1 /*
2  * Accelerated GHASH implementation with ARMv8 PMULL instructions.
3  *
4  * Copyright (C) 2014 - 2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  */
10 
11 #include <asm/neon.h>
12 #include <asm/simd.h>
13 #include <asm/unaligned.h>
14 #include <crypto/aes.h>
15 #include <crypto/algapi.h>
16 #include <crypto/b128ops.h>
17 #include <crypto/gf128mul.h>
18 #include <crypto/internal/aead.h>
19 #include <crypto/internal/hash.h>
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/cpufeature.h>
23 #include <linux/crypto.h>
24 #include <linux/module.h>
25 
26 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
27 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
28 MODULE_LICENSE("GPL v2");
29 MODULE_ALIAS_CRYPTO("ghash");
30 
31 #define GHASH_BLOCK_SIZE	16
32 #define GHASH_DIGEST_SIZE	16
33 #define GCM_IV_SIZE		12
34 
35 struct ghash_key {
36 	u64 a;
37 	u64 b;
38 	be128 k;
39 };
40 
41 struct ghash_desc_ctx {
42 	u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
43 	u8 buf[GHASH_BLOCK_SIZE];
44 	u32 count;
45 };
46 
47 struct gcm_aes_ctx {
48 	struct crypto_aes_ctx	aes_key;
49 	struct ghash_key	ghash_key;
50 };
51 
52 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
53 				       struct ghash_key const *k,
54 				       const char *head);
55 
56 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
57 				      struct ghash_key const *k,
58 				      const char *head);
59 
60 static void (*pmull_ghash_update)(int blocks, u64 dg[], const char *src,
61 				  struct ghash_key const *k,
62 				  const char *head);
63 
64 asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
65 				  const u8 src[], struct ghash_key const *k,
66 				  u8 ctr[], u32 const rk[], int rounds,
67 				  u8 ks[]);
68 
69 asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[],
70 				  const u8 src[], struct ghash_key const *k,
71 				  u8 ctr[], u32 const rk[], int rounds);
72 
73 asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[],
74 					u32 const rk[], int rounds);
75 
76 asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
77 
78 static int ghash_init(struct shash_desc *desc)
79 {
80 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
81 
82 	*ctx = (struct ghash_desc_ctx){};
83 	return 0;
84 }
85 
86 static void ghash_do_update(int blocks, u64 dg[], const char *src,
87 			    struct ghash_key *key, const char *head)
88 {
89 	if (likely(may_use_simd())) {
90 		kernel_neon_begin();
91 		pmull_ghash_update(blocks, dg, src, key, head);
92 		kernel_neon_end();
93 	} else {
94 		be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
95 
96 		do {
97 			const u8 *in = src;
98 
99 			if (head) {
100 				in = head;
101 				blocks++;
102 				head = NULL;
103 			} else {
104 				src += GHASH_BLOCK_SIZE;
105 			}
106 
107 			crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
108 			gf128mul_lle(&dst, &key->k);
109 		} while (--blocks);
110 
111 		dg[0] = be64_to_cpu(dst.b);
112 		dg[1] = be64_to_cpu(dst.a);
113 	}
114 }
115 
116 static int ghash_update(struct shash_desc *desc, const u8 *src,
117 			unsigned int len)
118 {
119 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
120 	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
121 
122 	ctx->count += len;
123 
124 	if ((partial + len) >= GHASH_BLOCK_SIZE) {
125 		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
126 		int blocks;
127 
128 		if (partial) {
