138  *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
139  *    Virtualisation Host Extensions). The kernel usually disallows any
140  *    changes to the state of a capability once it finalises the capability
141  *    and takes any action, as it may be impossible to execute the actions
142  *    safely. A CPU brought up after a capability is "finalised" is
143  *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
144  *    CPUs are treated "late CPUs" for capabilities determined by the boot
145  *    CPU.
146  *
147  *    At the moment there are two passes of finalising the capabilities.
148  *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
149  *         setup_boot_cpu_capabilities().
150  *      b) Everything except (a) - Run via setup_system_capabilities().
151  *
152  * 3) Verification: When a CPU is brought online (e.g, by user or by the
153  *    kernel), the kernel should make sure that it is safe to use the CPU,
154  *    by verifying that the CPU is compliant with the state of the
155  *    capabilities finalised already. This happens via :
156  *
157  *	secondary_start_kernel()-> check_local_cpu_capabilities()
158  *
159  *    As explained in (2) above, capabilities could be finalised at
160  *    different points in the execution. Each newly booted CPU is verified
161  *    against the capabilities that have been finalised by the time it
162  *    boots.
163  *
164  *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
165  *	except for the primary boot CPU.
166  *
167  *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
168  *	user after the kernel boot are verified against the capability.
169  *
170  *    If there is a conflict, the kernel takes an action, based on the
171  *    severity (e.g, a CPU could be prevented from booting or cause a
172  *    kernel panic). The CPU is allowed to "affect" the state of the
173  *    capability, if it has not been finalised already. See section 5
174  *    for more details on conflicts.
175  *
176  * 4) Action: As mentioned in (2), the kernel can take an action for each
177  *    detected capability, on all CPUs on the system. Appropriate actions
178  *    include, turning on an architectural feature, modifying the control
179  *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
180  *    alternatives. The kernel patching is batched and performed at later
181  *    point. The actions are always initiated only after the capability
182  *    is finalised. This is usally denoted by "enabling" the capability.
183  *    The actions are initiated as follows :
184  *	a) Action is triggered on all online CPUs, after the capability is
185  *	finalised, invoked within the stop_machine() context from
186  *	enable_cpu_capabilitie().
187  *
188  *	b) Any late CPU, brought up after (1), the action is triggered via:
189  *
190  *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
191  *
192  * 5) Conflicts: Based on the state of the capability on a late CPU vs.
193  *    the system state, we could have the following combinations :
194  *
195  *		x-----------------------------x
196  *		| Type  | System   | Late CPU |
197  *		|-----------------------------|
198  *		|  a    |   y      |    n     |
199  *		|-----------------------------|
200  *		|  b    |   n      |    y     |
201  *		x-----------------------------x
202  *
203  *     Two separate flag bits are defined to indicate whether each kind of
204  *     conflict can be allowed:
205  *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
206  *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
207  *
208  *     Case (a) is not permitted for a capability that the system requires
209  *     all CPUs to have in order for the capability to be enabled. This is
210  *     typical for capabilities that represent enhanced functionality.
211  *
212  *     Case (b) is not permitted for a capability that must be enabled
213  *     during boot if any CPU in the system requires it in order to run
214  *     safely. This is typical for erratum work arounds that cannot be
215  *     enabled after the corresponding capability is finalised.
216  *
217  *     In some non-typical cases either both (a) and (b), or neither,
218  *     should be permitted. This can be described by including neither
219  *     or both flags in the capability's type field.
220  */
221 
222 
223 /*
224  * Decide how the capability is detected.
225  * On any local CPU vs System wide vs the primary boot CPU
226  */
227 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
228 #define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
229 /*
230  * The capabilitiy is detected on the Boot CPU and is used by kernel
231  * during early boot. i.e, the capability should be "detected" and
232  * "enabled" as early as possibly on all booting CPUs.
233  */
234 #define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
235 #define ARM64_CPUCAP_SCOPE_MASK			\
236 	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
237 	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
238 	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
239 
240 #define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
241 #define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
242 #define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
243 #define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
244 
245 /*
246  * Is it permitted for a late CPU to have this capability when system
247  * hasn't already enabled it ?
248  */
249 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
250 /* Is it safe for a late CPU to miss this capability when system has it */
251 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
252 
253 /*
254  * CPU errata workarounds that need to be enabled at boot time if one or
255  * more CPUs in the system requires it. When one of these capabilities
256  * has been enabled, it is safe to allow any CPU to boot that doesn't
257  * require the workaround. However, it is not safe if a "late" CPU
258  * requires a workaround and the system hasn't enabled it already.
