1 /*
2  * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #ifndef __ASM_CPUFEATURE_H
10 #define __ASM_CPUFEATURE_H
11 
12 #include <asm/cpucaps.h>
13 #include <asm/cputype.h>
14 #include <asm/hwcap.h>
15 #include <asm/sysreg.h>
16 
17 #define MAX_CPU_FEATURES	64
18 #define cpu_feature(x)		KERNEL_HWCAP_ ## x
19 
20 #ifndef __ASSEMBLY__
21 
22 #include <linux/bug.h>
23 #include <linux/jump_label.h>
24 #include <linux/kernel.h>
25 
26 /*
27  * CPU feature register tracking
28  *
29  * The safe value of a CPUID feature field is dependent on the implications
30  * of the values assigned to it by the architecture. Based on the relationship
31  * between the values, the features are classified into 3 types - LOWER_SAFE,
32  * HIGHER_SAFE and EXACT.
33  *
34  * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
35  * for HIGHER_SAFE. It is expected that all CPUs have the same value for
36  * a field when EXACT is specified, failing which, the safe value specified
37  * in the table is chosen.
38  */
39 
40 enum ftr_type {
41 	FTR_EXACT,	/* Use a predefined safe value */
42 	FTR_LOWER_SAFE,	/* Smaller value is safe */
43 	FTR_HIGHER_SAFE,/* Bigger value is safe */
44 };
45 
46 #define FTR_STRICT	true	/* SANITY check strict matching required */
47 #define FTR_NONSTRICT	false	/* SANITY check ignored */
48 
49 #define FTR_SIGNED	true	/* Value should be treated as signed */
50 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
51 
52 #define FTR_VISIBLE	true	/* Feature visible to the user space */
53 #define FTR_HIDDEN	false	/* Feature is hidden from the user */
54 
55 #define FTR_VISIBLE_IF_IS_ENABLED(config)		\
56 	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
57 
58 struct arm64_ftr_bits {
59 	bool		sign;	/* Value is signed ? */
60 	bool		visible;
61 	bool		strict;	/* CPU Sanity check: strict matching required ? */
62 	enum ftr_type	type;
63 	u8		shift;
64 	u8		width;
65 	s64		safe_val; /* safe value for FTR_EXACT features */
66 };
67 
68 /*
69  * @arm64_ftr_reg - Feature register
70  * @strict_mask		Bits which should match across all CPUs for sanity.
71  * @sys_val		Safe value across the CPUs (system view)
72  */
73 struct arm64_ftr_reg {
74 	const char			*name;
75 	u64				strict_mask;
76 	u64				user_mask;
77 	u64				sys_val;
78 	u64				user_val;
79 	const struct arm64_ftr_bits	*ftr_bits;
80 };
81 
82 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
83 
84 /*
85  * CPU capabilities:
86  *
87  * We use arm64_cpu_capabilities to represent system features, errata work
88  * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
89  * ELF HWCAPs (which are exposed to user).
90  *
91  * To support systems with heterogeneous CPUs, we need to make sure that we
92  * detect the capabilities correctly on the system and take appropriate
93  * measures to ensure there are no incompatibilities.
94  *
95  * This comment tries to explain how we treat the capabilities.
96  * Each capability has the following list of attributes :
97  *
98  * 1) Scope of Detection : The system detects a given capability by
99  *    performing some checks at runtime. This could be, e.g, checking the
100  *    value of a field in CPU ID feature register or checking the cpu
101  *    model. The capability provides a call back ( @matches() ) to
102  *    perform the check. Scope defines how the checks should be performed.
103  *    There are three cases:
104  *
105  *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
106  *        matches. This implies, we have to run the check on all the
107  *        booting CPUs, until the system decides that state of the
108  *        capability is finalised. (See section 2 below)
109  *		Or
110  *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
111  *        matches. This implies, we run the check only once, when the
112  *        system decides to finalise the state of the capability. If the
113  *        capability relies on a field in one of the CPU ID feature
114  *        registers, we use the sanitised value of the register from the
115  *        CPU feature infrastructure to make the decision.
