1 /*
2  * Accelerated GHASH implementation with ARMv8 PMULL instructions.
3  *
4  * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  */
10 
11 #include <asm/neon.h>
12 #include <asm/simd.h>
13 #include <asm/unaligned.h>
14 #include <crypto/aes.h>
15 #include <crypto/algapi.h>
16 #include <crypto/b128ops.h>
17 #include <crypto/gf128mul.h>
18 #include <crypto/internal/aead.h>
19 #include <crypto/internal/hash.h>
20 #include <crypto/internal/simd.h>
21 #include <crypto/internal/skcipher.h>
22 #include <crypto/scatterwalk.h>
23 #include <linux/cpufeature.h>
24 #include <linux/crypto.h>
25 #include <linux/module.h>
26 
27 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
28 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
29 MODULE_LICENSE("GPL v2");
30 MODULE_ALIAS_CRYPTO("ghash");
31 
32 #define GHASH_BLOCK_SIZE	16
33 #define GHASH_DIGEST_SIZE	16
34 #define GCM_IV_SIZE		12
35 
36 struct ghash_key {
37 	u64			h[2];
38 	u64			h2[2];
39 	u64			h3[2];
40 	u64			h4[2];
41 
42 	be128			k;
43 };
44 
45 struct ghash_desc_ctx {
46 	u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
47 	u8 buf[GHASH_BLOCK_SIZE];
48 	u32 count;
49 };
50 
51 struct gcm_aes_ctx {
52 	struct crypto_aes_ctx	aes_key;
53 	struct ghash_key	ghash_key;
54 };
55 
56 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
57 				       struct ghash_key const *k,
58 				       const char *head);
59 
60 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
61 				      struct ghash_key const *k,
62 				      const char *head);
63 
64 asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
65 				  const u8 src[], struct ghash_key const *k,
66 				  u8 ctr[], u32 const rk[], int rounds,
67 				  u8 ks[]);
68 
69 asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[],
70 				  const u8 src[], struct ghash_key const *k,
71 				  u8 ctr[], u32 const rk[], int rounds);
72 
73 asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[],
74 					u32 const rk[], int rounds);
75 
76 asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
77 
78 static int ghash_init(struct shash_desc *desc)
79 {
80 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
81 
82 	*ctx = (struct ghash_desc_ctx){};
83 	return 0;
84 }
85 
86 static void ghash_do_update(int blocks, u64 dg[], const char *src,
87 			    struct ghash_key *key, const char *head,
88 			    void (*simd_update)(int blocks, u64 dg[],
89 						const char *src,
90 						struct ghash_key const *k,
91 						const char *head))
92 {
93 	if (likely(crypto_simd_usable())) {
94 		kernel_neon_begin();
95 		simd_update(blocks, dg, src, key, head);
96 		kernel_neon_end();
97 	} else {
98 		be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
99 
100 		do {
101 			const u8 *in = src;
102 
103 			if (head) {
104 				in = head;
105 				blocks++;
106 				head = NULL;
107 			} else {
108 				src += GHASH_BLOCK_SIZE;
109 			}
110 
111 			crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
112 			gf128mul_lle(&dst, &key->k);
113 		} while (--blocks);
114 
115 		dg[0] = be64_to_cpu(dst.b);
116 		dg[1] = be64_to_cpu(dst.a);
117 	}
118 }
119 
120 /* avoid hogging the CPU for too long */
121 #define MAX_BLOCKS	(SZ_64K / GHASH_BLOCK_SIZE)
122 
123 static int __ghash_update(struct shash_desc *desc, const u8 *src,
124 			  unsigned int len,
125 			  void (*simd_update)(int blocks, u64 dg[],
126 					      const char *src,
127 					      struct ghash_key const *k,
128 					      const char *head))
129 {
130 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
