xref: /openbmc/linux/arch/arm64/include/asm/cpufeature.h (revision 47aab53331effedd3f5a6136854bd1da011f94b6)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4  */
5 
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8 
9 #include <asm/alternative-macros.h>
10 #include <asm/cpucaps.h>
11 #include <asm/cputype.h>
12 #include <asm/hwcap.h>
13 #include <asm/sysreg.h>
14 
15 #define MAX_CPU_FEATURES	128
16 #define cpu_feature(x)		KERNEL_HWCAP_ ## x
17 
18 #define ARM64_SW_FEATURE_OVERRIDE_NOKASLR	0
19 #define ARM64_SW_FEATURE_OVERRIDE_HVHE		4
20 
21 #ifndef __ASSEMBLY__
22 
23 #include <linux/bug.h>
24 #include <linux/jump_label.h>
25 #include <linux/kernel.h>
26 
27 /*
28  * CPU feature register tracking
29  *
30  * The safe value of a CPUID feature field is dependent on the implications
31  * of the values assigned to it by the architecture. Based on the relationship
32  * between the values, the features are classified into 3 types - LOWER_SAFE,
33  * HIGHER_SAFE and EXACT.
34  *
35  * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
36  * for HIGHER_SAFE. It is expected that all CPUs have the same value for
37  * a field when EXACT is specified, failing which, the safe value specified
38  * in the table is chosen.
39  */
40 
41 enum ftr_type {
42 	FTR_EXACT,			/* Use a predefined safe value */
43 	FTR_LOWER_SAFE,			/* Smaller value is safe */
44 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
45 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
46 };
47 
48 #define FTR_STRICT	true	/* SANITY check strict matching required */
49 #define FTR_NONSTRICT	false	/* SANITY check ignored */
50 
51 #define FTR_SIGNED	true	/* Value should be treated as signed */
52 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
53 
54 #define FTR_VISIBLE	true	/* Feature visible to the user space */
55 #define FTR_HIDDEN	false	/* Feature is hidden from the user */
56 
57 #define FTR_VISIBLE_IF_IS_ENABLED(config)		\
58 	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
59 
60 struct arm64_ftr_bits {
61 	bool		sign;	/* Value is signed ? */
62 	bool		visible;
63 	bool		strict;	/* CPU Sanity check: strict matching required ? */
64 	enum ftr_type	type;
65 	u8		shift;
66 	u8		width;
67 	s64		safe_val; /* safe value for FTR_EXACT features */
68 };
69 
70 /*
71  * Describe the early feature override to the core override code:
72  *
73  * @val			Values that are to be merged into the final
74  *			sanitised value of the register. Only the bitfields
75  *			set to 1 in @mask are valid
76  * @mask		Mask of the features that are overridden by @val
77  *
78  * A @mask field set to full-1 indicates that the corresponding field
79  * in @val is a valid override.
80  *
81  * A @mask field set to full-0 with the corresponding @val field set
82  * to full-0 denotes that this field has no override
83  *
84  * A @mask field set to full-0 with the corresponding @val field set
85  * to full-1 denotes thath this field has an invalid override.
86  */
87 struct arm64_ftr_override {
88 	u64		val;
89 	u64		mask;
90 };
91 
92 /*
93  * @arm64_ftr_reg - Feature register
94  * @strict_mask		Bits which should match across all CPUs for sanity.
95  * @sys_val		Safe value across the CPUs (system view)
96  */
97 struct arm64_ftr_reg {
98 	const char			*name;
99 	u64				strict_mask;
100 	u64				user_mask;
101 	u64				sys_val;
102 	u64				user_val;
103 	struct arm64_ftr_override	*override;
104 	const struct arm64_ftr_bits	*ftr_bits;
105 };
106 
107 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
108 
109 /*
110  * CPU capabilities:
111  *
112  * We use arm64_cpu_capabilities to represent system features, errata work
113  * arounds (both used internally by kernel and tracked in system_cpucaps) and
114  * ELF HWCAPs (which are exposed to user).
115  *
116  * To support systems with heterogeneous CPUs, we need to make sure that we
117  * detect the capabilities correctly on the system and take appropriate
118  * measures to ensure there are no incompatibilities.
119  *
120  * This comment tries to explain how we treat the capabilities.