116  *		Or
117  *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
118  *        feature. This category is for features that are "finalised"
119  *        (or used) by the kernel very early even before the SMP cpus
120  *        are brought up.
121  *
122  *    The process of detection is usually denoted by "update" capability
123  *    state in the code.
124  *
125  * 2) Finalise the state : The kernel should finalise the state of a
126  *    capability at some point during its execution and take necessary
127  *    actions if any. Usually, this is done, after all the boot-time
128  *    enabled CPUs are brought up by the kernel, so that it can make
129  *    better decision based on the available set of CPUs. However, there
130  *    are some special cases, where the action is taken during the early
131  *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
132  *    Virtualisation Host Extensions). The kernel usually disallows any
133  *    changes to the state of a capability once it finalises the capability
134  *    and takes any action, as it may be impossible to execute the actions
135  *    safely. A CPU brought up after a capability is "finalised" is
136  *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
137  *    CPUs are treated "late CPUs" for capabilities determined by the boot
138  *    CPU.
139  *
140  *    At the moment there are two passes of finalising the capabilities.
141  *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
142  *         setup_boot_cpu_capabilities().
143  *      b) Everything except (a) - Run via setup_system_capabilities().
144  *
145  * 3) Verification: When a CPU is brought online (e.g, by user or by the
146  *    kernel), the kernel should make sure that it is safe to use the CPU,
147  *    by verifying that the CPU is compliant with the state of the
148  *    capabilities finalised already. This happens via :
149  *
150  *	secondary_start_kernel()-> check_local_cpu_capabilities()
151  *
152  *    As explained in (2) above, capabilities could be finalised at
153  *    different points in the execution. Each newly booted CPU is verified
154  *    against the capabilities that have been finalised by the time it
155  *    boots.
156  *
157  *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
158  *	except for the primary boot CPU.
159  *
160  *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
161  *	user after the kernel boot are verified against the capability.
162  *
163  *    If there is a conflict, the kernel takes an action, based on the
164  *    severity (e.g, a CPU could be prevented from booting or cause a
165  *    kernel panic). The CPU is allowed to "affect" the state of the
166  *    capability, if it has not been finalised already. See section 5
167  *    for more details on conflicts.
168  *
169  * 4) Action: As mentioned in (2), the kernel can take an action for each
170  *    detected capability, on all CPUs on the system. Appropriate actions
171  *    include, turning on an architectural feature, modifying the control
172  *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
173  *    alternatives. The kernel patching is batched and performed at later
174  *    point. The actions are always initiated only after the capability
175  *    is finalised. This is usally denoted by "enabling" the capability.
176  *    The actions are initiated as follows :
177  *	a) Action is triggered on all online CPUs, after the capability is
178  *	finalised, invoked within the stop_machine() context from
179  *	enable_cpu_capabilitie().
180  *
181  *	b) Any late CPU, brought up after (1), the action is triggered via:
182  *
183  *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
184  *
185  * 5) Conflicts: Based on the state of the capability on a late CPU vs.
186  *    the system state, we could have the following combinations :
187  *
188  *		x-----------------------------x
189  *		| Type  | System   | Late CPU |
190  *		|-----------------------------|
191  *		|  a    |   y      |    n     |
192  *		|-----------------------------|
193  *		|  b    |   n      |    y     |
194  *		x-----------------------------x
195  *
196  *     Two separate flag bits are defined to indicate whether each kind of
197  *     conflict can be allowed:
198  *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
199  *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
200  *
201  *     Case (a) is not permitted for a capability that the system requires
202  *     all CPUs to have in order for the capability to be enabled. This is
203  *     typical for capabilities that represent enhanced functionality.
204  *
205  *     Case (b) is not permitted for a capability that must be enabled
206  *     during boot if any CPU in the system requires it in order to run
207  *     safely. This is typical for erratum work arounds that cannot be
208  *     enabled after the corresponding capability is finalised.
209  *
210  *     In some non-typical cases either both (a) and (b), or neither,
211  *     should be permitted. This can be described by including neither
212  *     or both flags in the capability's type field.
213  */
214 
215 
216 /*
217  * Decide how the capability is detected.