131 	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
132 
133 	ctx->count += len;
134 
135 	if ((partial + len) >= GHASH_BLOCK_SIZE) {
136 		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
137 		int blocks;
138 
139 		if (partial) {
140 			int p = GHASH_BLOCK_SIZE - partial;
141 
142 			memcpy(ctx->buf + partial, src, p);
143 			src += p;
144 			len -= p;
145 		}
146 
147 		blocks = len / GHASH_BLOCK_SIZE;
148 		len %= GHASH_BLOCK_SIZE;
149 
150 		do {
151 			int chunk = min(blocks, MAX_BLOCKS);
152 
153 			ghash_do_update(chunk, ctx->digest, src, key,
154 					partial ? ctx->buf : NULL,
155 					simd_update);
156 
157 			blocks -= chunk;
158 			src += chunk * GHASH_BLOCK_SIZE;
159 			partial = 0;
160 		} while (unlikely(blocks > 0));
161 	}
162 	if (len)
163 		memcpy(ctx->buf + partial, src, len);
164 	return 0;
165 }
166 
167 static int ghash_update_p8(struct shash_desc *desc, const u8 *src,
168 			   unsigned int len)
169 {
170 	return __ghash_update(desc, src, len, pmull_ghash_update_p8);
171 }
172 
173 static int ghash_update_p64(struct shash_desc *desc, const u8 *src,
174 			    unsigned int len)
175 {
176 	return __ghash_update(desc, src, len, pmull_ghash_update_p64);
177 }
178 
179 static int ghash_final_p8(struct shash_desc *desc, u8 *dst)
180 {
181 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
182 	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
183 
184 	if (partial) {
185 		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
186 
187 		memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
188 
189 		ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
190 				pmull_ghash_update_p8);
191 	}
192 	put_unaligned_be64(ctx->digest[1], dst);
193 	put_unaligned_be64(ctx->digest[0], dst + 8);
194 
195 	*ctx = (struct ghash_desc_ctx){};
196 	return 0;
197 }
198 
199 static int ghash_final_p64(struct shash_desc *desc, u8 *dst)
200 {
201 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
202 	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
203 
204 	if (partial) {
205 		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
206 
207 		memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
208 
209 		ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
210 				pmull_ghash_update_p64);
211 	}
212 	put_unaligned_be64(ctx->digest[1], dst);
213 	put_unaligned_be64(ctx->digest[0], dst + 8);
214 
215 	*ctx = (struct ghash_desc_ctx){};
216 	return 0;
217 }
218 
219 static void ghash_reflect(u64 h[], const be128 *k)
220 {
221 	u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
222 
223 	h[0] = (be64_to_cpu(k->b) << 1) | carry;
224 	h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
225 
226 	if (carry)
227 		h[1] ^= 0xc200000000000000UL;
228 }
229 
230 static int __ghash_setkey(struct ghash_key *key,
231 			  const u8 *inkey, unsigned int keylen)
232 {
233 	be128 h;
234 
235 	/* needed for the fallback */
236 	memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
237 
238 	ghash_reflect(key->h, &key->k);
239 
240 	h = key->k;
241 	gf128mul_lle(&h, &key->k);
242 	ghash_reflect(key->h2, &h);
243 
244 	gf128mul_lle(&h, &key->k);
245 	ghash_reflect(key->h3, &h);
246 
247 	gf128mul_lle(&h, &key->k);
248 	ghash_reflect(key->h4, &h);
249 
250 	return 0;
251 }
252 
253 static int ghash_setkey(struct crypto_shash *tfm,
254 			const u8 *inkey, unsigned int keylen)
255 {
256 	struct ghash_key *key = crypto_shash_ctx(tfm);
257 
258 	if (keylen != GHASH_BLOCK_SIZE) {
259 		crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