121  * Each capability has the following list of attributes :
122  *
123  * 1) Scope of Detection : The system detects a given capability by
124  *    performing some checks at runtime. This could be, e.g, checking the
125  *    value of a field in CPU ID feature register or checking the cpu
126  *    model. The capability provides a call back ( @matches() ) to
127  *    perform the check. Scope defines how the checks should be performed.
128  *    There are three cases:
129  *
130  *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
131  *        matches. This implies, we have to run the check on all the
132  *        booting CPUs, until the system decides that state of the
133  *        capability is finalised. (See section 2 below)
134  *		Or
135  *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
136  *        matches. This implies, we run the check only once, when the
137  *        system decides to finalise the state of the capability. If the
138  *        capability relies on a field in one of the CPU ID feature
139  *        registers, we use the sanitised value of the register from the
140  *        CPU feature infrastructure to make the decision.
141  *		Or
142  *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
143  *        feature. This category is for features that are "finalised"
144  *        (or used) by the kernel very early even before the SMP cpus
145  *        are brought up.
146  *
147  *    The process of detection is usually denoted by "update" capability
148  *    state in the code.
149  *
150  * 2) Finalise the state : The kernel should finalise the state of a
151  *    capability at some point during its execution and take necessary
152  *    actions if any. Usually, this is done, after all the boot-time
153  *    enabled CPUs are brought up by the kernel, so that it can make
154  *    better decision based on the available set of CPUs. However, there
155  *    are some special cases, where the action is taken during the early
156  *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
157  *    Virtualisation Host Extensions). The kernel usually disallows any
158  *    changes to the state of a capability once it finalises the capability
159  *    and takes any action, as it may be impossible to execute the actions
160  *    safely. A CPU brought up after a capability is "finalised" is
161  *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
162  *    CPUs are treated "late CPUs" for capabilities determined by the boot
163  *    CPU.
164  *
165  *    At the moment there are two passes of finalising the capabilities.
166  *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
167  *         setup_boot_cpu_capabilities().
168  *      b) Everything except (a) - Run via setup_system_capabilities().
169  *
170  * 3) Verification: When a CPU is brought online (e.g, by user or by the
171  *    kernel), the kernel should make sure that it is safe to use the CPU,
172  *    by verifying that the CPU is compliant with the state of the
173  *    capabilities finalised already. This happens via :
174  *
175  *	secondary_start_kernel()-> check_local_cpu_capabilities()
176  *
177  *    As explained in (2) above, capabilities could be finalised at
178  *    different points in the execution. Each newly booted CPU is verified
179  *    against the capabilities that have been finalised by the time it
180  *    boots.
181  *
182  *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
183  *	except for the primary boot CPU.
184  *
185  *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
186  *	user after the kernel boot are verified against the capability.
187  *
188  *    If there is a conflict, the kernel takes an action, based on the
189  *    severity (e.g, a CPU could be prevented from booting or cause a
190  *    kernel panic). The CPU is allowed to "affect" the state of the
191  *    capability, if it has not been finalised already. See section 5
192  *    for more details on conflicts.
193  *
194  * 4) Action: As mentioned in (2), the kernel can take an action for each
195  *    detected capability, on all CPUs on the system. Appropriate actions
196  *    include, turning on an architectural feature, modifying the control
197  *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
198  *    alternatives. The kernel patching is batched and performed at later
199  *    point. The actions are always initiated only after the capability
200  *    is finalised. This is usally denoted by "enabling" the capability.
201  *    The actions are initiated as follows :
202  *	a) Action is triggered on all online CPUs, after the capability is
203  *	finalised, invoked within the stop_machine() context from
204  *	enable_cpu_capabilitie().
205  *
206  *	b) Any late CPU, brought up after (1), the action is triggered via:
207  *
208  *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
209  *
210  * 5) Conflicts: Based on the state of the capability on a late CPU vs.
211  *    the system state, we could have the following combinations :
212  *
213  *		x-----------------------------x
214  *		| Type  | System   | Late CPU |
215  *		|-----------------------------|
216  *		|  a    |   y      |    n     |
217  *		|-----------------------------|
218  *		|  b    |   n      |    y     |
219  *		x-----------------------------x
220  *
221  *     Two separate flag bits are defined to indicate whether each kind of
222  *     conflict can be allowed:
223  *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
224  *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
225  *
226  *     Case (a) is not permitted for a capability that the system requires
227  *     all CPUs to have in order for the capability to be enabled. This is
228  *     typical for capabilities that represent enhanced functionality.