218  * On any local CPU vs System wide vs the primary boot CPU
219  */
220 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
221 #define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
222 /*
223  * The capabilitiy is detected on the Boot CPU and is used by kernel
224  * during early boot. i.e, the capability should be "detected" and
225  * "enabled" as early as possibly on all booting CPUs.
226  */
227 #define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
228 #define ARM64_CPUCAP_SCOPE_MASK			\
229 	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
230 	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
231 	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
232 
233 #define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
234 #define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
235 #define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
236 #define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
237 
238 /*
239  * Is it permitted for a late CPU to have this capability when system
240  * hasn't already enabled it ?
241  */
242 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
243 /* Is it safe for a late CPU to miss this capability when system has it */
244 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
245 
246 /*
247  * CPU errata workarounds that need to be enabled at boot time if one or
248  * more CPUs in the system requires it. When one of these capabilities
249  * has been enabled, it is safe to allow any CPU to boot that doesn't
250  * require the workaround. However, it is not safe if a "late" CPU
251  * requires a workaround and the system hasn't enabled it already.
252  */
253 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
254 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
255 /*
256  * CPU feature detected at boot time based on system-wide value of a
257  * feature. It is safe for a late CPU to have this feature even though
258  * the system hasn't enabled it, although the feature will not be used
259  * by Linux in this case. If the system has enabled this feature already,
260  * then every late CPU must have it.
261  */
262 #define ARM64_CPUCAP_SYSTEM_FEATURE	\
263 	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
264 /*
265  * CPU feature detected at boot time based on feature of one or more CPUs.
266  * All possible conflicts for a late CPU are ignored.
267  */
268 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
269 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
270 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
271 	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
272 
273 /*
274  * CPU feature detected at boot time, on one or more CPUs. A late CPU
275  * is not allowed to have the capability when the system doesn't have it.
276  * It is Ok for a late CPU to miss the feature.
277  */
278 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
279 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
280 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
281 
282 /*
283  * CPU feature used early in the boot based on the boot CPU. All secondary
284  * CPUs must match the state of the capability as detected by the boot CPU.
285  */
286 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU
287 
288 struct arm64_cpu_capabilities {
289 	const char *desc;
290 	u16 capability;
291 	u16 type;
292 	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
293 	/*
294 	 * Take the appropriate actions to enable this capability for this CPU.
295 	 * For each successfully booted CPU, this method is called for each
296 	 * globally detected capability.
297 	 */
298 	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
299 	union {
300 		struct {	/* To be used for erratum handling only */
301 			struct midr_range midr_range;
302 			const struct arm64_midr_revidr {
303 				u32 midr_rv;		/* revision/variant */
304 				u32 revidr_mask;
305 			} * const fixed_revs;
306 		};
307 
308 		const struct midr_range *midr_range_list;
309 		struct {	/* Feature register checking */
310 			u32 sys_reg;
311 			u8 field_pos;
312 			u8 min_field_value;
313 			u8 hwcap_type;
314 			bool sign;
315 			unsigned long hwcap;
316 		};
317 	};
318 
319 	/*
320 	 * An optional list of "matches/cpu_enable" pair for the same
321 	 * "capability" of the same "type" as described by the parent.
322 	 * Only matches(), cpu_enable() and fields relevant to these
323 	 * methods are significant in the list. The cpu_enable is
324 	 * invoked only if the corresponding entry "matches()".
325 	 * However, if a cpu_enable() method is associated
326 	 * with multiple matches(), care should be taken that either
327 	 * the match criteria are mutually exclusive, or that the
328 	 * method is robust against being called multiple times.
329 	 */
330 	const struct arm64_cpu_capabilities *match_list;
331 };
332 
333 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
334 {
335 	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
336 }
337 
338 static inline bool
339 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
340 {
341 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
342 }
343 
344 static inline bool
345 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
346 {
347 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
348 }
349 
350 /*
351  * Generic helper for handling capabilties with multiple (match,enable) pairs
352  * of call backs, sharing the same capability bit.
353  * Iterate over each entry to see if at least one matches.