259  */
260 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
261 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
262 /*
263  * CPU feature detected at boot time based on system-wide value of a
264  * feature. It is safe for a late CPU to have this feature even though
265  * the system hasn't enabled it, although the feature will not be used
266  * by Linux in this case. If the system has enabled this feature already,
267  * then every late CPU must have it.
268  */
269 #define ARM64_CPUCAP_SYSTEM_FEATURE	\
270 	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
271 /*
272  * CPU feature detected at boot time based on feature of one or more CPUs.
273  * All possible conflicts for a late CPU are ignored.
274  */
275 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
276 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
277 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
278 	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
279 
280 /*
281  * CPU feature detected at boot time, on one or more CPUs. A late CPU
282  * is not allowed to have the capability when the system doesn't have it.
283  * It is Ok for a late CPU to miss the feature.
284  */
285 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
286 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
287 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
288 
289 /*
290  * CPU feature used early in the boot based on the boot CPU. All secondary
291  * CPUs must match the state of the capability as detected by the boot CPU.
292  */
293 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU
294 
295 struct arm64_cpu_capabilities {
296 	const char *desc;
297 	u16 capability;
298 	u16 type;
299 	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
300 	/*
301 	 * Take the appropriate actions to enable this capability for this CPU.
302 	 * For each successfully booted CPU, this method is called for each
303 	 * globally detected capability.
304 	 */
305 	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
306 	union {
307 		struct {	/* To be used for erratum handling only */
308 			struct midr_range midr_range;
309 			const struct arm64_midr_revidr {
310 				u32 midr_rv;		/* revision/variant */
311 				u32 revidr_mask;
312 			} * const fixed_revs;
313 		};
314 
315 		const struct midr_range *midr_range_list;
316 		struct {	/* Feature register checking */
317 			u32 sys_reg;
318 			u8 field_pos;
319 			u8 min_field_value;
320 			u8 hwcap_type;
321 			bool sign;
322 			unsigned long hwcap;
323 		};
324 		/*
325 		 * A list of "matches/cpu_enable" pair for the same
326 		 * "capability" of the same "type" as described by the parent.
327 		 * Only matches(), cpu_enable() and fields relevant to these
328 		 * methods are significant in the list. The cpu_enable is
329 		 * invoked only if the corresponding entry "matches()".
330 		 * However, if a cpu_enable() method is associated
331 		 * with multiple matches(), care should be taken that either
332 		 * the match criteria are mutually exclusive, or that the
333 		 * method is robust against being called multiple times.
334 		 */
335 		const struct arm64_cpu_capabilities *match_list;
336 	};
337 };
338 
339 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
340 {
341 	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
342 }
343 
344 static inline bool
345 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
346 {
347 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
348 }
349 
350 static inline bool
351 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
352 {
353 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
354 }
355 
356 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
357 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
358 extern struct static_key_false arm64_const_caps_ready;
359 
360 bool this_cpu_has_cap(unsigned int cap);
361 
362 static inline bool cpu_have_feature(unsigned int num)
363 {
364 	return elf_hwcap & (1UL << num);
365 }
366 
367 /* System capability check for constant caps */
368 static inline bool __cpus_have_const_cap(int num)
369 {
370 	if (num >= ARM64_NCAPS)
371 		return false;
372 	return static_branch_unlikely(&cpu_hwcap_keys[num]);
373 }
374 
375 static inline bool cpus_have_cap(unsigned int num)
376 {
377 	if (num >= ARM64_NCAPS)
378 		return false;
379 	return test_bit(num, cpu_hwcaps);
380 }
381 
382 static inline bool cpus_have_const_cap(int num)
383 {
384 	if (static_branch_likely(&arm64_const_caps_ready))
385 		return __cpus_have_const_cap(num);
386 	else
387 		return cpus_have_cap(num);
388 }
389 
390 static inline void cpus_set_cap(unsigned int num)
391 {
392 	if (num >= ARM64_NCAPS) {
393 		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
394 			num, ARM64_NCAPS);
395 	} else {
396 		__set_bit(num, cpu_hwcaps);
397 	}
398 }
399 
400 static inline int __attribute_const__
401 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
402 {
403 	return (s64)(features << (64 - width - field)) >> (64 - width);
404 }
405 
406 static inline int __attribute_const__
407 cpuid_feature_extract_signed_field(u64 features, int field)
408 {
409 	return cpuid_feature_extract_signed_field_width(features, field, 4);
410 }
411 
412 static inline unsigned int __attribute_const__
413 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
414 {
415 	return (u64)(features << (64 - width - field)) >> (64 - width);
416 }
417 
418 static inline unsigned int __attribute_const__
419 cpuid_feature_extract_unsigned_field(u64 features, int field)
420 {
421 	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
422 }
423 
424 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
425 {
426 	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
427 }
428 
429 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
430 {
431 	return (reg->user_val | (reg->sys_val & reg->user_mask));
432 }
433 
434 static inline int __attribute_const__
435 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
436 {
437 	return (sign) ?
