1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Accelerated GHASH implementation with ARMv8 PMULL instructions.
4  *
5  * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <asm/unaligned.h>
11 #include <crypto/aes.h>
12 #include <crypto/algapi.h>
13 #include <crypto/b128ops.h>
14 #include <crypto/gf128mul.h>
15 #include <crypto/internal/aead.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/simd.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/cpufeature.h>
21 #include <linux/crypto.h>
22 #include <linux/module.h>
23 
24 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
25 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
26 MODULE_LICENSE("GPL v2");
27 MODULE_ALIAS_CRYPTO("ghash");
28 
29 #define GHASH_BLOCK_SIZE	16
30 #define GHASH_DIGEST_SIZE	16
31 #define GCM_IV_SIZE		12
32 
33 struct ghash_key {
34 	u64			h[2];
35 	u64			h2[2];
36 	u64			h3[2];
37 	u64			h4[2];
38 
39 	be128			k;
40 };
41 
42 struct ghash_desc_ctx {
43 	u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
44 	u8 buf[GHASH_BLOCK_SIZE];
45 	u32 count;
46 };
47 
48 struct gcm_aes_ctx {
49 	struct crypto_aes_ctx	aes_key;
50 	struct ghash_key	ghash_key;
51 };
52 
53 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
54 				       struct ghash_key const *k,
55 				       const char *head);
56 
57 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
58 				      struct ghash_key const *k,
59 				      const char *head);
60 
61 asmlinkage void pmull_gcm_encrypt(int bytes, u8 dst[], const u8 src[],
62 				  struct ghash_key const *k, u64 dg[],
63 				  u8 ctr[], u32 const rk[], int rounds,
64 				  u8 tag[]);
65 
66 asmlinkage void pmull_gcm_decrypt(int bytes, u8 dst[], const u8 src[],
67 				  struct ghash_key const *k, u64 dg[],
68 				  u8 ctr[], u32 const rk[], int rounds,
69 				  u8 tag[]);
70 
71 static int ghash_init(struct shash_desc *desc)
72 {
73 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
74 
75 	*ctx = (struct ghash_desc_ctx){};
76 	return 0;
77 }
78 
79 static void ghash_do_update(int blocks, u64 dg[], const char *src,
80 			    struct ghash_key *key, const char *head,
81 			    void (*simd_update)(int blocks, u64 dg[],
82 						const char *src,
83 						struct ghash_key const *k,
84 						const char *head))
85 {
86 	if (likely(crypto_simd_usable() && simd_update)) {
87 		kernel_neon_begin();
88 		simd_update(blocks, dg, src, key, head);
89 		kernel_neon_end();
90 	} else {
91 		be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
92 
93 		do {
94 			const u8 *in = src;
95 
96 			if (head) {
97 				in = head;
98 				blocks++;
99 				head = NULL;
100 			} else {
101 				src += GHASH_BLOCK_SIZE;
102 			}
103 
104 			crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
105 			gf128mul_lle(&dst, &key->k);
106 		} while (--blocks);
107 
108 		dg[0] = be64_to_cpu(dst.b);
109 		dg[1] = be64_to_cpu(dst.a);
110 	}
111 }
112 
113 /* avoid hogging the CPU for too long */
114 #define MAX_BLOCKS	(SZ_64K / GHASH_BLOCK_SIZE)
115 
116 static int __ghash_update(struct shash_desc *desc, const u8 *src,
117 			  unsigned int len,
118 			  void (*simd_update)(int blocks, u64 dg[],
119 					      const char *src,
120 					      struct ghash_key const *k,
121 					      const char *head))
122 {
123 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
124 	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
125 
126 	ctx->count += len;
127 
128 	if ((partial + len) >= GHASH_BLOCK_SIZE) {
129 		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
130 		int blocks;
131 
132 		if (partial) {
133 			int p = GHASH_BLOCK_SIZE - partial;
134 
135 			memcpy(ctx->buf + partial, src, p);
136 			src += p;
137 			len -= p;
138 		}
139 
140 		blocks = len / GHASH_BLOCK_SIZE;
141 		len %= GHASH_BLOCK_SIZE;
142 
143 		do {
144 			int chunk = min(blocks, MAX_BLOCKS);
145 