129 			int p = GHASH_BLOCK_SIZE - partial;
130 
131 			memcpy(ctx->buf + partial, src, p);
132 			src += p;
133 			len -= p;
134 		}
135 
136 		blocks = len / GHASH_BLOCK_SIZE;
137 		len %= GHASH_BLOCK_SIZE;
138 
139 		ghash_do_update(blocks, ctx->digest, src, key,
140 				partial ? ctx->buf : NULL);
141 
142 		src += blocks * GHASH_BLOCK_SIZE;
143 		partial = 0;
144 	}
145 	if (len)
146 		memcpy(ctx->buf + partial, src, len);
147 	return 0;
148 }
149 
150 static int ghash_final(struct shash_desc *desc, u8 *dst)
151 {
152 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
153 	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
154 
155 	if (partial) {
156 		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
157 
158 		memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
159 
160 		ghash_do_update(1, ctx->digest, ctx->buf, key, NULL);
161 	}
162 	put_unaligned_be64(ctx->digest[1], dst);
163 	put_unaligned_be64(ctx->digest[0], dst + 8);
164 
165 	*ctx = (struct ghash_desc_ctx){};
166 	return 0;
167 }
168 
169 static int __ghash_setkey(struct ghash_key *key,
170 			  const u8 *inkey, unsigned int keylen)
171 {
172 	u64 a, b;
173 
174 	/* needed for the fallback */
175 	memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
176 
177 	/* perform multiplication by 'x' in GF(2^128) */
178 	b = get_unaligned_be64(inkey);
179 	a = get_unaligned_be64(inkey + 8);
180 
181 	key->a = (a << 1) | (b >> 63);
182 	key->b = (b << 1) | (a >> 63);
183 
184 	if (b >> 63)
185 		key->b ^= 0xc200000000000000UL;
186 
187 	return 0;
188 }
189 
190 static int ghash_setkey(struct crypto_shash *tfm,
191 			const u8 *inkey, unsigned int keylen)
192 {
193 	struct ghash_key *key = crypto_shash_ctx(tfm);
194 
195 	if (keylen != GHASH_BLOCK_SIZE) {
196 		crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
197 		return -EINVAL;
198 	}
199 
200 	return __ghash_setkey(key, inkey, keylen);
201 }
202 
203 static struct shash_alg ghash_alg = {
204 	.base.cra_name		= "ghash",
205 	.base.cra_driver_name	= "ghash-ce",
206 	.base.cra_priority	= 200,
207 	.base.cra_flags		= CRYPTO_ALG_TYPE_SHASH,
208 	.base.cra_blocksize	= GHASH_BLOCK_SIZE,
209 	.base.cra_ctxsize	= sizeof(struct ghash_key),
210 	.base.cra_module	= THIS_MODULE,
211 
212 	.digestsize		= GHASH_DIGEST_SIZE,
213 	.init			= ghash_init,
214 	.update			= ghash_update,
215 	.final			= ghash_final,
216 	.setkey			= ghash_setkey,
217 	.descsize		= sizeof(struct ghash_desc_ctx),
218 };
219 
220 static int num_rounds(struct crypto_aes_ctx *ctx)
221 {
222 	/*
223 	 * # of rounds specified by AES:
224 	 * 128 bit key		10 rounds
225 	 * 192 bit key		12 rounds
226 	 * 256 bit key		14 rounds
227 	 * => n byte key	=> 6 + (n/4) rounds
228 	 */
229 	return 6 + ctx->key_length / 4;
230 }
231 
232 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
233 		      unsigned int keylen)
234 {
235 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
236 	u8 key[GHASH_BLOCK_SIZE];
237 	int ret;
238 
239 	ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen);
240 	if (ret) {
241 		tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
242 		return -EINVAL;
243 	}
244 
245 	__aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){},
246 			    num_rounds(&ctx->aes_key));
247 
248 	return __ghash_setkey(&ctx->ghash_key, key, sizeof(key));
249 }
250 
251 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
252 {