229  *
230  *     Case (b) is not permitted for a capability that must be enabled
231  *     during boot if any CPU in the system requires it in order to run
232  *     safely. This is typical for erratum work arounds that cannot be
233  *     enabled after the corresponding capability is finalised.
234  *
235  *     In some non-typical cases either both (a) and (b), or neither,
236  *     should be permitted. This can be described by including neither
237  *     or both flags in the capability's type field.
238  *
239  *     In case of a conflict, the CPU is prevented from booting. If the
240  *     ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
241  *     then a kernel panic is triggered.
242  */
243 
244 
245 /*
246  * Decide how the capability is detected.
247  * On any local CPU vs System wide vs the primary boot CPU
248  */
249 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
250 #define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
251 /*
252  * The capabilitiy is detected on the Boot CPU and is used by kernel
253  * during early boot. i.e, the capability should be "detected" and
254  * "enabled" as early as possibly on all booting CPUs.
255  */
256 #define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
257 #define ARM64_CPUCAP_SCOPE_MASK			\
258 	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
259 	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
260 	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
261 
262 #define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
263 #define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
264 #define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
265 #define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
266 
267 /*
268  * Is it permitted for a late CPU to have this capability when system
269  * hasn't already enabled it ?
270  */
271 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
272 /* Is it safe for a late CPU to miss this capability when system has it */
273 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
274 /* Panic when a conflict is detected */
275 #define ARM64_CPUCAP_PANIC_ON_CONFLICT		((u16)BIT(6))
276 
277 /*
278  * CPU errata workarounds that need to be enabled at boot time if one or
279  * more CPUs in the system requires it. When one of these capabilities
280  * has been enabled, it is safe to allow any CPU to boot that doesn't
281  * require the workaround. However, it is not safe if a "late" CPU
282  * requires a workaround and the system hasn't enabled it already.
283  */
284 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
285 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
286 /*
287  * CPU feature detected at boot time based on system-wide value of a
288  * feature. It is safe for a late CPU to have this feature even though
289  * the system hasn't enabled it, although the feature will not be used
290  * by Linux in this case. If the system has enabled this feature already,
291  * then every late CPU must have it.
292  */
293 #define ARM64_CPUCAP_SYSTEM_FEATURE	\
294 	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
295 /*
296  * CPU feature detected at boot time based on feature of one or more CPUs.
297  * All possible conflicts for a late CPU are ignored.
298  * NOTE: this means that a late CPU with the feature will *not* cause the
299  * capability to be advertised by cpus_have_*cap()!
300  */
301 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
302 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
303 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
304 	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
305 
306 /*
307  * CPU feature detected at boot time, on one or more CPUs. A late CPU
308  * is not allowed to have the capability when the system doesn't have it.
309  * It is Ok for a late CPU to miss the feature.
310  */
311 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
312 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
313 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
314 
315 /*
316  * CPU feature used early in the boot based on the boot CPU. All secondary
317  * CPUs must match the state of the capability as detected by the boot CPU. In
318  * case of a conflict, a kernel panic is triggered.
319  */
320 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE		\
321 	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
322 
323 /*
324  * CPU feature used early in the boot based on the boot CPU. It is safe for a
325  * late CPU to have this feature even though the boot CPU hasn't enabled it,
326  * although the feature will not be used by Linux in this case. If the boot CPU
327  * has enabled this feature already, then every late CPU must have it.
328  */
329 #define ARM64_CPUCAP_BOOT_CPU_FEATURE                  \
330 	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
331 
332 struct arm64_cpu_capabilities {
333 	const char *desc;
334 	u16 capability;
335 	u16 type;
336 	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
337 	/*
338 	 * Take the appropriate actions to configure this capability
339 	 * for this CPU. If the capability is detected by the kernel
340 	 * this will be called on all the CPUs in the system,
341 	 * including the hotplugged CPUs, regardless of whether the
342 	 * capability is available on that specific CPU. This is
343 	 * useful for some capabilities (e.g, working around CPU
344 	 * errata), where all the CPUs must take some action (e.g,
345 	 * changing system control/configuration). Thus, if an action
346 	 * is required only if the CPU has the capability, then the
347 	 * routine must check it before taking any action.
