xref: /openbmc/linux/arch/arm64/include/asm/cacheflush.h (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Based on arch/arm/include/asm/cacheflush.h
4  *
5  * Copyright (C) 1999-2002 Russell King.
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 #ifndef __ASM_CACHEFLUSH_H
9 #define __ASM_CACHEFLUSH_H
10 
11 #include <linux/kgdb.h>
12 #include <linux/mm.h>
13 
14 /*
15  * This flag is used to indicate that the page pointed to by a pte is clean
16  * and does not require cleaning before returning it to the user.
17  */
18 #define PG_dcache_clean PG_arch_1
19 
20 /*
21  *	MM Cache Management
22  *	===================
23  *
24  *	The arch/arm64/mm/cache.S implements these methods.
25  *
26  *	Start addresses are inclusive and end addresses are exclusive; start
27  *	addresses should be rounded down, end addresses up.
28  *
29  *	See Documentation/core-api/cachetlb.rst for more information. Please note that
30  *	the implementation assumes non-aliasing VIPT D-cache and (aliasing)
31  *	VIPT I-cache.
32  *
33  *	All functions below apply to the interval [start, end)
34  *		- start  - virtual start address (inclusive)
35  *		- end    - virtual end address (exclusive)
36  *
37  *	caches_clean_inval_pou(start, end)
38  *
39  *		Ensure coherency between the I-cache and the D-cache region to
40  *		the Point of Unification.
41  *
42  *	caches_clean_inval_user_pou(start, end)
43  *
44  *		Ensure coherency between the I-cache and the D-cache region to
45  *		the Point of Unification.
46  *		Use only if the region might access user memory.
47  *
48  *	icache_inval_pou(start, end)
49  *
50  *		Invalidate I-cache region to the Point of Unification.
51  *
52  *	dcache_clean_inval_poc(start, end)
53  *
54  *		Clean and invalidate D-cache region to the Point of Coherency.
55  *
56  *	dcache_inval_poc(start, end)
57  *
58  *		Invalidate D-cache region to the Point of Coherency.
59  *
60  *	dcache_clean_poc(start, end)
61  *
62  *		Clean D-cache region to the Point of Coherency.
63  *
64  *	dcache_clean_pop(start, end)
65  *
66  *		Clean D-cache region to the Point of Persistence.
67  *
68  *	dcache_clean_pou(start, end)
69  *
70  *		Clean D-cache region to the Point of Unification.
71  */
72 extern void caches_clean_inval_pou(unsigned long start, unsigned long end);
73 extern void icache_inval_pou(unsigned long start, unsigned long end);
74 extern void dcache_clean_inval_poc(unsigned long start, unsigned long end);
75 extern void dcache_inval_poc(unsigned long start, unsigned long end);
76 extern void dcache_clean_poc(unsigned long start, unsigned long end);
77 extern void dcache_clean_pop(unsigned long start, unsigned long end);
78 extern void dcache_clean_pou(unsigned long start, unsigned long end);
79 extern long caches_clean_inval_user_pou(unsigned long start, unsigned long end);
80 extern void sync_icache_aliases(unsigned long start, unsigned long end);
81 
82 static inline void flush_icache_range(unsigned long start, unsigned long end)
83 {
84 	caches_clean_inval_pou(start, end);
85 
86 	/*
87 	 * IPI all online CPUs so that they undergo a context synchronization
88 	 * event and are forced to refetch the new instructions.
89 	 */
90 
91 	/*
92 	 * KGDB performs cache maintenance with interrupts disabled, so we
93 	 * will deadlock trying to IPI the secondary CPUs. In theory, we can
94 	 * set CACHE_FLUSH_IS_SAFE to 0 to avoid this known issue, but that
95 	 * just means that KGDB will elide the maintenance altogether! As it
96 	 * turns out, KGDB uses IPIs to round-up the secondary CPUs during
97 	 * the patching operation, so we don't need extra IPIs here anyway.
98 	 * In which case, add a KGDB-specific bodge and return early.
99 	 */
100 	if (in_dbg_master())
101 		return;
102 
103 	kick_all_cpus_sync();
104 }
105 #define flush_icache_range flush_icache_range
106 
107 /*
108  * Cache maintenance functions used by the DMA API. No to be used directly.
109  */
110 extern void __dma_map_area(const void *, size_t, int);
111 extern void __dma_unmap_area(const void *, size_t, int);
112 extern void __dma_flush_area(const void *, size_t);
113 
114 /*
115  * Copy user data from/to a page which is mapped into a different
116  * processes address space.  Really, we want to allow our "user
117  * space" model to handle this.
118  */
119 extern void copy_to_user_page(struct vm_area_struct *, struct page *,
120 	unsigned long, void *, const void *, unsigned long);
121 #define copy_to_user_page copy_to_user_page
122 
123 /*
124  * flush_dcache_page is used when the kernel has written to the page
125  * cache page at virtual address page->virtual.
126  *
127  * If this page isn't mapped (ie, page_mapping == NULL), or it might
128  * have userspace mappings, then we _must_ always clean + invalidate
129  * the dcache entries associated with the kernel mapping.
130  *
131  * Otherwise we can defer the operation, and clean the cache when we are
132  * about to change to user space.  This is the same method as used on SPARC64.
133  * See update_mmu_cache for the user space part.
134  */
135 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
136 extern void flush_dcache_page(struct page *);
137 
138 static __always_inline void icache_inval_all_pou(void)
139 {
140 	if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
141 		return;
142 
143 	asm("ic	ialluis");
144 	dsb(ish);
145 }
146 
147 int set_memory_valid(unsigned long addr, int numpages, int enable);
148 
149 int set_direct_map_invalid_noflush(struct page *page);
150 int set_direct_map_default_noflush(struct page *page);
151 bool kernel_page_present(struct page *page);
152 
153 #include <asm-generic/cacheflush.h>
154 
155 #endif /* __ASM_CACHEFLUSH_H */
156