253 	switch (authsize) {
254 	case 4:
255 	case 8:
256 	case 12 ... 16:
257 		break;
258 	default:
259 		return -EINVAL;
260 	}
261 	return 0;
262 }
263 
264 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
265 			   int *buf_count, struct gcm_aes_ctx *ctx)
266 {
267 	if (*buf_count > 0) {
268 		int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
269 
270 		memcpy(&buf[*buf_count], src, buf_added);
271 
272 		*buf_count += buf_added;
273 		src += buf_added;
274 		count -= buf_added;
275 	}
276 
277 	if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
278 		int blocks = count / GHASH_BLOCK_SIZE;
279 
280 		ghash_do_update(blocks, dg, src, &ctx->ghash_key,
281 				*buf_count ? buf : NULL);
282 
283 		src += blocks * GHASH_BLOCK_SIZE;
284 		count %= GHASH_BLOCK_SIZE;
285 		*buf_count = 0;
286 	}
287 
288 	if (count > 0) {
289 		memcpy(buf, src, count);
290 		*buf_count = count;
291 	}
292 }
293 
294 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
295 {
296 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
297 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
298 	u8 buf[GHASH_BLOCK_SIZE];
299 	struct scatter_walk walk;
300 	u32 len = req->assoclen;
301 	int buf_count = 0;
302 
303 	scatterwalk_start(&walk, req->src);
304 
305 	do {
306 		u32 n = scatterwalk_clamp(&walk, len);
307 		u8 *p;
308 
309 		if (!n) {
310 			scatterwalk_start(&walk, sg_next(walk.sg));
311 			n = scatterwalk_clamp(&walk, len);
312 		}
313 		p = scatterwalk_map(&walk);
314 
315 		gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
316 		len -= n;
317 
318 		scatterwalk_unmap(p);
319 		scatterwalk_advance(&walk, n);
320 		scatterwalk_done(&walk, 0, len);
321 	} while (len);
322 
323 	if (buf_count) {
324 		memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
325 		ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL);
326 	}
327 }
328 
329 static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx,
330 		      u64 dg[], u8 tag[], int cryptlen)
331 {
332 	u8 mac[AES_BLOCK_SIZE];
333 	u128 lengths;
334 
335 	lengths.a = cpu_to_be64(req->assoclen * 8);
336 	lengths.b = cpu_to_be64(cryptlen * 8);
337 
338 	ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL);
339 
340 	put_unaligned_be64(dg[1], mac);
341 	put_unaligned_be64(dg[0], mac + 8);
342 
343 	crypto_xor(tag, mac, AES_BLOCK_SIZE);
344 }
345 
346 static int gcm_encrypt(struct aead_request *req)
347 {
348 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
349 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
350 	struct skcipher_walk walk;
351 	u8 iv[AES_BLOCK_SIZE];
352 	u8 ks[AES_BLOCK_SIZE];
353 	u8 tag[AES_BLOCK_SIZE];
354 	u64 dg[2] = {};
355 	int err;
356 
357 	if (req->assoclen)
358 		gcm_calculate_auth_mac(req, dg);
359 
360 	memcpy(iv, req->iv, GCM_IV_SIZE);
361 	put_unaligned_be32(1, iv + GCM_IV_SIZE);
362 
363 	if (likely(may_use_simd())) {
364 		kernel_neon_begin();
365 
366 		pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc,
367 					num_rounds(&ctx->aes_key));
368 		put_unaligned_be32(2, iv + GCM_IV_SIZE);
369 		pmull_gcm_encrypt_block(ks, iv, NULL,
370 					num_rounds(&ctx->aes_key));
371 		put_unaligned_be32(3, iv + GCM_IV_SIZE);
372 		kernel_neon_end();
373 
374 		err = skcipher_walk_aead_encrypt(&walk, req, false);
375 
376 		while (walk.nbytes >= AES_BLOCK_SIZE) {
377 			int blocks = walk.nbytes / AES_BLOCK_SIZE;
378 
379 			kernel_neon_begin();