260 		return -EINVAL;
261 	}
262 
263 	return __ghash_setkey(key, inkey, keylen);
264 }
265 
266 static struct shash_alg ghash_alg[] = {{
267 	.base.cra_name		= "ghash",
268 	.base.cra_driver_name	= "ghash-neon",
269 	.base.cra_priority	= 100,
270 	.base.cra_blocksize	= GHASH_BLOCK_SIZE,
271 	.base.cra_ctxsize	= sizeof(struct ghash_key),
272 	.base.cra_module	= THIS_MODULE,
273 
274 	.digestsize		= GHASH_DIGEST_SIZE,
275 	.init			= ghash_init,
276 	.update			= ghash_update_p8,
277 	.final			= ghash_final_p8,
278 	.setkey			= ghash_setkey,
279 	.descsize		= sizeof(struct ghash_desc_ctx),
280 }, {
281 	.base.cra_name		= "ghash",
282 	.base.cra_driver_name	= "ghash-ce",
283 	.base.cra_priority	= 200,
284 	.base.cra_blocksize	= GHASH_BLOCK_SIZE,
285 	.base.cra_ctxsize	= sizeof(struct ghash_key),
286 	.base.cra_module	= THIS_MODULE,
287 
288 	.digestsize		= GHASH_DIGEST_SIZE,
289 	.init			= ghash_init,
290 	.update			= ghash_update_p64,
291 	.final			= ghash_final_p64,
292 	.setkey			= ghash_setkey,
293 	.descsize		= sizeof(struct ghash_desc_ctx),
294 }};
295 
296 static int num_rounds(struct crypto_aes_ctx *ctx)
297 {
298 	/*
299 	 * # of rounds specified by AES:
300 	 * 128 bit key		10 rounds
301 	 * 192 bit key		12 rounds
302 	 * 256 bit key		14 rounds
303 	 * => n byte key	=> 6 + (n/4) rounds
304 	 */
305 	return 6 + ctx->key_length / 4;
306 }
307 
308 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
309 		      unsigned int keylen)
310 {
311 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
312 	u8 key[GHASH_BLOCK_SIZE];
313 	int ret;
314 
315 	ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen);
316 	if (ret) {
317 		tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
318 		return -EINVAL;
319 	}
320 
321 	__aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){},
322 			    num_rounds(&ctx->aes_key));
323 
324 	return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128));
325 }
326 
327 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
328 {
329 	switch (authsize) {
330 	case 4:
331 	case 8:
332 	case 12 ... 16:
333 		break;
334 	default:
335 		return -EINVAL;
336 	}
337 	return 0;
338 }
339 
340 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
341 			   int *buf_count, struct gcm_aes_ctx *ctx)
342 {
343 	if (*buf_count > 0) {
344 		int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
345 
346 		memcpy(&buf[*buf_count], src, buf_added);
347 
348 		*buf_count += buf_added;
349 		src += buf_added;
350 		count -= buf_added;
351 	}
352 
353 	if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
354 		int blocks = count / GHASH_BLOCK_SIZE;
355 
356 		ghash_do_update(blocks, dg, src, &ctx->ghash_key,
357 				*buf_count ? buf : NULL,
358 				pmull_ghash_update_p64);
359 
360 		src += blocks * GHASH_BLOCK_SIZE;
361 		count %= GHASH_BLOCK_SIZE;
362 		*buf_count = 0;
363 	}
364 
365 	if (count > 0) {
366 		memcpy(buf, src, count);
367 		*buf_count = count;
368 	}
369 }
370 
371 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
372 {
373 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
374 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
375 	u8 buf[GHASH_BLOCK_SIZE];
376 	struct scatter_walk walk;
377 	u32 len = req->assoclen;
378 	int buf_count = 0;
379 
380 	scatterwalk_start(&walk, req->src);
381 
382 	do {
383 		u32 n = scatterwalk_clamp(&walk, len);
384 		u8 *p;
385 
386 		if (!n) {
387 			scatterwalk_start(&walk, sg_next(walk.sg));
388 			n = scatterwalk_clamp(&walk, len);
389 		}
390 		p = scatterwalk_map(&walk);