354  */
355 static inline bool
356 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
357 			       int scope)
358 {
359 	const struct arm64_cpu_capabilities *caps;
360 
361 	for (caps = entry->match_list; caps->matches; caps++)
362 		if (caps->matches(caps, scope))
363 			return true;
364 
365 	return false;
366 }
367 
368 /*
369  * Take appropriate action for all matching entries in the shared capability
370  * entry.
371  */
372 static inline void
373 cpucap_multi_entry_cap_cpu_enable(const struct arm64_cpu_capabilities *entry)
374 {
375 	const struct arm64_cpu_capabilities *caps;
376 
377 	for (caps = entry->match_list; caps->matches; caps++)
378 		if (caps->matches(caps, SCOPE_LOCAL_CPU) &&
379 		    caps->cpu_enable)
380 			caps->cpu_enable(caps);
381 }
382 
383 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
384 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
385 extern struct static_key_false arm64_const_caps_ready;
386 
387 /* ARM64 CAPS + alternative_cb */
388 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
389 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
390 
391 #define for_each_available_cap(cap)		\
392 	for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
393 
394 bool this_cpu_has_cap(unsigned int cap);
395 void cpu_set_feature(unsigned int num);
396 bool cpu_have_feature(unsigned int num);
397 unsigned long cpu_get_elf_hwcap(void);
398 unsigned long cpu_get_elf_hwcap2(void);
399 
400 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
401 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
402 
403 /* System capability check for constant caps */
404 static __always_inline bool __cpus_have_const_cap(int num)
405 {
406 	if (num >= ARM64_NCAPS)
407 		return false;
408 	return static_branch_unlikely(&cpu_hwcap_keys[num]);
409 }
410 
411 static inline bool cpus_have_cap(unsigned int num)
412 {
413 	if (num >= ARM64_NCAPS)
414 		return false;
415 	return test_bit(num, cpu_hwcaps);
416 }
417 
418 static __always_inline bool cpus_have_const_cap(int num)
419 {
420 	if (static_branch_likely(&arm64_const_caps_ready))
421 		return __cpus_have_const_cap(num);
422 	else
423 		return cpus_have_cap(num);
424 }
425 
426 static inline void cpus_set_cap(unsigned int num)
427 {
428 	if (num >= ARM64_NCAPS) {
429 		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
430 			num, ARM64_NCAPS);
431 	} else {
432 		__set_bit(num, cpu_hwcaps);
433 	}
434 }
435 
436 static inline int __attribute_const__
437 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
438 {
439 	return (s64)(features << (64 - width - field)) >> (64 - width);
440 }
441 
442 static inline int __attribute_const__
443 cpuid_feature_extract_signed_field(u64 features, int field)
444 {
445 	return cpuid_feature_extract_signed_field_width(features, field, 4);
446 }
447 
448 static inline unsigned int __attribute_const__
449 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
450 {
451 	return (u64)(features << (64 - width - field)) >> (64 - width);
452 }
453 
454 static inline unsigned int __attribute_const__
455 cpuid_feature_extract_unsigned_field(u64 features, int field)
456 {
457 	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
458 }
459 
460 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
461 {
462 	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
463 }
464 
465 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
466 {
467 	return (reg->user_val | (reg->sys_val & reg->user_mask));
468 }
469 
470 static inline int __attribute_const__
471 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
472 {
473 	return (sign) ?
