1 /*
2  * Bit sliced AES using NEON instructions
3  *
4  * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <asm/neon.h>
12 #include <crypto/aes.h>
13 #include <crypto/internal/simd.h>
14 #include <crypto/internal/skcipher.h>
15 #include <crypto/xts.h>
16 #include <linux/module.h>
17 
18 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
19 MODULE_LICENSE("GPL v2");
20 
21 MODULE_ALIAS_CRYPTO("ecb(aes)");
22 MODULE_ALIAS_CRYPTO("cbc(aes)");
23 MODULE_ALIAS_CRYPTO("ctr(aes)");
24 MODULE_ALIAS_CRYPTO("xts(aes)");
25 
26 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
27 
28 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
29 				  int rounds, int blocks);
30 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
31 				  int rounds, int blocks);
32 
33 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
34 				  int rounds, int blocks, u8 iv[]);
35 
36 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
37 				  int rounds, int blocks, u8 iv[], u8 final[]);
38 
39 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
40 				  int rounds, int blocks, u8 iv[]);
41 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
42 				  int rounds, int blocks, u8 iv[]);
43 
44 /* borrowed from aes-neon-blk.ko */
45 asmlinkage void neon_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
46 				     int rounds, int blocks, int first);
47 asmlinkage void neon_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
48 				     int rounds, int blocks, u8 iv[],
49 				     int first);
50 
51 struct aesbs_ctx {
52 	u8	rk[13 * (8 * AES_BLOCK_SIZE) + 32];
53 	int	rounds;
54 } __aligned(AES_BLOCK_SIZE);
55 
56 struct aesbs_cbc_ctx {
57 	struct aesbs_ctx	key;
58 	u32			enc[AES_MAX_KEYLENGTH_U32];
59 };
60 
61 struct aesbs_xts_ctx {
62 	struct aesbs_ctx	key;
63 	u32			twkey[AES_MAX_KEYLENGTH_U32];
64 };
65 
66 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
67 			unsigned int key_len)
68 {
69 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
70 	struct crypto_aes_ctx rk;
71 	int err;
72 
73 	err = crypto_aes_expand_key(&rk, in_key, key_len);
74 	if (err)
75 		return err;
76 
77 	ctx->rounds = 6 + key_len / 4;
78 
79 	kernel_neon_begin();
80 	aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
81 	kernel_neon_end();
82 
83 	return 0;
84 }
85 
86 static int __ecb_crypt(struct skcipher_request *req,
87 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
88 				  int rounds, int blocks))
89 {
90 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
91 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
92 	struct skcipher_walk walk;
93 	int err;
94 
95 	err = skcipher_walk_virt(&walk, req, true);
96 
97 	kernel_neon_begin();
98 	while (walk.nbytes >= AES_BLOCK_SIZE) {
99 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
100 
101 		if (walk.nbytes < walk.total)
102 			blocks = round_down(blocks,
103 					    walk.stride / AES_BLOCK_SIZE);
104 
105 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
106 		   ctx->rounds, blocks);
107 		err = skcipher_walk_done(&walk,
108 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
109 	}
110 	kernel_neon_end();
111 
112 	return err;
113 }
114 
115 static int ecb_encrypt(struct skcipher_request *req)
116 {
117 	return __ecb_crypt(req, aesbs_ecb_encrypt);
118 }
119 
120 static int ecb_decrypt(struct skcipher_request *req)
121 {
122 	return __ecb_crypt(req, aesbs_ecb_decrypt);
123 }
124 
125 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
126 			    unsigned int key_len)
127 {
128 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
129 	struct crypto_aes_ctx rk;
130 	int err;
131 
132 	err = crypto_aes_expand_key(&rk, in_key, key_len);
133 	if (err)
134 		return err;
135 
136 	ctx->key.rounds = 6 + key_len / 4;
137 
138 	memcpy(ctx->enc, rk.key_enc, sizeof(ctx->enc));
139 
140 	kernel_neon_begin();
141 	aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
142 	kernel_neon_end();
143 
144 	return 0;
145 }
146 
147 static int cbc_encrypt(struct skcipher_request *req)
148 {
149 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
150 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
151 	struct skcipher_walk walk;