391 
392 		gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
393 		len -= n;
394 
395 		scatterwalk_unmap(p);
396 		scatterwalk_advance(&walk, n);
397 		scatterwalk_done(&walk, 0, len);
398 	} while (len);
399 
400 	if (buf_count) {
401 		memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
402 		ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL,
403 				pmull_ghash_update_p64);
404 	}
405 }
406 
407 static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx,
408 		      u64 dg[], u8 tag[], int cryptlen)
409 {
410 	u8 mac[AES_BLOCK_SIZE];
411 	u128 lengths;
412 
413 	lengths.a = cpu_to_be64(req->assoclen * 8);
414 	lengths.b = cpu_to_be64(cryptlen * 8);
415 
416 	ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL,
417 			pmull_ghash_update_p64);
418 
419 	put_unaligned_be64(dg[1], mac);
420 	put_unaligned_be64(dg[0], mac + 8);
421 
422 	crypto_xor(tag, mac, AES_BLOCK_SIZE);
423 }
424 
425 static int gcm_encrypt(struct aead_request *req)
426 {
427 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
428 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
429 	struct skcipher_walk walk;
430 	u8 iv[AES_BLOCK_SIZE];
431 	u8 ks[2 * AES_BLOCK_SIZE];
432 	u8 tag[AES_BLOCK_SIZE];
433 	u64 dg[2] = {};
434 	int nrounds = num_rounds(&ctx->aes_key);
435 	int err;
436 
437 	if (req->assoclen)
438 		gcm_calculate_auth_mac(req, dg);
439 
440 	memcpy(iv, req->iv, GCM_IV_SIZE);
441 	put_unaligned_be32(1, iv + GCM_IV_SIZE);
442 
443 	err = skcipher_walk_aead_encrypt(&walk, req, false);
444 
445 	if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) {
446 		u32 const *rk = NULL;
447 
448 		kernel_neon_begin();
449 		pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
450 		put_unaligned_be32(2, iv + GCM_IV_SIZE);
451 		pmull_gcm_encrypt_block(ks, iv, NULL, nrounds);
452 		put_unaligned_be32(3, iv + GCM_IV_SIZE);
453 		pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds);
454 		put_unaligned_be32(4, iv + GCM_IV_SIZE);
455 
456 		do {
457 			int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
458 
459 			if (rk)
460 				kernel_neon_begin();
461 
462 			pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr,
463 					  walk.src.virt.addr, &ctx->ghash_key,
464 					  iv, rk, nrounds, ks);
465 			kernel_neon_end();
466 
467 			err = skcipher_walk_done(&walk,
468 					walk.nbytes % (2 * AES_BLOCK_SIZE));
469 
470 			rk = ctx->aes_key.key_enc;
471 		} while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
472 	} else {
473 		__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
474 		put_unaligned_be32(2, iv + GCM_IV_SIZE);
475 
476 		while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
477 			const int blocks =
478 				walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
479 			u8 *dst = walk.dst.virt.addr;
480 			u8 *src = walk.src.virt.addr;
481 			int remaining = blocks;
482 
483 			do {
484 				__aes_arm64_encrypt(ctx->aes_key.key_enc,
485 						    ks, iv, nrounds);
486 				crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE);
487 				crypto_inc(iv, AES_BLOCK_SIZE);
488 
489 				dst += AES_BLOCK_SIZE;
490 				src += AES_BLOCK_SIZE;
491 			} while (--remaining > 0);
492 
493 			ghash_do_update(blocks, dg,
494 					walk.dst.virt.addr, &ctx->ghash_key,
495 					NULL, pmull_ghash_update_p64);
496 
497 			err = skcipher_walk_done(&walk,
498 						 walk.nbytes % (2 * AES_BLOCK_SIZE));
499 		}
500 		if (walk.nbytes) {
501 			__aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv,
502 					    nrounds);
