1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org> 4 */ 5 6 #ifndef __ASM_CPUFEATURE_H 7 #define __ASM_CPUFEATURE_H 8 9 #include <asm/alternative-macros.h> 10 #include <asm/cpucaps.h> 11 #include <asm/cputype.h> 12 #include <asm/hwcap.h> 13 #include <asm/sysreg.h> 14 15 #define MAX_CPU_FEATURES 128 16 #define cpu_feature(x) KERNEL_HWCAP_ ## x 17 18 #define ARM64_SW_FEATURE_OVERRIDE_NOKASLR 0 19 #define ARM64_SW_FEATURE_OVERRIDE_HVHE 4 20 21 #ifndef __ASSEMBLY__ 22 23 #include <linux/bug.h> 24 #include <linux/jump_label.h> 25 #include <linux/kernel.h> 26 27 /* 28 * CPU feature register tracking 29 * 30 * The safe value of a CPUID feature field is dependent on the implications 31 * of the values assigned to it by the architecture. Based on the relationship 32 * between the values, the features are classified into 3 types - LOWER_SAFE, 33 * HIGHER_SAFE and EXACT. 34 * 35 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest 36 * for HIGHER_SAFE. It is expected that all CPUs have the same value for 37 * a field when EXACT is specified, failing which, the safe value specified 38 * in the table is chosen. 39 */ 40 41 enum ftr_type { 42 FTR_EXACT, /* Use a predefined safe value */ 43 FTR_LOWER_SAFE, /* Smaller value is safe */ 44 FTR_HIGHER_SAFE, /* Bigger value is safe */ 45 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */ 46 }; 47 48 #define FTR_STRICT true /* SANITY check strict matching required */ 49 #define FTR_NONSTRICT false /* SANITY check ignored */ 50 51 #define FTR_SIGNED true /* Value should be treated as signed */ 52 #define FTR_UNSIGNED false /* Value should be treated as unsigned */ 53 54 #define FTR_VISIBLE true /* Feature visible to the user space */ 55 #define FTR_HIDDEN false /* Feature is hidden from the user */ 56 57 #define FTR_VISIBLE_IF_IS_ENABLED(config) \ 58 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN) 59 60 struct arm64_ftr_bits { 61 bool sign; /* Value is signed ? */ 62 bool visible; 63 bool strict; /* CPU Sanity check: strict matching required ? */ 64 enum ftr_type type; 65 u8 shift; 66 u8 width; 67 s64 safe_val; /* safe value for FTR_EXACT features */ 68 }; 69 70 /* 71 * Describe the early feature override to the core override code: 72 * 73 * @val Values that are to be merged into the final 74 * sanitised value of the register. Only the bitfields 75 * set to 1 in @mask are valid 76 * @mask Mask of the features that are overridden by @val 77 * 78 * A @mask field set to full-1 indicates that the corresponding field 79 * in @val is a valid override. 80 * 81 * A @mask field set to full-0 with the corresponding @val field set 82 * to full-0 denotes that this field has no override 83 * 84 * A @mask field set to full-0 with the corresponding @val field set 85 * to full-1 denotes thath this field has an invalid override. 86 */ 87 struct arm64_ftr_override { 88 u64 val; 89 u64 mask; 90 }; 91 92 /* 93 * @arm64_ftr_reg - Feature register 94 * @strict_mask Bits which should match across all CPUs for sanity. 95 * @sys_val Safe value across the CPUs (system view) 96 */ 97 struct arm64_ftr_reg { 98 const char *name; 99 u64 strict_mask; 100 u64 user_mask; 101 u64 sys_val; 102 u64 user_val; 103 struct arm64_ftr_override *override; 104 const struct arm64_ftr_bits *ftr_bits; 105 }; 106 107 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0; 108 109 /* 110 * CPU capabilities: 111 * 112 * We use arm64_cpu_capabilities to represent system features, errata work 113 * arounds (both used internally by kernel and tracked in system_cpucaps) and 114 * ELF HWCAPs (which are exposed to user). 115 * 116 * To support systems with heterogeneous CPUs, we need to make sure that we 117 * detect the capabilities correctly on the system and take appropriate 118 * measures to ensure there are no incompatibilities. 119 * 120 * This comment tries to explain how we treat the capabilities. 121 * Each capability has the following list of attributes : 122 * 123 * 1) Scope of Detection : The system detects a given capability by 124 * performing some checks at runtime. This could be, e.g, checking the 125 * value of a field in CPU ID feature register or checking the cpu 126 * model. The capability provides a call back ( @matches() ) to 127 * perform the check. Scope defines how the checks should be performed. 