1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Accelerated GHASH implementation with ARMv8 PMULL instructions. 4 * 5 * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org> 6 */ 7 8 #include <asm/neon.h> 9 #include <asm/simd.h> 10 #include <asm/unaligned.h> 11 #include <crypto/aes.h> 12 #include <crypto/algapi.h> 13 #include <crypto/b128ops.h> 14 #include <crypto/gf128mul.h> 15 #include <crypto/internal/aead.h> 16 #include <crypto/internal/hash.h> 17 #include <crypto/internal/simd.h> 18 #include <crypto/internal/skcipher.h> 19 #include <crypto/scatterwalk.h> 20 #include <linux/cpufeature.h> 21 #include <linux/crypto.h> 22 #include <linux/module.h> 23 24 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions"); 25 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); 26 MODULE_LICENSE("GPL v2"); 27 MODULE_ALIAS_CRYPTO("ghash"); 28 29 #define GHASH_BLOCK_SIZE 16 30 #define GHASH_DIGEST_SIZE 16 31 #define GCM_IV_SIZE 12 32 33 struct ghash_key { 34 u64 h[2]; 35 u64 h2[2]; 36 u64 h3[2]; 37 u64 h4[2]; 38 39 be128 k; 40 }; 41 42 struct ghash_desc_ctx { 43 u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)]; 44 u8 buf[GHASH_BLOCK_SIZE]; 45 u32 count; 46 }; 47 48 struct gcm_aes_ctx { 49 struct crypto_aes_ctx aes_key; 50 struct ghash_key ghash_key; 51 }; 52 53 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src, 54 struct ghash_key const *k, 55 const char *head); 56 57 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src, 58 struct ghash_key const *k, 59 const char *head); 60 61 asmlinkage void pmull_gcm_encrypt(int bytes, u8 dst[], const u8 src[], 62 struct ghash_key const *k, u64 dg[], 63 u8 ctr[], u32 const rk[], int rounds, 64 u8 tag[]); 65 66 asmlinkage void pmull_gcm_decrypt(int bytes, u8 dst[], const u8 src[], 67 struct ghash_key const *k, u64 dg[], 68 u8 ctr[], u32 const rk[], int rounds, 69 u8 tag[]); 70 71 static int ghash_init(struct shash_desc *desc) 72 { 73 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); 74 75 *ctx = (struct ghash_desc_ctx){}; 76 return 0; 77 } 78 79 static void ghash_do_update(int blocks, u64 dg[], const char *src, 80 struct ghash_key *key, const char *head, 81 void (*simd_update)(int blocks, u64 dg[], 82 const char *src, 83 struct ghash_key const *k, 84 const char *head)) 85 { 86 if (likely(crypto_simd_usable() && simd_update)) { 87 kernel_neon_begin(); 88 simd_update(blocks, dg, src, key, head); 89 kernel_neon_end(); 90 } else { 91 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) }; 92 93 do { 94 const u8 *in = src; 95 96 if (head) { 97 in = head; 98 blocks++; 99 head = NULL; 100 } else { 101 src += GHASH_BLOCK_SIZE; 102 } 103 104 crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE); 105 gf128mul_lle(&dst, &key->k); 106 } while (--blocks); 107 108 dg[0] = be64_to_cpu(dst.b); 109 dg[1] = be64_to_cpu(dst.a); 110 } 111 } 112 113 /* avoid hogging the CPU for too long */ 114 #define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE) 115 116 static int __ghash_update(struct shash_desc *desc, const u8 *src, 117 unsigned int len, 118 void (*simd_update)(int blocks, u64 dg[], 119 const char *src, 120 struct ghash_key const *k, 121 const char *head)) 122 { 123 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); 124 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; 125 126 ctx->count += len; 127 128 if ((partial + len) >= GHASH_BLOCK_SIZE) { 129 struct ghash_key *key = crypto_shash_ctx(desc->tfm); 130 int blocks; 131 132 if (partial) { 133 int p = GHASH_BLOCK_SIZE - partial; 134 135 memcpy(ctx->buf + partial, src, p); 136 src += p; 137 len -= p; 138 } 139 