503 			if (walk.nbytes > AES_BLOCK_SIZE) {
504 				crypto_inc(iv, AES_BLOCK_SIZE);
505 				__aes_arm64_encrypt(ctx->aes_key.key_enc,
506 					            ks + AES_BLOCK_SIZE, iv,
507 						    nrounds);
508 			}
509 		}
510 	}
511 
512 	/* handle the tail */
513 	if (walk.nbytes) {
514 		u8 buf[GHASH_BLOCK_SIZE];
515 		unsigned int nbytes = walk.nbytes;
516 		u8 *dst = walk.dst.virt.addr;
517 		u8 *head = NULL;
518 
519 		crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks,
520 			       walk.nbytes);
521 
522 		if (walk.nbytes > GHASH_BLOCK_SIZE) {
523 			head = dst;
524 			dst += GHASH_BLOCK_SIZE;
525 			nbytes %= GHASH_BLOCK_SIZE;
526 		}
527 
528 		memcpy(buf, dst, nbytes);
529 		memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
530 		ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head,
531 				pmull_ghash_update_p64);
532 
533 		err = skcipher_walk_done(&walk, 0);
534 	}
535 
536 	if (err)
537 		return err;
538 
539 	gcm_final(req, ctx, dg, tag, req->cryptlen);
540 
541 	/* copy authtag to end of dst */
542 	scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
543 				 crypto_aead_authsize(aead), 1);
544 
545 	return 0;
546 }
547 
548 static int gcm_decrypt(struct aead_request *req)
549 {
550 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
551 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
552 	unsigned int authsize = crypto_aead_authsize(aead);
553 	struct skcipher_walk walk;
554 	u8 iv[2 * AES_BLOCK_SIZE];
555 	u8 tag[AES_BLOCK_SIZE];
556 	u8 buf[2 * GHASH_BLOCK_SIZE];
557 	u64 dg[2] = {};
558 	int nrounds = num_rounds(&ctx->aes_key);
559 	int err;
560 
561 	if (req->assoclen)
562 		gcm_calculate_auth_mac(req, dg);
563 
564 	memcpy(iv, req->iv, GCM_IV_SIZE);
565 	put_unaligned_be32(1, iv + GCM_IV_SIZE);
566 
567 	err = skcipher_walk_aead_decrypt(&walk, req, false);
568 
569 	if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) {
570 		u32 const *rk = NULL;
571 
572 		kernel_neon_begin();
573 		pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
574 		put_unaligned_be32(2, iv + GCM_IV_SIZE);
575 
576 		do {
577 			int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
578 			int rem = walk.total - blocks * AES_BLOCK_SIZE;
579 
580 			if (rk)
581 				kernel_neon_begin();
582 
583 			pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr,
584 					  walk.src.virt.addr, &ctx->ghash_key,
585 					  iv, rk, nrounds);
586 
587 			/* check if this is the final iteration of the loop */
588 			if (rem < (2 * AES_BLOCK_SIZE)) {
589 				u8 *iv2 = iv + AES_BLOCK_SIZE;
590 
591 				if (rem > AES_BLOCK_SIZE) {
592 					memcpy(iv2, iv, AES_BLOCK_SIZE);
593 					crypto_inc(iv2, AES_BLOCK_SIZE);
594 				}
595 
596 				pmull_gcm_encrypt_block(iv, iv, NULL, nrounds);
597 
598 				if (rem > AES_BLOCK_SIZE)
599 					pmull_gcm_encrypt_block(iv2, iv2, NULL,
600 								nrounds);
601 			}
602 
603 			kernel_neon_end();
604 
605 			err = skcipher_walk_done(&walk,
606 					walk.nbytes % (2 * AES_BLOCK_SIZE));
607 
608 			rk = ctx->aes_key.key_enc;
609 		} while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
610 	} else {
611 		__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
612 		put_unaligned_be32(2, iv + GCM_IV_SIZE);
613 
614 		while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
615 			int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
616 			u8 *dst = walk.dst.virt.addr;
617 			u8 *src = walk.src.virt.addr;
618 
619 			ghash_do_update(blocks, dg, walk.src.virt.addr,
620 					&ctx->ghash_key, NULL,