146 			ghash_do_update(chunk, ctx->digest, src, key,
147 					partial ? ctx->buf : NULL,
148 					simd_update);
149 
150 			blocks -= chunk;
151 			src += chunk * GHASH_BLOCK_SIZE;
152 			partial = 0;
153 		} while (unlikely(blocks > 0));
154 	}
155 	if (len)
156 		memcpy(ctx->buf + partial, src, len);
157 	return 0;
158 }
159 
160 static int ghash_update_p8(struct shash_desc *desc, const u8 *src,
161 			   unsigned int len)
162 {
163 	return __ghash_update(desc, src, len, pmull_ghash_update_p8);
164 }
165 
166 static int ghash_update_p64(struct shash_desc *desc, const u8 *src,
167 			    unsigned int len)
168 {
169 	return __ghash_update(desc, src, len, pmull_ghash_update_p64);
170 }
171 
172 static int ghash_final_p8(struct shash_desc *desc, u8 *dst)
173 {
174 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
175 	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
176 
177 	if (partial) {
178 		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
179 
180 		memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
181 
182 		ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
183 				pmull_ghash_update_p8);
184 	}
185 	put_unaligned_be64(ctx->digest[1], dst);
186 	put_unaligned_be64(ctx->digest[0], dst + 8);
187 
188 	*ctx = (struct ghash_desc_ctx){};
189 	return 0;
190 }
191 
192 static int ghash_final_p64(struct shash_desc *desc, u8 *dst)
193 {
194 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
195 	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
196 
197 	if (partial) {
198 		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
199 
200 		memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
201 
202 		ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
203 				pmull_ghash_update_p64);
204 	}
205 	put_unaligned_be64(ctx->digest[1], dst);
206 	put_unaligned_be64(ctx->digest[0], dst + 8);
207 
208 	*ctx = (struct ghash_desc_ctx){};
209 	return 0;
210 }
211 
212 static void ghash_reflect(u64 h[], const be128 *k)
213 {
214 	u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
215 
216 	h[0] = (be64_to_cpu(k->b) << 1) | carry;
217 	h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
218 
219 	if (carry)
220 		h[1] ^= 0xc200000000000000UL;
221 }
222 
223 static int __ghash_setkey(struct ghash_key *key,
224 			  const u8 *inkey, unsigned int keylen)
225 {
226 	be128 h;
227 
228 	/* needed for the fallback */
229 	memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
230 
231 	ghash_reflect(key->h, &key->k);
232 
233 	h = key->k;
234 	gf128mul_lle(&h, &key->k);
235 	ghash_reflect(key->h2, &h);
236 
237 	gf128mul_lle(&h, &key->k);
238 	ghash_reflect(key->h3, &h);
239 
240 	gf128mul_lle(&h, &key->k);
241 	ghash_reflect(key->h4, &h);
242 
243 	return 0;
244 }
245 
246 static int ghash_setkey(struct crypto_shash *tfm,
247 			const u8 *inkey, unsigned int keylen)
248 {
249 	struct ghash_key *key = crypto_shash_ctx(tfm);
250 
251 	if (keylen != GHASH_BLOCK_SIZE) {
252 		crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
253 		return -EINVAL;
254 	}
255 
256 	return __ghash_setkey(key, inkey, keylen);
257 }
258 
259 static struct shash_alg ghash_alg[] = {{
260 	.base.cra_name		= "ghash",
261 	.base.cra_driver_name	= "ghash-neon",
262 	.base.cra_priority	= 100,
263 	.base.cra_blocksize	= GHASH_BLOCK_SIZE,
264 	.base.cra_ctxsize	= sizeof(struct ghash_key),
265 	.base.cra_module	= THIS_MODULE,
266 
267 	.digestsize		= GHASH_DIGEST_SIZE,
268 	.init			= ghash_init,
269 	.update			= ghash_update_p8,
270 	.final			= ghash_final_p8,
271 	.setkey			= ghash_setkey,
272 	.descsize		= sizeof(struct ghash_desc_ctx),
273 }, {
274 	.base.cra_name		= "ghash",
275 	.base.cra_driver_name	= "ghash-ce",
276 	.base.cra_priority	= 200,
277 	.base.cra_blocksize	= GHASH_BLOCK_SIZE,
278 	.base.cra_ctxsize	= sizeof(struct ghash_key),
279 	.base.cra_module	= THIS_MODULE,