380 			pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr,
381 					  walk.src.virt.addr, &ctx->ghash_key,
382 					  iv, ctx->aes_key.key_enc,
383 					  num_rounds(&ctx->aes_key), ks);
384 			kernel_neon_end();
385 
386 			err = skcipher_walk_done(&walk,
387 						 walk.nbytes % AES_BLOCK_SIZE);
388 		}
389 	} else {
390 		__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv,
391 				    num_rounds(&ctx->aes_key));
392 		put_unaligned_be32(2, iv + GCM_IV_SIZE);
393 
394 		err = skcipher_walk_aead_encrypt(&walk, req, false);
395 
396 		while (walk.nbytes >= AES_BLOCK_SIZE) {
397 			int blocks = walk.nbytes / AES_BLOCK_SIZE;
398 			u8 *dst = walk.dst.virt.addr;
399 			u8 *src = walk.src.virt.addr;
400 
401 			do {
402 				__aes_arm64_encrypt(ctx->aes_key.key_enc,
403 						    ks, iv,
404 						    num_rounds(&ctx->aes_key));
405 				crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE);
406 				crypto_inc(iv, AES_BLOCK_SIZE);
407 
408 				dst += AES_BLOCK_SIZE;
409 				src += AES_BLOCK_SIZE;
410 			} while (--blocks > 0);
411 
412 			ghash_do_update(walk.nbytes / AES_BLOCK_SIZE, dg,
413 					walk.dst.virt.addr, &ctx->ghash_key,
414 					NULL);
415 
416 			err = skcipher_walk_done(&walk,
417 						 walk.nbytes % AES_BLOCK_SIZE);
418 		}
419 		if (walk.nbytes)
420 			__aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv,
421 					    num_rounds(&ctx->aes_key));
422 	}
423 
424 	/* handle the tail */
425 	if (walk.nbytes) {
426 		u8 buf[GHASH_BLOCK_SIZE];
427 
428 		crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks,
429 			       walk.nbytes);
430 
431 		memcpy(buf, walk.dst.virt.addr, walk.nbytes);
432 		memset(buf + walk.nbytes, 0, GHASH_BLOCK_SIZE - walk.nbytes);
433 		ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL);
434 
435 		err = skcipher_walk_done(&walk, 0);
436 	}
437 
438 	if (err)
439 		return err;
440 
441 	gcm_final(req, ctx, dg, tag, req->cryptlen);
442 
443 	/* copy authtag to end of dst */
444 	scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
445 				 crypto_aead_authsize(aead), 1);
446 
447 	return 0;
448 }
449 
450 static int gcm_decrypt(struct aead_request *req)
451 {
452 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
453 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
454 	unsigned int authsize = crypto_aead_authsize(aead);
455 	struct skcipher_walk walk;
456 	u8 iv[AES_BLOCK_SIZE];
457 	u8 tag[AES_BLOCK_SIZE];
458 	u8 buf[GHASH_BLOCK_SIZE];
459 	u64 dg[2] = {};
460 	int err;
461 
462 	if (req->assoclen)
463 		gcm_calculate_auth_mac(req, dg);
464 
465 	memcpy(iv, req->iv, GCM_IV_SIZE);
466 	put_unaligned_be32(1, iv + GCM_IV_SIZE);
467 
468 	if (likely(may_use_simd())) {
469 		kernel_neon_begin();
470 
471 		pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc,
472 					num_rounds(&ctx->aes_key));
473 		put_unaligned_be32(2, iv + GCM_IV_SIZE);
474 		kernel_neon_end();
475 
476 		err = skcipher_walk_aead_decrypt(&walk, req, false);
477 
478 		while (walk.nbytes >= AES_BLOCK_SIZE) {
479 			int blocks = walk.nbytes / AES_BLOCK_SIZE;
480 
481 			kernel_neon_begin();
482 			pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr,
483 					  walk.src.virt.addr, &ctx->ghash_key,
484 					  iv, ctx->aes_key.key_enc,
485 					  num_rounds(&ctx->aes_key));
486 			kernel_neon_end();
487 
488 			err = skcipher_walk_done(&walk,
489 						 walk.nbytes % AES_BLOCK_SIZE);
490 		}