128 * There are three cases: 129 * 130 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one 131 * matches. This implies, we have to run the check on all the 132 * booting CPUs, until the system decides that state of the 133 * capability is finalised. (See section 2 below) 134 * Or 135 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs 136 * matches. This implies, we run the check only once, when the 137 * system decides to finalise the state of the capability. If the 138 * capability relies on a field in one of the CPU ID feature 139 * registers, we use the sanitised value of the register from the 140 * CPU feature infrastructure to make the decision. 141 * Or 142 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the 143 * feature. This category is for features that are "finalised" 144 * (or used) by the kernel very early even before the SMP cpus 145 * are brought up. 146 * 147 * The process of detection is usually denoted by "update" capability 148 * state in the code. 149 * 150 * 2) Finalise the state : The kernel should finalise the state of a 151 * capability at some point during its execution and take necessary 152 * actions if any. Usually, this is done, after all the boot-time 153 * enabled CPUs are brought up by the kernel, so that it can make 154 * better decision based on the available set of CPUs. However, there 155 * are some special cases, where the action is taken during the early 156 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with 157 * Virtualisation Host Extensions). The kernel usually disallows any 158 * changes to the state of a capability once it finalises the capability 159 * and takes any action, as it may be impossible to execute the actions 160 * safely. A CPU brought up after a capability is "finalised" is 161 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary 162 * CPUs are treated "late CPUs" for capabilities determined by the boot 163 * CPU. 164 * 165 * At the moment there are two passes of finalising the capabilities. 166 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via 167 * setup_boot_cpu_capabilities(). 168 * b) Everything except (a) - Run via setup_system_capabilities(). 169 * 170 * 3) Verification: When a CPU is brought online (e.g, by user or by the 171 * kernel), the kernel should make sure that it is safe to use the CPU, 172 * by verifying that the CPU is compliant with the state of the 173 * capabilities finalised already. This happens via : 174 * 175 * secondary_start_kernel()-> check_local_cpu_capabilities() 176 * 177 * As explained in (2) above, capabilities could be finalised at 178 * different points in the execution. Each newly booted CPU is verified 179 * against the capabilities that have been finalised by the time it 180 * boots. 181 * 182 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability 183 * except for the primary boot CPU. 184 * 185 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the 186 * user after the kernel boot are verified against the capability. 187 * 188 * If there is a conflict, the kernel takes an action, based on the 189 * severity (e.g, a CPU could be prevented from booting or cause a 190 * kernel panic). The CPU is allowed to "affect" the state of the 191 * capability, if it has not been finalised already. See section 5 192 * for more details on conflicts. 193 * 194 * 4) Action: As mentioned in (2), the kernel can take an action for each 195 * detected capability, on all CPUs on the system. Appropriate actions 196 * include, turning on an architectural feature, modifying the control 197 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via 198 * alternatives. The kernel patching is batched and performed at later 199 * point. The actions are always initiated only after the capability 200 * is finalised. This is usally denoted by "enabling" the capability. 201 * The actions are initiated as follows : 202 * a) Action is triggered on all online CPUs, after the capability is 203 * finalised, invoked within the stop_machine() context from 204 * enable_cpu_capabilitie(). 205 * 206 * b) Any late CPU, brought up after (1), the action is triggered via: 207 * 208 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities() 209 * 210 * 5) Conflicts: Based on the state of the capability on a late CPU vs. 211 * the system state, we could have the following combinations : 212 * 213 * x-----------------------------x 214 * | Type | System | Late CPU | 215 * |-----------------------------| 216 * | a | y | n | 217 * |-----------------------------| 218 * | b | n | y | 219 * x-----------------------------x 220 * 221 * Two separate flag bits are defined to indicate whether each kind of 222 * conflict can be allowed: 223 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed 224 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed 225 * 226 * Case (a) is not permitted for a capability that the system requires 227 * all CPUs to have in order for the capability to be enabled. This is 228 * typical for capabilities that represent enhanced functionality. 