280 
281 	.digestsize		= GHASH_DIGEST_SIZE,
282 	.init			= ghash_init,
283 	.update			= ghash_update_p64,
284 	.final			= ghash_final_p64,
285 	.setkey			= ghash_setkey,
286 	.descsize		= sizeof(struct ghash_desc_ctx),
287 }};
288 
289 static int num_rounds(struct crypto_aes_ctx *ctx)
290 {
291 	/*
292 	 * # of rounds specified by AES:
293 	 * 128 bit key		10 rounds
294 	 * 192 bit key		12 rounds
295 	 * 256 bit key		14 rounds
296 	 * => n byte key	=> 6 + (n/4) rounds
297 	 */
298 	return 6 + ctx->key_length / 4;
299 }
300 
301 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
302 		      unsigned int keylen)
303 {
304 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
305 	u8 key[GHASH_BLOCK_SIZE];
306 	int ret;
307 
308 	ret = aes_expandkey(&ctx->aes_key, inkey, keylen);
309 	if (ret) {
310 		tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
311 		return -EINVAL;
312 	}
313 
314 	aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){});
315 
316 	return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128));
317 }
318 
319 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
320 {
321 	switch (authsize) {
322 	case 4:
323 	case 8:
324 	case 12 ... 16:
325 		break;
326 	default:
327 		return -EINVAL;
328 	}
329 	return 0;
330 }
331 
332 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
333 			   int *buf_count, struct gcm_aes_ctx *ctx)
334 {
335 	if (*buf_count > 0) {
336 		int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
337 
338 		memcpy(&buf[*buf_count], src, buf_added);
339 
340 		*buf_count += buf_added;
341 		src += buf_added;
342 		count -= buf_added;
343 	}
344 
345 	if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
346 		int blocks = count / GHASH_BLOCK_SIZE;
347 
348 		ghash_do_update(blocks, dg, src, &ctx->ghash_key,
349 				*buf_count ? buf : NULL,
350 				pmull_ghash_update_p64);
351 
352 		src += blocks * GHASH_BLOCK_SIZE;
353 		count %= GHASH_BLOCK_SIZE;
354 		*buf_count = 0;
355 	}
356 
357 	if (count > 0) {
358 		memcpy(buf, src, count);
359 		*buf_count = count;
360 	}
361 }
362 
363 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
364 {
365 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
366 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
367 	u8 buf[GHASH_BLOCK_SIZE];
368 	struct scatter_walk walk;
369 	u32 len = req->assoclen;
370 	int buf_count = 0;
371 
372 	scatterwalk_start(&walk, req->src);
373 
374 	do {
375 		u32 n = scatterwalk_clamp(&walk, len);
376 		u8 *p;
377 
378 		if (!n) {
379 			scatterwalk_start(&walk, sg_next(walk.sg));
380 			n = scatterwalk_clamp(&walk, len);
381 		}
382 		p = scatterwalk_map(&walk);
383 
384 		gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
385 		len -= n;
386 
387 		scatterwalk_unmap(p);
388 		scatterwalk_advance(&walk, n);
389 		scatterwalk_done(&walk, 0, len);
390 	} while (len);
391 
392 	if (buf_count) {
393 		memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
394 		ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL,
395 				pmull_ghash_update_p64);
396 	}
397 }
398 
399 static int gcm_encrypt(struct aead_request *req)
400 {
401 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
402 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
403 	int nrounds = num_rounds(&ctx->aes_key);
404 	struct skcipher_walk walk;
405 	u8 buf[AES_BLOCK_SIZE];
406 	u8 iv[AES_BLOCK_SIZE];
407 	u64 dg[2] = {};
408 	u128 lengths;
409 	u8 *tag;
410 	int err;
411 
412 	lengths.a = cpu_to_be64(req->assoclen * 8);
413 	lengths.b = cpu_to_be64(req->cryptlen * 8);
414 
415 	if (req->assoclen)
416 		gcm_calculate_auth_mac(req, dg);
417 
418 	memcpy(iv, req->iv, GCM_IV_SIZE);
419 	put_unaligned_be32(2, iv + GCM_IV_SIZE);
420 
421 	err = skcipher_walk_aead_encrypt(&walk, req, false);
422 
423 	if (likely(crypto_simd_usable())) {
424 		do {