348 	 */
349 	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
350 	union {
351 		struct {	/* To be used for erratum handling only */
352 			struct midr_range midr_range;
353 			const struct arm64_midr_revidr {
354 				u32 midr_rv;		/* revision/variant */
355 				u32 revidr_mask;
356 			} * const fixed_revs;
357 		};
358 
359 		const struct midr_range *midr_range_list;
360 		struct {	/* Feature register checking */
361 			u32 sys_reg;
362 			u8 field_pos;
363 			u8 field_width;
364 			u8 min_field_value;
365 			u8 hwcap_type;
366 			bool sign;
367 			unsigned long hwcap;
368 		};
369 	};
370 
371 	/*
372 	 * An optional list of "matches/cpu_enable" pair for the same
373 	 * "capability" of the same "type" as described by the parent.
374 	 * Only matches(), cpu_enable() and fields relevant to these
375 	 * methods are significant in the list. The cpu_enable is
376 	 * invoked only if the corresponding entry "matches()".
377 	 * However, if a cpu_enable() method is associated
378 	 * with multiple matches(), care should be taken that either
379 	 * the match criteria are mutually exclusive, or that the
380 	 * method is robust against being called multiple times.
381 	 */
382 	const struct arm64_cpu_capabilities *match_list;
383 };
384 
385 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
386 {
387 	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
388 }
389 
390 /*
391  * Generic helper for handling capabilities with multiple (match,enable) pairs
392  * of call backs, sharing the same capability bit.
393  * Iterate over each entry to see if at least one matches.
394  */
395 static inline bool
396 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
397 			       int scope)
398 {
399 	const struct arm64_cpu_capabilities *caps;
400 
401 	for (caps = entry->match_list; caps->matches; caps++)
402 		if (caps->matches(caps, scope))
403 			return true;
404 
405 	return false;
406 }
407 
408 static __always_inline bool is_vhe_hyp_code(void)
409 {
410 	/* Only defined for code run in VHE hyp context */
411 	return __is_defined(__KVM_VHE_HYPERVISOR__);
412 }
413 
414 static __always_inline bool is_nvhe_hyp_code(void)
415 {
416 	/* Only defined for code run in NVHE hyp context */
417 	return __is_defined(__KVM_NVHE_HYPERVISOR__);
418 }
419 
420 static __always_inline bool is_hyp_code(void)
421 {
422 	return is_vhe_hyp_code() || is_nvhe_hyp_code();
423 }
424 
425 extern DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
426 
427 extern DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
428 
429 #define for_each_available_cap(cap)		\
430 	for_each_set_bit(cap, system_cpucaps, ARM64_NCAPS)
431 
432 bool this_cpu_has_cap(unsigned int cap);
433 void cpu_set_feature(unsigned int num);
434 bool cpu_have_feature(unsigned int num);
435 unsigned long cpu_get_elf_hwcap(void);
436 unsigned long cpu_get_elf_hwcap2(void);
437 
438 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
439 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
440 
441 static __always_inline bool system_capabilities_finalized(void)
442 {
443 	return alternative_has_cap_likely(ARM64_ALWAYS_SYSTEM);
444 }
445 
446 /*
447  * Test for a capability with a runtime check.
448  *
449  * Before the capability is detected, this returns false.
450  */
451 static __always_inline bool cpus_have_cap(unsigned int num)
452 {
453 	if (num >= ARM64_NCAPS)
454 		return false;
455 	return arch_test_bit(num, system_cpucaps);
456 }
457 
458 /*
459  * Test for a capability without a runtime check.
460  *
461  * Before capabilities are finalized, this returns false.
462  * After capabilities are finalized, this is patched to avoid a runtime check.
463  *
464  * @num must be a compile-time constant.
465  */
466 static __always_inline bool __cpus_have_const_cap(int num)
467 {
468 	if (num >= ARM64_NCAPS)
469 		return false;
470 	return alternative_has_cap_unlikely(num);
471 }
472 
473 /*
474  * Test for a capability without a runtime check.
475  *
476  * Before capabilities are finalized, this will BUG().
477  * After capabilities are finalized, this is patched to avoid a runtime check.
478  *
479  * @num must be a compile-time constant.
480  */
481 static __always_inline bool cpus_have_final_cap(int num)
482 {
483 	if (system_capabilities_finalized())
484 		return __cpus_have_const_cap(num);
485 	else
486 		BUG();
487 }
488 
489 /*
490  * Test for a capability, possibly with a runtime check for non-hyp code.
491  *
492  * For hyp code, this behaves the same as cpus_have_final_cap().
493  *
494  * For non-hyp code:
495  * Before capabilities are finalized, this behaves as cpus_have_cap().