229 * 230 * Case (b) is not permitted for a capability that must be enabled 231 * during boot if any CPU in the system requires it in order to run 232 * safely. This is typical for erratum work arounds that cannot be 233 * enabled after the corresponding capability is finalised. 234 * 235 * In some non-typical cases either both (a) and (b), or neither, 236 * should be permitted. This can be described by including neither 237 * or both flags in the capability's type field. 238 * 239 * In case of a conflict, the CPU is prevented from booting. If the 240 * ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability, 241 * then a kernel panic is triggered. 242 */ 243 244 245 /* 246 * Decide how the capability is detected. 247 * On any local CPU vs System wide vs the primary boot CPU 248 */ 249 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0)) 250 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1)) 251 /* 252 * The capabilitiy is detected on the Boot CPU and is used by kernel 253 * during early boot. i.e, the capability should be "detected" and 254 * "enabled" as early as possibly on all booting CPUs. 255 */ 256 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2)) 257 #define ARM64_CPUCAP_SCOPE_MASK \ 258 (ARM64_CPUCAP_SCOPE_SYSTEM | \ 259 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 260 ARM64_CPUCAP_SCOPE_BOOT_CPU) 261 262 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM 263 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU 264 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU 265 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK 266 267 /* 268 * Is it permitted for a late CPU to have this capability when system 269 * hasn't already enabled it ? 270 */ 271 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4)) 272 /* Is it safe for a late CPU to miss this capability when system has it */ 273 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5)) 274 /* Panic when a conflict is detected */ 275 #define ARM64_CPUCAP_PANIC_ON_CONFLICT ((u16)BIT(6)) 276 277 /* 278 * CPU errata workarounds that need to be enabled at boot time if one or 279 * more CPUs in the system requires it. When one of these capabilities 280 * has been enabled, it is safe to allow any CPU to boot that doesn't 281 * require the workaround. However, it is not safe if a "late" CPU 282 * requires a workaround and the system hasn't enabled it already. 283 */ 284 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \ 285 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU) 286 /* 287 * CPU feature detected at boot time based on system-wide value of a 288 * feature. It is safe for a late CPU to have this feature even though 289 * the system hasn't enabled it, although the feature will not be used 290 * by Linux in this case. If the system has enabled this feature already, 291 * then every late CPU must have it. 292 */ 293 #define ARM64_CPUCAP_SYSTEM_FEATURE \ 294 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 295 /* 296 * CPU feature detected at boot time based on feature of one or more CPUs. 297 * All possible conflicts for a late CPU are ignored. 298 * NOTE: this means that a late CPU with the feature will *not* cause the 299 * capability to be advertised by cpus_have_*cap()! 300 */ 301 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \ 302 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 303 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \ 304 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 305 306 /* 307 * CPU feature detected at boot time, on one or more CPUs. A late CPU 308 * is not allowed to have the capability when the system doesn't have it. 309 * It is Ok for a late CPU to miss the feature. 310 */ 311 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \ 312 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 313 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU) 314 315 /* 316 * CPU feature used early in the boot based on the boot CPU. All secondary 317 * CPUs must match the state of the capability as detected by the boot CPU. In 318 * case of a conflict, a kernel panic is triggered. 