491 		if (walk.nbytes)
492 			pmull_gcm_encrypt_block(iv, iv, NULL,
493 						num_rounds(&ctx->aes_key));
494 	} else {
495 		__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv,
496 				    num_rounds(&ctx->aes_key));
497 		put_unaligned_be32(2, iv + GCM_IV_SIZE);
498 
499 		err = skcipher_walk_aead_decrypt(&walk, req, false);
500 
501 		while (walk.nbytes >= AES_BLOCK_SIZE) {
502 			int blocks = walk.nbytes / AES_BLOCK_SIZE;
503 			u8 *dst = walk.dst.virt.addr;
504 			u8 *src = walk.src.virt.addr;
505 
506 			ghash_do_update(blocks, dg, walk.src.virt.addr,
507 					&ctx->ghash_key, NULL);
508 
509 			do {
510 				__aes_arm64_encrypt(ctx->aes_key.key_enc,
511 						    buf, iv,
512 						    num_rounds(&ctx->aes_key));
513 				crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
514 				crypto_inc(iv, AES_BLOCK_SIZE);
515 
516 				dst += AES_BLOCK_SIZE;
517 				src += AES_BLOCK_SIZE;
518 			} while (--blocks > 0);
519 
520 			err = skcipher_walk_done(&walk,
521 						 walk.nbytes % AES_BLOCK_SIZE);
522 		}
523 		if (walk.nbytes)
524 			__aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv,
525 					    num_rounds(&ctx->aes_key));
526 	}
527 
528 	/* handle the tail */
529 	if (walk.nbytes) {
530 		memcpy(buf, walk.src.virt.addr, walk.nbytes);
531 		memset(buf + walk.nbytes, 0, GHASH_BLOCK_SIZE - walk.nbytes);
532 		ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL);
533 
534 		crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv,
535 			       walk.nbytes);
536 
537 		err = skcipher_walk_done(&walk, 0);
538 	}
539 
540 	if (err)
541 		return err;
542 
543 	gcm_final(req, ctx, dg, tag, req->cryptlen - authsize);
544 
545 	/* compare calculated auth tag with the stored one */
546 	scatterwalk_map_and_copy(buf, req->src,
547 				 req->assoclen + req->cryptlen - authsize,
548 				 authsize, 0);
549 
550 	if (crypto_memneq(tag, buf, authsize))
551 		return -EBADMSG;
552 	return 0;
553 }
554 
555 static struct aead_alg gcm_aes_alg = {
556 	.ivsize			= GCM_IV_SIZE,
557 	.chunksize		= AES_BLOCK_SIZE,
558 	.maxauthsize		= AES_BLOCK_SIZE,
559 	.setkey			= gcm_setkey,
560 	.setauthsize		= gcm_setauthsize,
561 	.encrypt		= gcm_encrypt,
562 	.decrypt		= gcm_decrypt,
563 
564 	.base.cra_name		= "gcm(aes)",
565 	.base.cra_driver_name	= "gcm-aes-ce",
566 	.base.cra_priority	= 300,
567 	.base.cra_blocksize	= 1,
568 	.base.cra_ctxsize	= sizeof(struct gcm_aes_ctx),
569 	.base.cra_module	= THIS_MODULE,
570 };
571 
572 static int __init ghash_ce_mod_init(void)
573 {
574 	int ret;
575 
576 	if (!(elf_hwcap & HWCAP_ASIMD))
577 		return -ENODEV;
578 
579 	if (elf_hwcap & HWCAP_PMULL)
580 		pmull_ghash_update = pmull_ghash_update_p64;
581 
582 	else
583 		pmull_ghash_update = pmull_ghash_update_p8;
584 
585 	ret = crypto_register_shash(&ghash_alg);
586 	if (ret)
587 		return ret;
588 
589 	if (elf_hwcap & HWCAP_PMULL) {
590 		ret = crypto_register_aead(&gcm_aes_alg);
591 		if (ret)
592 			crypto_unregister_shash(&ghash_alg);
593 	}
594 	return ret;
595 }
596 
597 static void __exit ghash_ce_mod_exit(void)
598 {
599 	crypto_unregister_shash(&ghash_alg);
600 	crypto_unregister_aead(&gcm_aes_alg);
601 }
602 
603 static const struct cpu_feature ghash_cpu_feature[] = {
604 	{ cpu_feature(PMULL) }, { }
605 };
606 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
607 
608 module_init(ghash_ce_mod_init);
609 module_exit(ghash_ce_mod_exit);
610