438 		cpuid_feature_extract_signed_field_width(features, field, width) :
439 		cpuid_feature_extract_unsigned_field_width(features, field, width);
440 }
441 
442 static inline int __attribute_const__
443 cpuid_feature_extract_field(u64 features, int field, bool sign)
444 {
445 	return cpuid_feature_extract_field_width(features, field, 4, sign);
446 }
447 
448 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
449 {
450 	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
451 }
452 
453 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
454 {
455 	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
456 		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
457 }
458 
459 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
460 {
461 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
462 
463 	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
464 }
465 
466 static inline bool id_aa64pfr0_sve(u64 pfr0)
467 {
468 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
469 
470 	return val > 0;
471 }
472 
473 void __init setup_cpu_features(void);
474 void check_local_cpu_capabilities(void);
475 
476 
477 u64 read_sanitised_ftr_reg(u32 id);
478 
479 static inline bool cpu_supports_mixed_endian_el0(void)
480 {
481 	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
482 }
483 
484 static inline bool system_supports_32bit_el0(void)
485 {
486 	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
487 }
488 
489 static inline bool system_supports_mixed_endian_el0(void)
490 {
491 	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
492 }
493 
494 static inline bool system_supports_fpsimd(void)
495 {
496 	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
497 }
498 
499 static inline bool system_uses_ttbr0_pan(void)
500 {
501 	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
502 		!cpus_have_const_cap(ARM64_HAS_PAN);
503 }
504 
505 static inline bool system_supports_sve(void)
506 {
507 	return IS_ENABLED(CONFIG_ARM64_SVE) &&
508 		cpus_have_const_cap(ARM64_SVE);
509 }
510 
511 static inline bool system_supports_cnp(void)
512 {
513 	return IS_ENABLED(CONFIG_ARM64_CNP) &&
514 		cpus_have_const_cap(ARM64_HAS_CNP);
515 }
516 
517 #define ARM64_SSBD_UNKNOWN		-1
518 #define ARM64_SSBD_FORCE_DISABLE	0
519 #define ARM64_SSBD_KERNEL		1
520 #define ARM64_SSBD_FORCE_ENABLE		2
521 #define ARM64_SSBD_MITIGATED		3
522 
523 static inline int arm64_get_ssbd_state(void)
524 {
525 #ifdef CONFIG_ARM64_SSBD
526 	extern int ssbd_state;
527 	return ssbd_state;
528 #else
529 	return ARM64_SSBD_UNKNOWN;
530 #endif
531 }
532 
533 #ifdef CONFIG_ARM64_SSBD
534 void arm64_set_ssbd_mitigation(bool state);
535 #else
536 static inline void arm64_set_ssbd_mitigation(bool state) {}
537 #endif
538 
539 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
540 
541 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
542 {
543 	switch (parange) {
544 	case 0: return 32;
545 	case 1: return 36;
546 	case 2: return 40;
547 	case 3: return 42;
548 	case 4: return 44;
549 	case 5: return 48;
550 	case 6: return 52;
551 	/*
552 	 * A future PE could use a value unknown to the kernel.
553 	 * However, by the "D10.1.4 Principles of the ID scheme
554 	 * for fields in ID registers", ARM DDI 0487C.a, any new
555 	 * value is guaranteed to be higher than what we know already.
556 	 * As a safe limit, we return the limit supported by the kernel.
557 	 */
558 	default: return CONFIG_ARM64_PA_BITS;
559 	}
560 }
561 #endif /* __ASSEMBLY__ */
562 
563 #endif
564