496  * After capabilities are finalized, this is patched to avoid a runtime check.
497  *
498  * @num must be a compile-time constant.
499  */
500 static __always_inline bool cpus_have_const_cap(int num)
501 {
502 	if (is_hyp_code())
503 		return cpus_have_final_cap(num);
504 	else if (system_capabilities_finalized())
505 		return __cpus_have_const_cap(num);
506 	else
507 		return cpus_have_cap(num);
508 }
509 
510 static inline int __attribute_const__
511 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
512 {
513 	return (s64)(features << (64 - width - field)) >> (64 - width);
514 }
515 
516 static inline int __attribute_const__
517 cpuid_feature_extract_signed_field(u64 features, int field)
518 {
519 	return cpuid_feature_extract_signed_field_width(features, field, 4);
520 }
521 
522 static __always_inline unsigned int __attribute_const__
523 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
524 {
525 	return (u64)(features << (64 - width - field)) >> (64 - width);
526 }
527 
528 static __always_inline unsigned int __attribute_const__
529 cpuid_feature_extract_unsigned_field(u64 features, int field)
530 {
531 	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
532 }
533 
534 /*
535  * Fields that identify the version of the Performance Monitors Extension do
536  * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
537  * "Alternative ID scheme used for the Performance Monitors Extension version".
538  */
539 static inline u64 __attribute_const__
540 cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
541 {
542 	u64 val = cpuid_feature_extract_unsigned_field(features, field);
543 	u64 mask = GENMASK_ULL(field + 3, field);
544 
545 	/* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
546 	if (val == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
547 		val = 0;
548 
549 	if (val > cap) {
550 		features &= ~mask;
551 		features |= (cap << field) & mask;
552 	}
553 
554 	return features;
555 }
556 
557 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
558 {
559 	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
560 }
561 
562 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
563 {
564 	return (reg->user_val | (reg->sys_val & reg->user_mask));
565 }
566 
567 static inline int __attribute_const__
568 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
569 {
570 	if (WARN_ON_ONCE(!width))
571 		width = 4;
572 	return (sign) ?
573 		cpuid_feature_extract_signed_field_width(features, field, width) :
574 		cpuid_feature_extract_unsigned_field_width(features, field, width);
575 }
576 
577 static inline int __attribute_const__
578 cpuid_feature_extract_field(u64 features, int field, bool sign)
579 {
580 	return cpuid_feature_extract_field_width(features, field, 4, sign);
581 }
582 
583 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
584 {
585 	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
586 }
587 
588 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
589 {
590 	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGEND_SHIFT) == 0x1 ||
591 		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT) == 0x1;
592 }
593 
594 static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
595 {
596 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL1_SHIFT);
597 
598 	return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT;
599 }
600 
601 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
602 {
603 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL0_SHIFT);
604 
605 	return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT;
606 }
607 
608 static inline bool id_aa64pfr0_sve(u64 pfr0)
609 {
610 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SVE_SHIFT);
611 
612 	return val > 0;
613 }
614 
615 static inline bool id_aa64pfr1_sme(u64 pfr1)
616 {
617 	u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_SME_SHIFT);
618 
619 	return val > 0;
620 }
621 
622 static inline bool id_aa64pfr1_mte(u64 pfr1)
623 {
624 	u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_MTE_SHIFT);
625 
626 	return val >= ID_AA64PFR1_EL1_MTE_MTE2;
627 }
628 
629 void __init setup_cpu_features(void);
630 void check_local_cpu_capabilities(void);
631 
632 u64 read_sanitised_ftr_reg(u32 id);
633 u64 __read_sysreg_by_encoding(u32 sys_id);
634 
635 static inline bool cpu_supports_mixed_endian_el0(void)
636 {
637 	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
638 }
639 