319 */ 320 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE \ 321 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT) 322 323 /* 324 * CPU feature used early in the boot based on the boot CPU. It is safe for a 325 * late CPU to have this feature even though the boot CPU hasn't enabled it, 326 * although the feature will not be used by Linux in this case. If the boot CPU 327 * has enabled this feature already, then every late CPU must have it. 328 */ 329 #define ARM64_CPUCAP_BOOT_CPU_FEATURE \ 330 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 331 332 struct arm64_cpu_capabilities { 333 const char *desc; 334 u16 capability; 335 u16 type; 336 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope); 337 /* 338 * Take the appropriate actions to configure this capability 339 * for this CPU. If the capability is detected by the kernel 340 * this will be called on all the CPUs in the system, 341 * including the hotplugged CPUs, regardless of whether the 342 * capability is available on that specific CPU. This is 343 * useful for some capabilities (e.g, working around CPU 344 * errata), where all the CPUs must take some action (e.g, 345 * changing system control/configuration). Thus, if an action 346 * is required only if the CPU has the capability, then the 347 * routine must check it before taking any action. 348 */ 349 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap); 350 union { 351 struct { /* To be used for erratum handling only */ 352 struct midr_range midr_range; 353 const struct arm64_midr_revidr { 354 u32 midr_rv; /* revision/variant */ 355 u32 revidr_mask; 356 } * const fixed_revs; 357 }; 358 359 const struct midr_range *midr_range_list; 360 struct { /* Feature register checking */ 361 u32 sys_reg; 362 u8 field_pos; 363 u8 field_width; 364 u8 min_field_value; 365 u8 hwcap_type; 366 bool sign; 367 unsigned long hwcap; 368 }; 369 }; 370 371 /* 372 * An optional list of "matches/cpu_enable" pair for the same 373 * "capability" of the same "type" as described by the parent. 374 * Only matches(), cpu_enable() and fields relevant to these 375 * methods are significant in the list. The cpu_enable is 376 * invoked only if the corresponding entry "matches()". 377 * However, if a cpu_enable() method is associated 378 * with multiple matches(), care should be taken that either 379 * the match criteria are mutually exclusive, or that the 380 * method is robust against being called multiple times. 381 */ 382 const struct arm64_cpu_capabilities *match_list; 383 }; 384 385 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap) 386 { 387 return cap->type & ARM64_CPUCAP_SCOPE_MASK; 388 } 389 390 /* 391 * Generic helper for handling capabilities with multiple (match,enable) pairs 392 * of call backs, sharing the same capability bit. 393 * Iterate over each entry to see if at least one matches. 394 */ 395 static inline bool 396 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry, 397 int scope) 398 { 399 const struct arm64_cpu_capabilities *caps; 400 401 for (caps = entry->match_list; caps->matches; caps++) 402 if (caps->matches(caps, scope)) 403 return true; 404 405 return false; 406 } 407 408 static __always_inline bool is_vhe_hyp_code(void) 409 { 410 /* Only defined for code run in VHE hyp context */ 411 return __is_defined(__KVM_VHE_HYPERVISOR__); 412 } 413 414 static __always_inline bool is_nvhe_hyp_code(void) 415 { 416 /* Only defined for code run in NVHE hyp context */ 417 return __is_defined(__KVM_NVHE_HYPERVISOR__); 418 } 419 420 static __always_inline bool is_hyp_code(void) 421 { 422 return is_vhe_hyp_code() || is_nvhe_hyp_code(); 423 } 424 425 extern DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS); 426 427 extern DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS); 428 429 #define for_each_available_cap(cap) \ 430 for_each_set_bit(cap, system_cpucaps, ARM64_NCAPS) 431 432 bool this_cpu_has_cap(unsigned int cap); 433 void cpu_set_feature(unsigned int num); 434 bool cpu_have_feature(unsigned int num); 435 unsigned long cpu_get_elf_hwcap(void); 436 unsigned long cpu_get_elf_hwcap2(void); 437 438 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name)) 439 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name)) 440 441 static __always_inline bool system_capabilities_finalized(void) 442 { 443 return alternative_has_cap_likely(ARM64_ALWAYS_SYSTEM); 444 } 445 446 /* 447 * Test for a capability with a runtime check. 448 * 449 * Before the capability is detected, this returns false. 450 */ 451 static __always_inline bool cpus_have_cap(unsigned int num) 452 { 453 if (num >= ARM64_NCAPS) 454 return false; 455 return arch_test_bit(num, system_cpucaps); 456 } 457 458 /* 459 * Test for a capability without a runtime check. 460 * 461 * Before capabilities are finalized, this returns false. 462 * After capabilities are finalized, this is patched to avoid a runtime check. 463 * 464 * @num must be a compile-time constant. 