140 blocks = len / GHASH_BLOCK_SIZE; 141 len %= GHASH_BLOCK_SIZE; 142 143 do { 144 int chunk = min(blocks, MAX_BLOCKS); 145 146 ghash_do_update(chunk, ctx->digest, src, key, 147 partial ? ctx->buf : NULL, 148 simd_update); 149 150 blocks -= chunk; 151 src += chunk * GHASH_BLOCK_SIZE; 152 partial = 0; 153 } while (unlikely(blocks > 0)); 154 } 155 if (len) 156 memcpy(ctx->buf + partial, src, len); 157 return 0; 158 } 159 160 static int ghash_update_p8(struct shash_desc *desc, const u8 *src, 161 unsigned int len) 162 { 163 return __ghash_update(desc, src, len, pmull_ghash_update_p8); 164 } 165 166 static int ghash_update_p64(struct shash_desc *desc, const u8 *src, 167 unsigned int len) 168 { 169 return __ghash_update(desc, src, len, pmull_ghash_update_p64); 170 } 171 172 static int ghash_final_p8(struct shash_desc *desc, u8 *dst) 173 { 174 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); 175 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; 176 177 if (partial) { 178 struct ghash_key *key = crypto_shash_ctx(desc->tfm); 179 180 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); 181 182 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL, 183 pmull_ghash_update_p8); 184 } 185 put_unaligned_be64(ctx->digest[1], dst); 186 put_unaligned_be64(ctx->digest[0], dst + 8); 187 188 *ctx = (struct ghash_desc_ctx){}; 189 return 0; 190 } 191 192 static int ghash_final_p64(struct shash_desc *desc, u8 *dst) 193 { 194 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); 195 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; 196 197 if (partial) { 198 struct ghash_key *key = crypto_shash_ctx(desc->tfm); 199 200 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); 201 202 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL, 203 pmull_ghash_update_p64); 204 } 205 put_unaligned_be64(ctx->digest[1], dst); 206 put_unaligned_be64(ctx->digest[0], dst + 8); 207 208 *ctx = (struct ghash_desc_ctx){}; 209 return 0; 210 } 211 212 static void ghash_reflect(u64 h[], const be128 *k) 213 { 214 u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0; 215 216 h[0] = (be64_to_cpu(k->b) << 1) | carry; 217 h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63); 218 219 if (carry) 220 h[1] ^= 0xc200000000000000UL; 221 } 222 223 static int __ghash_setkey(struct ghash_key *key, 224 const u8 *inkey, unsigned int keylen) 225 { 226 be128 h; 227 228 /* needed for the fallback */ 229 memcpy(&key->k, inkey, GHASH_BLOCK_SIZE); 230 231 ghash_reflect(key->h, &key->k); 232 233 h = key->k; 234 gf128mul_lle(&h, &key->k); 235 ghash_reflect(key->h2, &h); 236 237 gf128mul_lle(&h, &key->k); 238 ghash_reflect(key->h3, &h); 239 240 gf128mul_lle(&h, &key->k); 241 ghash_reflect(key->h4, &h); 242 243 return 0; 244 } 245 246 static int ghash_setkey(struct crypto_shash *tfm, 247 const u8 *inkey, unsigned int keylen) 248 { 249 struct ghash_key *key = crypto_shash_ctx(tfm); 250 251 if (keylen != GHASH_BLOCK_SIZE) 252 return -EINVAL; 253 254 return __ghash_setkey(key, inkey, keylen); 255 } 256 257 static struct shash_alg ghash_alg[] = {{ 258 .base.cra_name = "ghash", 259 .base.cra_driver_name = "ghash-neon", 260 .base.cra_priority = 150, 261 .base.cra_blocksize = GHASH_BLOCK_SIZE, 262 .base.cra_ctxsize = sizeof(struct ghash_key), 263 .base.cra_module = THIS_MODULE, 264 265 .digestsize = GHASH_DIGEST_SIZE, 266 .init = ghash_init, 267 .update = ghash_update_p8, 268 .final = ghash_final_p8, 269 .setkey = ghash_setkey, 270 .descsize = sizeof(struct ghash_desc_ctx), 271 }, { 272 .base.cra_name = "ghash", 273 .base.cra_driver_name = "ghash-ce", 274 .base.cra_priority = 200, 275 .base.cra_blocksize = GHASH_BLOCK_SIZE, 276 .base.cra_ctxsize = sizeof(struct ghash_key), 277 .base.cra_module = THIS_MODULE, 278 279 .digestsize = GHASH_DIGEST_SIZE, 280 .init = ghash_init, 281 .update = ghash_update_p64, 282 .final = ghash_final_p64, 283 .setkey = ghash_setkey, 284 .descsize = sizeof(struct ghash_desc_ctx), 285 }}; 286 287 static int num_rounds(struct crypto_aes_ctx *ctx) 288 { 289 /* 290 * # of rounds specified by AES: 291 * 128 bit key 10 rounds 292 * 192 bit key 12 rounds 293 * 256 bit key 14 rounds 294 * => n byte key => 6 + (n/4) rounds 295 */ 296 return 6 + ctx->key_length / 4; 297 } 298 299 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey, 300 unsigned int keylen) 301 { 302 struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm); 303 u8 key[GHASH_BLOCK_SIZE]; 304 int ret; 305 306 ret = aes_expandkey(&ctx->aes_key, inkey, keylen); 307 if (ret) 308 return -EINVAL; 309 310 aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){}); 311 312 return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128)); 313 } 314 315 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) 316 { 317 switch (authsize) { 318 case 4: 319 case 8: 320 case 12 ... 16: 321 break; 322 default: 323 return -EINVAL; 324 } 325 return 0; 326 } 327 328 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[], 329 int *buf_count, struct gcm_aes_ctx *ctx) 330 { 331 if (*buf_count > 0) { 332 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count); 333 334 memcpy(&buf[*buf_count], src, buf_added); 335 336 *buf_count += buf_added; 337 src += buf_added; 338 count -= buf_added; 339 } 340 341 if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) { 342 int blocks = count / GHASH_BLOCK_SIZE; 343 344 ghash_do_update(blocks, dg, src, &ctx->ghash_key, 345 *buf_count ? buf : NULL, 346 pmull_ghash_update_p64); 347 348 src += blocks * GHASH_BLOCK_SIZE; 349 count %= GHASH_BLOCK_SIZE; 350 *buf_count = 0; 351 } 352 353 if (count > 0) { 354 memcpy(buf, src, count); 355 *buf_count = count; 356 } 357 } 358 359 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[]) 360 { 361 struct crypto_aead *aead = crypto_aead_reqtfm(req); 362 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); 363 u8 buf[GHASH_BLOCK_SIZE]; 364 struct scatter_walk walk; 365 u32 len = req->assoclen; 366 int buf_count = 0; 367 368 scatterwalk_start(&walk, req->src); 369 370 do { 371 u32 n = scatterwalk_clamp(&walk, len); 372 u8 *p; 373 374 if (!n) { 375 scatterwalk_start(&walk, sg_next(walk.sg)); 376 n = scatterwalk_clamp(&walk, len); 377 } 378 p = scatterwalk_map(&walk); 379 380 gcm_update_mac(dg, p, n, buf, &buf_count, ctx); 381 len -= n; 382 383 scatterwalk_unmap(p); 384 scatterwalk_advance(&walk, n); 385 scatterwalk_done(&walk, 0, len); 386 } while (len); 387 388 if (buf_count) { 389 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count); 390 ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL, 391 pmull_ghash_update_p64); 392 } 393 } 394 395 static int gcm_encrypt(struct aead_request *req) 396 { 397 struct crypto_aead *aead = crypto_aead_reqtfm(req); 398 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); 399 int nrounds = num_rounds(&ctx->aes_key); 400 struct skcipher_walk walk; 401 u8 buf[AES_BLOCK_SIZE]; 402 u8 iv[AES_BLOCK_SIZE]; 403 u64 dg[2] = {}; 404 u128 lengths; 405 u8 *tag; 406 int err; 407 408 lengths.a = cpu_to_be64(req->assoclen * 8); 409 lengths.b = cpu_to_be64(req->cryptlen * 8); 410 411 if (req->assoclen) 412 gcm_calculate_auth_mac(req, dg); 413 414 memcpy(iv, req->iv, GCM_IV_SIZE); 415 put_unaligned_be32(2, iv + GCM_IV_SIZE); 