640 
641 static inline bool supports_csv2p3(int scope)
642 {
643 	u64 pfr0;
644 	u8 csv2_val;
645 
646 	if (scope == SCOPE_LOCAL_CPU)
647 		pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
648 	else
649 		pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
650 
651 	csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
652 							ID_AA64PFR0_EL1_CSV2_SHIFT);
653 	return csv2_val == 3;
654 }
655 
656 static inline bool supports_clearbhb(int scope)
657 {
658 	u64 isar2;
659 
660 	if (scope == SCOPE_LOCAL_CPU)
661 		isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
662 	else
663 		isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
664 
665 	return cpuid_feature_extract_unsigned_field(isar2,
666 						    ID_AA64ISAR2_EL1_BC_SHIFT);
667 }
668 
669 const struct cpumask *system_32bit_el0_cpumask(void);
670 DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
671 
672 static inline bool system_supports_32bit_el0(void)
673 {
674 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
675 
676 	return static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
677 	       id_aa64pfr0_32bit_el0(pfr0);
678 }
679 
680 static inline bool system_supports_4kb_granule(void)
681 {
682 	u64 mmfr0;
683 	u32 val;
684 
685 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
686 	val = cpuid_feature_extract_unsigned_field(mmfr0,
687 						ID_AA64MMFR0_EL1_TGRAN4_SHIFT);
688 
689 	return (val >= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN) &&
690 	       (val <= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX);
691 }
692 
693 static inline bool system_supports_64kb_granule(void)
694 {
695 	u64 mmfr0;
696 	u32 val;
697 
698 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
699 	val = cpuid_feature_extract_unsigned_field(mmfr0,
700 						ID_AA64MMFR0_EL1_TGRAN64_SHIFT);
701 
702 	return (val >= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN) &&
703 	       (val <= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX);
704 }
705 
706 static inline bool system_supports_16kb_granule(void)
707 {
708 	u64 mmfr0;
709 	u32 val;
710 
711 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
712 	val = cpuid_feature_extract_unsigned_field(mmfr0,
713 						ID_AA64MMFR0_EL1_TGRAN16_SHIFT);
714 
715 	return (val >= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN) &&
716 	       (val <= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX);
717 }
718 
719 static inline bool system_supports_mixed_endian_el0(void)
720 {
721 	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
722 }
723 
724 static inline bool system_supports_mixed_endian(void)
725 {
726 	u64 mmfr0;
727 	u32 val;
728 
729 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
730 	val = cpuid_feature_extract_unsigned_field(mmfr0,
731 						ID_AA64MMFR0_EL1_BIGEND_SHIFT);
732 
733 	return val == 0x1;
734 }
735 
736 static __always_inline bool system_supports_fpsimd(void)
737 {
738 	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
739 }
740 
741 static inline bool system_uses_hw_pan(void)
742 {
743 	return IS_ENABLED(CONFIG_ARM64_PAN) &&
744 		cpus_have_const_cap(ARM64_HAS_PAN);
745 }
746 
747 static inline bool system_uses_ttbr0_pan(void)
748 {
749 	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
750 		!system_uses_hw_pan();
751 }
752 
753 static __always_inline bool system_supports_sve(void)
754 {
755 	return IS_ENABLED(CONFIG_ARM64_SVE) &&
756 		cpus_have_const_cap(ARM64_SVE);
757 }
758 
759 static __always_inline bool system_supports_sme(void)
760 {
761 	return IS_ENABLED(CONFIG_ARM64_SME) &&
762 		cpus_have_const_cap(ARM64_SME);
763 }
764 
765 static __always_inline bool system_supports_sme2(void)
766 {
767 	return IS_ENABLED(CONFIG_ARM64_SME) &&
768 		cpus_have_const_cap(ARM64_SME2);
769 }
770 
771 static __always_inline bool system_supports_fa64(void)
772 {
773 	return IS_ENABLED(CONFIG_ARM64_SME) &&
774 		cpus_have_const_cap(ARM64_SME_FA64);
775 }
776 
777 static __always_inline bool system_supports_tpidr2(void)
778 {
779 	return system_supports_sme();
780 }
781 
782 static __always_inline bool system_supports_cnp(void)
783 {
784 	return IS_ENABLED(CONFIG_ARM64_CNP) &&
785 		cpus_have_const_cap(ARM64_HAS_CNP);
786 }
787 
788 static inline bool system_supports_address_auth(void)
789 {
790 	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
791 		cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH);