621 					pmull_ghash_update_p64);
622 
623 			do {
624 				__aes_arm64_encrypt(ctx->aes_key.key_enc,
625 						    buf, iv, nrounds);
626 				crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
627 				crypto_inc(iv, AES_BLOCK_SIZE);
628 
629 				dst += AES_BLOCK_SIZE;
630 				src += AES_BLOCK_SIZE;
631 			} while (--blocks > 0);
632 
633 			err = skcipher_walk_done(&walk,
634 						 walk.nbytes % (2 * AES_BLOCK_SIZE));
635 		}
636 		if (walk.nbytes) {
637 			if (walk.nbytes > AES_BLOCK_SIZE) {
638 				u8 *iv2 = iv + AES_BLOCK_SIZE;
639 
640 				memcpy(iv2, iv, AES_BLOCK_SIZE);
641 				crypto_inc(iv2, AES_BLOCK_SIZE);
642 
643 				__aes_arm64_encrypt(ctx->aes_key.key_enc, iv2,
644 						    iv2, nrounds);
645 			}
646 			__aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv,
647 					    nrounds);
648 		}
649 	}
650 
651 	/* handle the tail */
652 	if (walk.nbytes) {
653 		const u8 *src = walk.src.virt.addr;
654 		const u8 *head = NULL;
655 		unsigned int nbytes = walk.nbytes;
656 
657 		if (walk.nbytes > GHASH_BLOCK_SIZE) {
658 			head = src;
659 			src += GHASH_BLOCK_SIZE;
660 			nbytes %= GHASH_BLOCK_SIZE;
661 		}
662 
663 		memcpy(buf, src, nbytes);
664 		memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
665 		ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head,
666 				pmull_ghash_update_p64);
667 
668 		crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv,
669 			       walk.nbytes);
670 
671 		err = skcipher_walk_done(&walk, 0);
672 	}
673 
674 	if (err)
675 		return err;
676 
677 	gcm_final(req, ctx, dg, tag, req->cryptlen - authsize);
678 
679 	/* compare calculated auth tag with the stored one */
680 	scatterwalk_map_and_copy(buf, req->src,
681 				 req->assoclen + req->cryptlen - authsize,
682 				 authsize, 0);
683 
684 	if (crypto_memneq(tag, buf, authsize))
685 		return -EBADMSG;
686 	return 0;
687 }
688 
689 static struct aead_alg gcm_aes_alg = {
690 	.ivsize			= GCM_IV_SIZE,
691 	.chunksize		= 2 * AES_BLOCK_SIZE,
692 	.maxauthsize		= AES_BLOCK_SIZE,
693 	.setkey			= gcm_setkey,
694 	.setauthsize		= gcm_setauthsize,
695 	.encrypt		= gcm_encrypt,
696 	.decrypt		= gcm_decrypt,
697 
698 	.base.cra_name		= "gcm(aes)",
699 	.base.cra_driver_name	= "gcm-aes-ce",
700 	.base.cra_priority	= 300,
701 	.base.cra_blocksize	= 1,
702 	.base.cra_ctxsize	= sizeof(struct gcm_aes_ctx),
703 	.base.cra_module	= THIS_MODULE,
704 };
705 
706 static int __init ghash_ce_mod_init(void)
707 {
708 	int ret;
709 
710 	if (!cpu_have_named_feature(ASIMD))
711 		return -ENODEV;
712 
713 	if (cpu_have_named_feature(PMULL))
714 		ret = crypto_register_shashes(ghash_alg,
715 					      ARRAY_SIZE(ghash_alg));
716 	else
717 		/* only register the first array element */
718 		ret = crypto_register_shash(ghash_alg);
719 
720 	if (ret)
721 		return ret;
722 
723 	if (cpu_have_named_feature(PMULL)) {
724 		ret = crypto_register_aead(&gcm_aes_alg);
725 		if (ret)
726 			crypto_unregister_shashes(ghash_alg,
727 						  ARRAY_SIZE(ghash_alg));
728 	}
729 	return ret;
730 }
731 
732 static void __exit ghash_ce_mod_exit(void)
733 {
734 	if (cpu_have_named_feature(PMULL))
735 		crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg));
736 	else
737 		crypto_unregister_shash(ghash_alg);
738 	crypto_unregister_aead(&gcm_aes_alg);
739 }
740 
741 static const struct cpu_feature ghash_cpu_feature[] = {
742 	{ cpu_feature(PMULL) }, { }
743 };
744 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
745 
746 module_init(ghash_ce_mod_init);
747 module_exit(ghash_ce_mod_exit);
748