416 417 err = skcipher_walk_aead_encrypt(&walk, req, false); 418 419 if (likely(crypto_simd_usable())) { 420 do { 421 const u8 *src = walk.src.virt.addr; 422 u8 *dst = walk.dst.virt.addr; 423 int nbytes = walk.nbytes; 424 425 tag = (u8 *)&lengths; 426 427 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) { 428 src = dst = memcpy(buf + sizeof(buf) - nbytes, 429 src, nbytes); 430 } else if (nbytes < walk.total) { 431 nbytes &= ~(AES_BLOCK_SIZE - 1); 432 tag = NULL; 433 } 434 435 kernel_neon_begin(); 436 pmull_gcm_encrypt(nbytes, dst, src, &ctx->ghash_key, dg, 437 iv, ctx->aes_key.key_enc, nrounds, 438 tag); 439 kernel_neon_end(); 440 441 if (unlikely(!nbytes)) 442 break; 443 444 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) 445 memcpy(walk.dst.virt.addr, 446 buf + sizeof(buf) - nbytes, nbytes); 447 448 err = skcipher_walk_done(&walk, walk.nbytes - nbytes); 449 } while (walk.nbytes); 450 } else { 451 while (walk.nbytes >= AES_BLOCK_SIZE) { 452 int blocks = walk.nbytes / AES_BLOCK_SIZE; 453 const u8 *src = walk.src.virt.addr; 454 u8 *dst = walk.dst.virt.addr; 455 int remaining = blocks; 456 457 do { 458 aes_encrypt(&ctx->aes_key, buf, iv); 459 crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE); 460 crypto_inc(iv, AES_BLOCK_SIZE); 461 462 dst += AES_BLOCK_SIZE; 463 src += AES_BLOCK_SIZE; 464 } while (--remaining > 0); 465 466 ghash_do_update(blocks, dg, walk.dst.virt.addr, 467 &ctx->ghash_key, NULL, NULL); 468 469 err = skcipher_walk_done(&walk, 470 walk.nbytes % AES_BLOCK_SIZE); 471 } 472 473 /* handle the tail */ 474 if (walk.nbytes) { 475 aes_encrypt(&ctx->aes_key, buf, iv); 476 477 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, 478 buf, walk.nbytes); 479 480 memcpy(buf, walk.dst.virt.addr, walk.nbytes); 481 memset(buf + walk.nbytes, 0, sizeof(buf) - walk.nbytes); 482 } 483 484 tag = (u8 *)&lengths; 485 ghash_do_update(1, dg, tag, &ctx->ghash_key, 486 walk.nbytes ? buf : NULL, NULL); 487 488 if (walk.nbytes) 489 err = skcipher_walk_done(&walk, 0); 490 491 put_unaligned_be64(dg[1], tag); 492 put_unaligned_be64(dg[0], tag + 8); 493 put_unaligned_be32(1, iv + GCM_IV_SIZE); 494 aes_encrypt(&ctx->aes_key, iv, iv); 495 crypto_xor(tag, iv, AES_BLOCK_SIZE); 496 } 497 498 if (err) 499 return err; 500 501 /* copy authtag to end of dst */ 502 scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen, 503 crypto_aead_authsize(aead), 1); 504 505 return 0; 506 } 507 508 static int gcm_decrypt(struct aead_request *req) 509 { 510 struct crypto_aead *aead = crypto_aead_reqtfm(req); 511 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); 512 unsigned int authsize = crypto_aead_authsize(aead); 513 int nrounds = num_rounds(&ctx->aes_key); 514 struct skcipher_walk walk; 515 u8 buf[AES_BLOCK_SIZE]; 516 u8 iv[AES_BLOCK_SIZE]; 517 u64 dg[2] = {}; 518 u128 lengths; 519 u8 *tag; 520 int err; 521 522 lengths.a = cpu_to_be64(req->assoclen * 8); 523 lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8); 524 525 if (req->assoclen) 526 gcm_calculate_auth_mac(req, dg); 527 528 memcpy(iv, req->iv, GCM_IV_SIZE); 529 put_unaligned_be32(2, iv + GCM_IV_SIZE); 530 531 err = skcipher_walk_aead_decrypt(&walk, req, false); 532 533 if (likely(crypto_simd_usable())) { 534 do { 535 const u8 *src = walk.src.virt.addr; 536 u8 *dst = walk.dst.virt.addr; 537 int nbytes = walk.nbytes; 538 539 tag = (u8 *)&lengths; 540 541 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) { 542 src = dst = memcpy(buf + sizeof(buf) - nbytes, 543 src, nbytes); 544 } else if (nbytes < walk.total) { 545 nbytes &= ~(AES_BLOCK_SIZE - 1); 546 tag = NULL; 547 } 548 549 kernel_neon_begin(); 550 pmull_gcm_decrypt(nbytes, dst, src, &ctx->ghash_key, dg, 551 iv, ctx->aes_key.key_enc, nrounds, 552 tag); 553 kernel_neon_end(); 554 555 if (unlikely(!nbytes)) 556 break; 557 558 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) 559 memcpy(walk.dst.virt.addr, 560 buf + sizeof(buf) - nbytes, nbytes); 561 562 err = skcipher_walk_done(&walk, walk.nbytes - nbytes); 563 } while (walk.nbytes); 564 } else { 565 while (walk.nbytes >= AES_BLOCK_SIZE) { 566 int blocks = walk.nbytes / AES_BLOCK_SIZE; 567 const u8 *src = walk.src.virt.addr; 568 u8 *dst = walk.dst.virt.addr; 569 570 ghash_do_update(blocks, dg, walk.src.virt.addr, 571 &ctx->ghash_key, NULL, NULL); 572 573 do { 574 aes_encrypt(&ctx->aes_key, buf, iv); 575 crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE); 576 crypto_inc(iv, AES_BLOCK_SIZE); 577 578 dst += AES_BLOCK_SIZE; 579 src += AES_BLOCK_SIZE; 580 } while (--blocks > 0); 581 582 err = skcipher_walk_done(&walk, 583 walk.nbytes % AES_BLOCK_SIZE); 584 } 585 586 /* handle the tail */ 587 if (walk.nbytes) { 588 memcpy(buf, walk.src.virt.addr, walk.nbytes); 589 memset(buf + walk.nbytes, 0, sizeof(buf) - walk.nbytes); 590 } 591 592 tag = (u8 *)&lengths; 593 ghash_do_update(1, dg, tag, &ctx->ghash_key, 594 walk.nbytes ? buf : NULL, NULL); 595 596 if (walk.nbytes) { 597 aes_encrypt(&ctx->aes_key, buf, iv); 598 599 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, 600 buf, walk.nbytes); 601 602 err = skcipher_walk_done(&walk, 0); 603 } 604 605 put_unaligned_be64(dg[1], tag); 606 put_unaligned_be64(dg[0], tag + 8); 607 put_unaligned_be32(1, iv + GCM_IV_SIZE); 608 aes_encrypt(&ctx->aes_key, iv, iv); 609 crypto_xor(tag, iv, AES_BLOCK_SIZE); 610 } 611 612 if (err) 613 return err; 614 615 /* compare calculated auth tag with the stored one */ 616 scatterwalk_map_and_copy(buf, req->src, 617 req->assoclen + req->cryptlen - authsize, 618 authsize, 0); 619 620 if (crypto_memneq(tag, buf, authsize)) 621 return -EBADMSG; 622 return 0; 623 } 624 625 static struct aead_alg gcm_aes_alg = { 626 .ivsize = GCM_IV_SIZE, 627 .chunksize = AES_BLOCK_SIZE, 628 .maxauthsize = AES_BLOCK_SIZE, 629 .setkey = gcm_setkey, 630 .setauthsize = gcm_setauthsize, 631 .encrypt = gcm_encrypt, 632 .decrypt = gcm_decrypt, 633 634 .base.cra_name = "gcm(aes)", 635 .base.cra_driver_name = "gcm-aes-ce", 636 .base.cra_priority = 300, 637 .base.cra_blocksize = 1, 638 .base.cra_ctxsize = sizeof(struct gcm_aes_ctx), 639 .base.cra_module = THIS_MODULE, 640 }; 641 642 static int __init ghash_ce_mod_init(void) 643 { 644 int ret; 645 646 if (!cpu_have_named_feature(ASIMD)) 647 return -ENODEV; 648 649 if (cpu_have_named_feature(PMULL)) 650 ret = crypto_register_shashes(ghash_alg, 651 ARRAY_SIZE(ghash_alg)); 652 else 653 /* only register the first array element */ 654 ret = crypto_register_shash(ghash_alg); 655 656 if (ret) 657 return ret; 658 659 if (cpu_have_named_feature(PMULL)) { 660 ret = crypto_register_aead(&gcm_aes_alg); 661 if (ret) 662 crypto_unregister_shashes(ghash_alg, 663 ARRAY_SIZE(ghash_alg)); 664 } 665 return ret; 666 } 667 668 static void __exit ghash_ce_mod_exit(void) 669 { 670 if (cpu_have_named_feature(PMULL)) 671 crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg)); 672 else 673 crypto_unregister_shash(ghash_alg); 674 crypto_unregister_aead(&gcm_aes_alg); 675 } 676 677 static const struct cpu_feature ghash_cpu_feature[] = { 678 { cpu_feature(PMULL) }, { } 679 }; 680 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature); 681 682 module_init(ghash_ce_mod_init); 683 module_exit(ghash_ce_mod_exit); 684