474 		cpuid_feature_extract_signed_field_width(features, field, width) :
475 		cpuid_feature_extract_unsigned_field_width(features, field, width);
476 }
477 
478 static inline int __attribute_const__
479 cpuid_feature_extract_field(u64 features, int field, bool sign)
480 {
481 	return cpuid_feature_extract_field_width(features, field, 4, sign);
482 }
483 
484 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
485 {
486 	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
487 }
488 
489 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
490 {
491 	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
492 		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
493 }
494 
495 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
496 {
497 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
498 
499 	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
500 }
501 
502 static inline bool id_aa64pfr0_sve(u64 pfr0)
503 {
504 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
505 
506 	return val > 0;
507 }
508 
509 void __init setup_cpu_features(void);
510 void check_local_cpu_capabilities(void);
511 
512 u64 read_sanitised_ftr_reg(u32 id);
513 
514 static inline bool cpu_supports_mixed_endian_el0(void)
515 {
516 	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
517 }
518 
519 static inline bool system_supports_32bit_el0(void)
520 {
521 	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
522 }
523 
524 static inline bool system_supports_4kb_granule(void)
525 {
526 	u64 mmfr0;
527 	u32 val;
528 
529 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
530 	val = cpuid_feature_extract_unsigned_field(mmfr0,
531 						ID_AA64MMFR0_TGRAN4_SHIFT);
532 
533 	return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
534 }
535 
536 static inline bool system_supports_64kb_granule(void)
537 {
538 	u64 mmfr0;
539 	u32 val;
540 
541 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
542 	val = cpuid_feature_extract_unsigned_field(mmfr0,
543 						ID_AA64MMFR0_TGRAN64_SHIFT);
544 
545 	return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
546 }
547 
548 static inline bool system_supports_16kb_granule(void)
549 {
550 	u64 mmfr0;
551 	u32 val;
552 
553 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
554 	val = cpuid_feature_extract_unsigned_field(mmfr0,
555 						ID_AA64MMFR0_TGRAN16_SHIFT);
556 
557 	return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
558 }
559 
560 static inline bool system_supports_mixed_endian_el0(void)
561 {
562 	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
563 }
564 
565 static inline bool system_supports_mixed_endian(void)
566 {
567 	u64 mmfr0;
568 	u32 val;
569 
570 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
571 	val = cpuid_feature_extract_unsigned_field(mmfr0,
572 						ID_AA64MMFR0_BIGENDEL_SHIFT);
573 
574 	return val == 0x1;
575 }
576 
577 static inline bool system_supports_fpsimd(void)
578 {
579 	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
580 }
581 
582 static inline bool system_uses_ttbr0_pan(void)
583 {
584 	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
585 		!cpus_have_const_cap(ARM64_HAS_PAN);
586 }
587 
588 static inline bool system_supports_sve(void)
589 {
590 	return IS_ENABLED(CONFIG_ARM64_SVE) &&
591 		cpus_have_const_cap(ARM64_SVE);
592 }
593 
594 static inline bool system_supports_cnp(void)
595 {
596 	return IS_ENABLED(CONFIG_ARM64_CNP) &&
597 		cpus_have_const_cap(ARM64_HAS_CNP);
598 }
599 
600 static inline bool system_supports_address_auth(void)
601 {
602 	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
603 		(cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) ||
604 		 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF));
605 }
606 
607 static inline bool system_supports_generic_auth(void)
608 {
609 	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
610 		(cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
611 		 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF));
612 }
613 
614 static inline bool system_uses_irq_prio_masking(void)
615 {
616 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
617 	       cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
618 }
619 
620 #define ARM64_SSBD_UNKNOWN		-1
621 #define ARM64_SSBD_FORCE_DISABLE	0
622 #define ARM64_SSBD_KERNEL		1
623 #define ARM64_SSBD_FORCE_ENABLE		2
624 #define ARM64_SSBD_MITIGATED		3
625 
626 static inline int arm64_get_ssbd_state(void)
627 {
628 #ifdef CONFIG_ARM64_SSBD
629 	extern int ssbd_state;
630 	return ssbd_state;
631 #else
632 	return ARM64_SSBD_UNKNOWN;
633 #endif
634 }
635 
636 void arm64_set_ssbd_mitigation(bool state);
637 
638 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
639 
640 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
641 {
642 	switch (parange) {
643 	case 0: return 32;
644 	case 1: return 36;
645 	case 2: return 40;
646 	case 3: return 42;
647 	case 4: return 44;
648 	case 5: return 48;
649 	case 6: return 52;
650 	/*
651 	 * A future PE could use a value unknown to the kernel.
652 	 * However, by the "D10.1.4 Principles of the ID scheme
653 	 * for fields in ID registers", ARM DDI 0487C.a, any new
654 	 * value is guaranteed to be higher than what we know already.
655 	 * As a safe limit, we return the limit supported by the kernel.
656 	 */
657 	default: return CONFIG_ARM64_PA_BITS;
658 	}
659 }
660 #endif /* __ASSEMBLY__ */
661 
662 #endif
663