465 */ 466 static __always_inline bool __cpus_have_const_cap(int num) 467 { 468 if (num >= ARM64_NCAPS) 469 return false; 470 return alternative_has_cap_unlikely(num); 471 } 472 473 /* 474 * Test for a capability without a runtime check. 475 * 476 * Before capabilities are finalized, this will BUG(). 477 * After capabilities are finalized, this is patched to avoid a runtime check. 478 * 479 * @num must be a compile-time constant. 480 */ 481 static __always_inline bool cpus_have_final_cap(int num) 482 { 483 if (system_capabilities_finalized()) 484 return __cpus_have_const_cap(num); 485 else 486 BUG(); 487 } 488 489 /* 490 * Test for a capability, possibly with a runtime check for non-hyp code. 491 * 492 * For hyp code, this behaves the same as cpus_have_final_cap(). 493 * 494 * For non-hyp code: 495 * Before capabilities are finalized, this behaves as cpus_have_cap(). 496 * After capabilities are finalized, this is patched to avoid a runtime check. 497 * 498 * @num must be a compile-time constant. 499 */ 500 static __always_inline bool cpus_have_const_cap(int num) 501 { 502 if (is_hyp_code()) 503 return cpus_have_final_cap(num); 504 else if (system_capabilities_finalized()) 505 return __cpus_have_const_cap(num); 506 else 507 return cpus_have_cap(num); 508 } 509 510 static inline int __attribute_const__ 511 cpuid_feature_extract_signed_field_width(u64 features, int field, int width) 512 { 513 return (s64)(features << (64 - width - field)) >> (64 - width); 514 } 515 516 static inline int __attribute_const__ 517 cpuid_feature_extract_signed_field(u64 features, int field) 518 { 519 return cpuid_feature_extract_signed_field_width(features, field, 4); 520 } 521 522 static __always_inline unsigned int __attribute_const__ 523 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width) 524 { 525 return (u64)(features << (64 - width - field)) >> (64 - width); 526 } 527 528 static __always_inline unsigned int __attribute_const__ 529 cpuid_feature_extract_unsigned_field(u64 features, int field) 530 { 531 return cpuid_feature_extract_unsigned_field_width(features, field, 4); 532 } 533 534 /* 535 * Fields that identify the version of the Performance Monitors Extension do 536 * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825, 537 * "Alternative ID scheme used for the Performance Monitors Extension version". 538 */ 539 static inline u64 __attribute_const__ 540 cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap) 541 { 542 u64 val = cpuid_feature_extract_unsigned_field(features, field); 543 u64 mask = GENMASK_ULL(field + 3, field); 544 545 /* Treat IMPLEMENTATION DEFINED functionality as unimplemented */ 546 if (val == ID_AA64DFR0_EL1_PMUVer_IMP_DEF) 547 val = 0; 548 549 if (val > cap) { 550 features &= ~mask; 551 features |= (cap << field) & mask; 552 } 553 554 return features; 555 } 556 557 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp) 558 { 559 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift); 560 } 561 562 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg) 563 { 564 return (reg->user_val | (reg->sys_val & reg->user_mask)); 565 } 566 567 static inline int __attribute_const__ 568 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign) 569 { 570 if (WARN_ON_ONCE(!width)) 571 width = 4; 572 return (sign) ? 573 cpuid_feature_extract_signed_field_width(features, field, width) : 574 cpuid_feature_extract_unsigned_field_width(features, field, width); 575 } 576 577 static inline int __attribute_const__ 578 cpuid_feature_extract_field(u64 features, int field, bool sign) 579 { 580 return cpuid_feature_extract_field_width(features, field, 4, sign); 581 } 582 583 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val) 584 { 585 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign); 586 } 587 588 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0) 589 { 590 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGEND_SHIFT) == 0x1 || 591 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT) == 0x1; 592 } 593 594 static inline bool id_aa64pfr0_32bit_el1(u64 pfr0) 595 { 596 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL1_SHIFT); 597 598 return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT; 599 } 600 601 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0) 602 { 603 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL0_SHIFT); 604 605 return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT; 606 } 607 608 static inline bool id_aa64pfr0_sve(u64 pfr0) 609 { 610 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SVE_SHIFT); 611 612 return val > 0; 613 } 614 615 static inline bool id_aa64pfr1_sme(u64 pfr1) 616 { 617 u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_SME_SHIFT); 618 619 return val > 0; 620 } 621 622 static inline bool id_aa64pfr1_mte(u64 pfr1) 623 { 624 u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_MTE_SHIFT); 625 626 return val >= ID_AA64PFR1_EL1_MTE_MTE2; 627 } 628 629 void __init setup_cpu_features(void); 630 void check_local_cpu_capabilities(void); 631 632 u64 read_sanitised_ftr_reg(u32 id); 633 u64 __read_sysreg_by_encoding(u32 sys_id); 634 635 static inline bool cpu_supports_mixed_endian_el0(void) 636 { 637 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1)); 638 } 639 640 641 static inline bool supports_csv2p3(int scope) 642 { 643 u64 pfr0; 644 u8 csv2_val; 645 646 if (scope == SCOPE_LOCAL_CPU) 647 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1); 648 else 649 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 650 651 csv2_val = cpuid_feature_extract_unsigned_field(pfr0, 652 ID_AA64PFR0_EL1_CSV2_SHIFT); 653 return csv2_val == 3; 654 } 655 656 static inline bool supports_clearbhb(int scope) 657 { 658 u64 isar2; 659 660 if (scope == SCOPE_LOCAL_CPU) 661 isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1); 662 else 663 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 664 665 return cpuid_feature_extract_unsigned_field(isar2, 666 ID_AA64ISAR2_EL1_BC_SHIFT); 667 } 668 669 const struct cpumask *system_32bit_el0_cpumask(void); 670 DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0); 671 672 static inline bool system_supports_32bit_el0(void) 673 { 674 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 675 676 return static_branch_unlikely(&arm64_mismatched_32bit_el0) || 677 id_aa64pfr0_32bit_el0(pfr0); 678 } 679 680 static inline bool system_supports_4kb_granule(void) 681 { 682 u64 mmfr0; 683 u32 val; 684 685 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 686 val = cpuid_feature_extract_unsigned_field(mmfr0, 687 ID_AA64MMFR0_EL1_TGRAN4_SHIFT); 688 689 return (val >= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN) && 690 (val <= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX); 691 } 692 693 static inline bool system_supports_64kb_granule(void) 694 { 695 u64 mmfr0; 696 u32 val; 697 698 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 699 val = cpuid_feature_extract_unsigned_field(mmfr0, 700 ID_AA64MMFR0_EL1_TGRAN64_SHIFT); 701 702 return (val >= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN) && 703 (val <= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX); 704 } 705 706 static inline bool system_supports_16kb_granule(void) 707 { 708 u64 mmfr0; 709 u32 val; 710 711 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 712 val = cpuid_feature_extract_unsigned_field(mmfr0, 713 ID_AA64MMFR0_EL1_TGRAN16_SHIFT); 714 715 return (val >= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN) && 716 (val <= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX); 717 } 718 719 static inline bool system_supports_mixed_endian_el0(void) 720 { 721 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1)); 722 } 723 724 static inline bool system_supports_mixed_endian(void) 725 { 726 u64 mmfr0; 727 u32 val; 728 729 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 730 val = cpuid_feature_extract_unsigned_field(mmfr0, 731 ID_AA64MMFR0_EL1_BIGEND_SHIFT); 732 733 return val == 0x1; 734 } 735 736 static __always_inline bool system_supports_fpsimd(void) 737 { 738 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD); 739 } 740 741 static inline bool system_uses_hw_pan(void) 742 { 743 return IS_ENABLED(CONFIG_ARM64_PAN) && 744 cpus_have_const_cap(ARM64_HAS_PAN); 745 } 746 747 static inline bool system_uses_ttbr0_pan(void) 748 { 749 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) && 750 !system_uses_hw_pan(); 751 } 752 753 static __always_inline bool system_supports_sve(void) 754 { 755 return IS_ENABLED(CONFIG_ARM64_SVE) && 756 cpus_have_const_cap(ARM64_SVE); 757 } 758 759 static __always_inline bool system_supports_sme(void) 760 { 761 return IS_ENABLED(CONFIG_ARM64_SME) && 762 cpus_have_const_cap(ARM64_SME); 763 } 764 765 static __always_inline bool system_supports_sme2(void) 766 { 767 return IS_ENABLED(CONFIG_ARM64_SME) && 768 cpus_have_const_cap(ARM64_SME2); 769 } 770 771 static __always_inline bool system_supports_fa64(void) 772 { 773 return IS_ENABLED(CONFIG_ARM64_SME) && 774 cpus_have_const_cap(ARM64_SME_FA64); 775 } 776 777 static __always_inline bool system_supports_tpidr2(void) 778 { 779 return system_supports_sme(); 780 } 781 782 static __always_inline bool