425 			const u8 *src = walk.src.virt.addr;
426 			u8 *dst = walk.dst.virt.addr;
427 			int nbytes = walk.nbytes;
428 
429 			tag = (u8 *)&lengths;
430 
431 			if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
432 				src = dst = memcpy(buf + sizeof(buf) - nbytes,
433 						   src, nbytes);
434 			} else if (nbytes < walk.total) {
435 				nbytes &= ~(AES_BLOCK_SIZE - 1);
436 				tag = NULL;
437 			}
438 
439 			kernel_neon_begin();
440 			pmull_gcm_encrypt(nbytes, dst, src, &ctx->ghash_key, dg,
441 					  iv, ctx->aes_key.key_enc, nrounds,
442 					  tag);
443 			kernel_neon_end();
444 
445 			if (unlikely(!nbytes))
446 				break;
447 
448 			if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
449 				memcpy(walk.dst.virt.addr,
450 				       buf + sizeof(buf) - nbytes, nbytes);
451 
452 			err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
453 		} while (walk.nbytes);
454 	} else {
455 		while (walk.nbytes >= AES_BLOCK_SIZE) {
456 			int blocks = walk.nbytes / AES_BLOCK_SIZE;
457 			const u8 *src = walk.src.virt.addr;
458 			u8 *dst = walk.dst.virt.addr;
459 			int remaining = blocks;
460 
461 			do {
462 				aes_encrypt(&ctx->aes_key, buf, iv);
463 				crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
464 				crypto_inc(iv, AES_BLOCK_SIZE);
465 
466 				dst += AES_BLOCK_SIZE;
467 				src += AES_BLOCK_SIZE;
468 			} while (--remaining > 0);
469 
470 			ghash_do_update(blocks, dg, walk.dst.virt.addr,
471 					&ctx->ghash_key, NULL, NULL);
472 
473 			err = skcipher_walk_done(&walk,
474 						 walk.nbytes % AES_BLOCK_SIZE);
475 		}
476 
477 		/* handle the tail */
478 		if (walk.nbytes) {
479 			aes_encrypt(&ctx->aes_key, buf, iv);
480 
481 			crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr,
482 				       buf, walk.nbytes);
483 
484 			memcpy(buf, walk.dst.virt.addr, walk.nbytes);
485 			memset(buf + walk.nbytes, 0, sizeof(buf) - walk.nbytes);
486 		}
487 
488 		tag = (u8 *)&lengths;
489 		ghash_do_update(1, dg, tag, &ctx->ghash_key,
490 				walk.nbytes ? buf : NULL, NULL);
491 
492 		if (walk.nbytes)
493 			err = skcipher_walk_done(&walk, 0);
494 
495 		put_unaligned_be64(dg[1], tag);
496 		put_unaligned_be64(dg[0], tag + 8);
497 		put_unaligned_be32(1, iv + GCM_IV_SIZE);
498 		aes_encrypt(&ctx->aes_key, iv, iv);
499 		crypto_xor(tag, iv, AES_BLOCK_SIZE);
500 	}
501 
502 	if (err)
503 		return err;
504 
505 	/* copy authtag to end of dst */
506 	scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
507 				 crypto_aead_authsize(aead), 1);
508 
509 	return 0;
510 }
511 
512 static int gcm_decrypt(struct aead_request *req)
513 {
514 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
515 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
516 	unsigned int authsize = crypto_aead_authsize(aead);
517 	int nrounds = num_rounds(&ctx->aes_key);
518 	struct skcipher_walk walk;
519 	u8 buf[AES_BLOCK_SIZE];
520 	u8 iv[AES_BLOCK_SIZE];
521 	u64 dg[2] = {};
522 	u128 lengths;
523 	u8 *tag;
524 	int err;
525 
526 	lengths.a = cpu_to_be64(req->assoclen * 8);
527 	lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
528 
529 	if (req->assoclen)
530 		gcm_calculate_auth_mac(req, dg);
531 
532 	memcpy(iv, req->iv, GCM_IV_SIZE);
533 	put_unaligned_be32(2, iv + GCM_IV_SIZE);
534 
535 	err = skcipher_walk_aead_decrypt(&walk, req, false);
536 
537 	if (likely(crypto_simd_usable())) {
538 		do {
539 			const u8 *src = walk.src.virt.addr;
540 			u8 *dst = walk.dst.virt.addr;
541 			int nbytes = walk.nbytes;
542 
543 			tag = (u8 *)&lengths;
544 
545 			if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
546 				src = dst = memcpy(buf + sizeof(buf) - nbytes,
547 						   src, nbytes);
548 			} else if (nbytes < walk.total) {
549 				nbytes &= ~(AES_BLOCK_SIZE - 1);
550 				tag = NULL;
551 			}
552 
553 			kernel_neon_begin();