792 }
793 
794 static inline bool system_supports_generic_auth(void)
795 {
796 	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
797 		cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH);
798 }
799 
800 static inline bool system_has_full_ptr_auth(void)
801 {
802 	return system_supports_address_auth() && system_supports_generic_auth();
803 }
804 
805 static __always_inline bool system_uses_irq_prio_masking(void)
806 {
807 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
808 	       cpus_have_const_cap(ARM64_HAS_GIC_PRIO_MASKING);
809 }
810 
811 static inline bool system_supports_mte(void)
812 {
813 	return IS_ENABLED(CONFIG_ARM64_MTE) &&
814 		cpus_have_const_cap(ARM64_MTE);
815 }
816 
817 static inline bool system_has_prio_mask_debugging(void)
818 {
819 	return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
820 	       system_uses_irq_prio_masking();
821 }
822 
823 static inline bool system_supports_bti(void)
824 {
825 	return IS_ENABLED(CONFIG_ARM64_BTI) && cpus_have_const_cap(ARM64_BTI);
826 }
827 
828 static inline bool system_supports_tlb_range(void)
829 {
830 	return IS_ENABLED(CONFIG_ARM64_TLB_RANGE) &&
831 		cpus_have_const_cap(ARM64_HAS_TLB_RANGE);
832 }
833 
834 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
835 bool try_emulate_mrs(struct pt_regs *regs, u32 isn);
836 
837 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
838 {
839 	switch (parange) {
840 	case ID_AA64MMFR0_EL1_PARANGE_32: return 32;
841 	case ID_AA64MMFR0_EL1_PARANGE_36: return 36;
842 	case ID_AA64MMFR0_EL1_PARANGE_40: return 40;
843 	case ID_AA64MMFR0_EL1_PARANGE_42: return 42;
844 	case ID_AA64MMFR0_EL1_PARANGE_44: return 44;
845 	case ID_AA64MMFR0_EL1_PARANGE_48: return 48;
846 	case ID_AA64MMFR0_EL1_PARANGE_52: return 52;
847 	/*
848 	 * A future PE could use a value unknown to the kernel.
849 	 * However, by the "D10.1.4 Principles of the ID scheme
850 	 * for fields in ID registers", ARM DDI 0487C.a, any new
851 	 * value is guaranteed to be higher than what we know already.
852 	 * As a safe limit, we return the limit supported by the kernel.
853 	 */
854 	default: return CONFIG_ARM64_PA_BITS;
855 	}
856 }
857 
858 /* Check whether hardware update of the Access flag is supported */
859 static inline bool cpu_has_hw_af(void)
860 {
861 	u64 mmfr1;
862 
863 	if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
864 		return false;
865 
866 	/*
867 	 * Use cached version to avoid emulated msr operation on KVM
868 	 * guests.
869 	 */
870 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
871 	return cpuid_feature_extract_unsigned_field(mmfr1,
872 						ID_AA64MMFR1_EL1_HAFDBS_SHIFT);
873 }
874 
875 static inline bool cpu_has_pan(void)
876 {
877 	u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
878 	return cpuid_feature_extract_unsigned_field(mmfr1,
879 						    ID_AA64MMFR1_EL1_PAN_SHIFT);
880 }
881 
882 #ifdef CONFIG_ARM64_AMU_EXTN
883 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */
884 extern bool cpu_has_amu_feat(int cpu);
885 #else
886 static inline bool cpu_has_amu_feat(int cpu)
887 {
888 	return false;
889 }
890 #endif
891 
892 /* Get a cpu that supports the Activity Monitors Unit (AMU) */
893 extern int get_cpu_with_amu_feat(void);
894 
895 static inline unsigned int get_vmid_bits(u64 mmfr1)
896 {
897 	int vmid_bits;
898 
899 	vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
900 						ID_AA64MMFR1_EL1_VMIDBits_SHIFT);
901 	if (vmid_bits == ID_AA64MMFR1_EL1_VMIDBits_16)
902 		return 16;
903 
904 	/*
905 	 * Return the default here even if any reserved
906 	 * value is fetched from the system register.
907 	 */
908 	return 8;
909 }
910 
911 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 cur);
912 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id);
913 
914 extern struct arm64_ftr_override id_aa64mmfr1_override;
915 extern struct arm64_ftr_override id_aa64pfr0_override;
916 extern struct arm64_ftr_override id_aa64pfr1_override;
917 extern struct arm64_ftr_override id_aa64zfr0_override;
918 extern struct arm64_ftr_override id_aa64smfr0_override;
919 extern struct arm64_ftr_override id_aa64isar1_override;
920 extern struct arm64_ftr_override id_aa64isar2_override;
921 
922 extern struct arm64_ftr_override arm64_sw_feature_override;
923 
924 u32 get_kvm_ipa_limit(void);
925 void dump_cpu_features(void);
926 
927 #endif /* __ASSEMBLY__ */
928 
929 #endif
930