system_supports_cnp(void) 783 { 784 return IS_ENABLED(CONFIG_ARM64_CNP) && 785 cpus_have_const_cap(ARM64_HAS_CNP); 786 } 787 788 static inline bool system_supports_address_auth(void) 789 { 790 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) && 791 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH); 792 } 793 794 static inline bool system_supports_generic_auth(void) 795 { 796 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) && 797 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH); 798 } 799 800 static inline bool system_has_full_ptr_auth(void) 801 { 802 return system_supports_address_auth() && system_supports_generic_auth(); 803 } 804 805 static __always_inline bool system_uses_irq_prio_masking(void) 806 { 807 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && 808 cpus_have_const_cap(ARM64_HAS_GIC_PRIO_MASKING); 809 } 810 811 static inline bool system_supports_mte(void) 812 { 813 return IS_ENABLED(CONFIG_ARM64_MTE) && 814 cpus_have_const_cap(ARM64_MTE); 815 } 816 817 static inline bool system_has_prio_mask_debugging(void) 818 { 819 return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) && 820 system_uses_irq_prio_masking(); 821 } 822 823 static inline bool system_supports_bti(void) 824 { 825 return IS_ENABLED(CONFIG_ARM64_BTI) && cpus_have_const_cap(ARM64_BTI); 826 } 827 828 static inline bool system_supports_tlb_range(void) 829 { 830 return IS_ENABLED(CONFIG_ARM64_TLB_RANGE) && 831 cpus_have_const_cap(ARM64_HAS_TLB_RANGE); 832 } 833 834 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt); 835 bool try_emulate_mrs(struct pt_regs *regs, u32 isn); 836 837 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange) 838 { 839 switch (parange) { 840 case ID_AA64MMFR0_EL1_PARANGE_32: return 32; 841 case ID_AA64MMFR0_EL1_PARANGE_36: return 36; 842 case ID_AA64MMFR0_EL1_PARANGE_40: return 40; 843 case ID_AA64MMFR0_EL1_PARANGE_42: return 42; 844 case ID_AA64MMFR0_EL1_PARANGE_44: return 44; 845 case ID_AA64MMFR0_EL1_PARANGE_48: return 48; 846 case ID_AA64MMFR0_EL1_PARANGE_52: return 52; 847 /* 848 * A future PE could use a value unknown to the kernel. 849 * However, by the "D10.1.4 Principles of the ID scheme 850 * for fields in ID registers", ARM DDI 0487C.a, any new 851 * value is guaranteed to be higher than what we know already. 852 * As a safe limit, we return the limit supported by the kernel. 853 */ 854 default: return CONFIG_ARM64_PA_BITS; 855 } 856 } 857 858 /* Check whether hardware update of the Access flag is supported */ 859 static inline bool cpu_has_hw_af(void) 860 { 861 u64 mmfr1; 862 863 if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM)) 864 return false; 865 866 /* 867 * Use cached version to avoid emulated msr operation on KVM 868 * guests. 869 */ 870 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 871 return cpuid_feature_extract_unsigned_field(mmfr1, 872 ID_AA64MMFR1_EL1_HAFDBS_SHIFT); 873 } 874 875 static inline bool cpu_has_pan(void) 876 { 877 u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); 878 return cpuid_feature_extract_unsigned_field(mmfr1, 879 ID_AA64MMFR1_EL1_PAN_SHIFT); 880 } 881 882 #ifdef CONFIG_ARM64_AMU_EXTN 883 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */ 884 extern bool cpu_has_amu_feat(int cpu); 885 #else 886 static inline bool cpu_has_amu_feat(int cpu) 887 { 888 return false; 889 } 890 #endif 891 892 /* Get a cpu that supports the Activity Monitors Unit (AMU) */ 893 extern int get_cpu_with_amu_feat(void); 894 895 static inline unsigned int get_vmid_bits(u64 mmfr1) 896 { 897 int vmid_bits; 898 899 vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1, 900 ID_AA64MMFR1_EL1_VMIDBits_SHIFT); 901 if (vmid_bits == ID_AA64MMFR1_EL1_VMIDBits_16) 902 return 16; 903 904 /* 905 * Return the default here even if any reserved 906 * value is fetched from the system register. 907 */ 908 return 8; 909 } 910 911 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 cur); 912 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id); 913 914 extern struct arm64_ftr_override id_aa64mmfr1_override; 915 extern struct arm64_ftr_override id_aa64pfr0_override; 916 extern struct arm64_ftr_override id_aa64pfr1_override; 917 extern struct arm64_ftr_override id_aa64zfr0_override; 918 extern struct arm64_ftr_override id_aa64smfr0_override; 919 extern struct arm64_ftr_override id_aa64isar1_override; 920 extern struct arm64_ftr_override id_aa64isar2_override; 921 922 extern struct arm64_ftr_override arm64_sw_feature_override; 923 924 u32 get_kvm_ipa_limit(void); 925 void dump_cpu_features(void); 926 927 #endif /* __ASSEMBLY__ */ 928 929 #endif 930