554 			pmull_gcm_decrypt(nbytes, dst, src, &ctx->ghash_key, dg,
555 					  iv, ctx->aes_key.key_enc, nrounds,
556 					  tag);
557 			kernel_neon_end();
558 
559 			if (unlikely(!nbytes))
560 				break;
561 
562 			if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
563 				memcpy(walk.dst.virt.addr,
564 				       buf + sizeof(buf) - nbytes, nbytes);
565 
566 			err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
567 		} while (walk.nbytes);
568 	} else {
569 		while (walk.nbytes >= AES_BLOCK_SIZE) {
570 			int blocks = walk.nbytes / AES_BLOCK_SIZE;
571 			const u8 *src = walk.src.virt.addr;
572 			u8 *dst = walk.dst.virt.addr;
573 
574 			ghash_do_update(blocks, dg, walk.src.virt.addr,
575 					&ctx->ghash_key, NULL, NULL);
576 
577 			do {
578 				aes_encrypt(&ctx->aes_key, buf, iv);
579 				crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
580 				crypto_inc(iv, AES_BLOCK_SIZE);
581 
582 				dst += AES_BLOCK_SIZE;
583 				src += AES_BLOCK_SIZE;
584 			} while (--blocks > 0);
585 
586 			err = skcipher_walk_done(&walk,
587 						 walk.nbytes % AES_BLOCK_SIZE);
588 		}
589 
590 		/* handle the tail */
591 		if (walk.nbytes) {
592 			memcpy(buf, walk.src.virt.addr, walk.nbytes);
593 			memset(buf + walk.nbytes, 0, sizeof(buf) - walk.nbytes);
594 		}
595 
596 		tag = (u8 *)&lengths;
597 		ghash_do_update(1, dg, tag, &ctx->ghash_key,
598 				walk.nbytes ? buf : NULL, NULL);
599 
600 		if (walk.nbytes) {
601 			aes_encrypt(&ctx->aes_key, buf, iv);
602 
603 			crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr,
604 				       buf, walk.nbytes);
605 
606 			err = skcipher_walk_done(&walk, 0);
607 		}
608 
609 		put_unaligned_be64(dg[1], tag);
610 		put_unaligned_be64(dg[0], tag + 8);
611 		put_unaligned_be32(1, iv + GCM_IV_SIZE);
612 		aes_encrypt(&ctx->aes_key, iv, iv);
613 		crypto_xor(tag, iv, AES_BLOCK_SIZE);
614 	}
615 
616 	if (err)
617 		return err;
618 
619 	/* compare calculated auth tag with the stored one */
620 	scatterwalk_map_and_copy(buf, req->src,
621 				 req->assoclen + req->cryptlen - authsize,
622 				 authsize, 0);
623 
624 	if (crypto_memneq(tag, buf, authsize))
625 		return -EBADMSG;
626 	return 0;
627 }
628 
629 static struct aead_alg gcm_aes_alg = {
630 	.ivsize			= GCM_IV_SIZE,
631 	.chunksize		= AES_BLOCK_SIZE,
632 	.maxauthsize		= AES_BLOCK_SIZE,
633 	.setkey			= gcm_setkey,
634 	.setauthsize		= gcm_setauthsize,
635 	.encrypt		= gcm_encrypt,
636 	.decrypt		= gcm_decrypt,
637 
638 	.base.cra_name		= "gcm(aes)",
639 	.base.cra_driver_name	= "gcm-aes-ce",
640 	.base.cra_priority	= 300,
641 	.base.cra_blocksize	= 1,
642 	.base.cra_ctxsize	= sizeof(struct gcm_aes_ctx),
643 	.base.cra_module	= THIS_MODULE,
644 };
645 
646 static int __init ghash_ce_mod_init(void)
647 {
648 	int ret;
649 
650 	if (!cpu_have_named_feature(ASIMD))
651 		return -ENODEV;
652 
653 	if (cpu_have_named_feature(PMULL))
654 		ret = crypto_register_shashes(ghash_alg,
655 					      ARRAY_SIZE(ghash_alg));
656 	else
657 		/* only register the first array element */
658 		ret = crypto_register_shash(ghash_alg);
659 
660 	if (ret)
661 		return ret;
662 
663 	if (cpu_have_named_feature(PMULL)) {
664 		ret = crypto_register_aead(&gcm_aes_alg);
665 		if (ret)
666 			crypto_unregister_shashes(ghash_alg,
667 						  ARRAY_SIZE(ghash_alg));
668 	}
669 	return ret;
670 }
671 
672 static void __exit ghash_ce_mod_exit(void)
673 {
674 	if (cpu_have_named_feature(PMULL))
675 		crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg));
676 	else
677 		crypto_unregister_shash(ghash_alg);
678 	crypto_unregister_aead(&gcm_aes_alg);
679 }
680 
681 static const struct cpu_feature ghash_cpu_feature[] = {
682 	{ cpu_feature(PMULL) }, { }
683 };
684 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
685 
686 module_init(ghash_ce_mod_init);
687 module_exit(ghash_ce_mod_exit);
688