152 	int err, first = 1;
153 
154 	err = skcipher_walk_virt(&walk, req, true);
155 
156 	kernel_neon_begin();
157 	while (walk.nbytes >= AES_BLOCK_SIZE) {
158 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
159 
160 		/* fall back to the non-bitsliced NEON implementation */
161 		neon_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
162 				     ctx->enc, ctx->key.rounds, blocks, walk.iv,
163 				     first);
164 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
165 		first = 0;
166 	}
167 	kernel_neon_end();
168 	return err;
169 }
170 
171 static int cbc_decrypt(struct skcipher_request *req)
172 {
173 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
174 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
175 	struct skcipher_walk walk;
176 	int err;
177 
178 	err = skcipher_walk_virt(&walk, req, true);
179 
180 	kernel_neon_begin();
181 	while (walk.nbytes >= AES_BLOCK_SIZE) {
182 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
183 
184 		if (walk.nbytes < walk.total)
185 			blocks = round_down(blocks,
186 					    walk.stride / AES_BLOCK_SIZE);
187 
188 		aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
189 				  ctx->key.rk, ctx->key.rounds, blocks,
190 				  walk.iv);
191 		err = skcipher_walk_done(&walk,
192 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
193 	}
194 	kernel_neon_end();
195 
196 	return err;
197 }
198 
199 static int ctr_encrypt(struct skcipher_request *req)
200 {
201 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
202 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
203 	struct skcipher_walk walk;
204 	u8 buf[AES_BLOCK_SIZE];
205 	int err;
206 
207 	err = skcipher_walk_virt(&walk, req, true);
208 
209 	kernel_neon_begin();
210 	while (walk.nbytes > 0) {
211 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
212 		u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL;
213 
214 		if (walk.nbytes < walk.total) {
215 			blocks = round_down(blocks,
216 					    walk.stride / AES_BLOCK_SIZE);
217 			final = NULL;
218 		}
219 
220 		aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
221 				  ctx->rk, ctx->rounds, blocks, walk.iv, final);
222 
223 		if (final) {
224 			u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
225 			u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
226 
227 			if (dst != src)
228 				memcpy(dst, src, walk.total % AES_BLOCK_SIZE);
229 			crypto_xor(dst, final, walk.total % AES_BLOCK_SIZE);
230 
231 			err = skcipher_walk_done(&walk, 0);
232 			break;
233 		}
234 		err = skcipher_walk_done(&walk,
235 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
236 	}
237 	kernel_neon_end();
238 
239 	return err;
240 }
241 
242 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
243 			    unsigned int key_len)
244 {
245 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
246 	struct crypto_aes_ctx rk;
247 	int err;
248 
249 	err = xts_verify_key(tfm, in_key, key_len);
250 	if (err)
251 		return err;
252 
253 	key_len /= 2;
254 	err = crypto_aes_expand_key(&rk, in_key + key_len, key_len);
255 	if (err)
256 		return err;
257 
258 	memcpy(ctx->twkey, rk.key_enc, sizeof(ctx->twkey));
259 
260 	return aesbs_setkey(tfm, in_key, key_len);
261 }
262 
263 static int __xts_crypt(struct skcipher_request *req,
264 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
265 				  int rounds, int blocks, u8 iv[]))
266 {
267 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
268 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
269 	struct skcipher_walk walk;
270 	int err;
271 
272 	err = skcipher_walk_virt(&walk, req, true);
273 
274 	kernel_neon_begin();
275 
276 	neon_aes_ecb_encrypt(walk.iv, walk.iv, ctx->twkey,
277 			     ctx->key.rounds, 1, 1);
278 
279 	while (walk.nbytes >= AES_BLOCK_SIZE) {
280 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
281 
282 		if (walk.nbytes < walk.total)
283 			blocks = round_down(blocks,
284 					    walk.stride / AES_BLOCK_SIZE);
285 
286 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk,
287 		   ctx->key.rounds, blocks, walk.iv);
288 		err = skcipher_walk_done(&walk,
289 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
290 	}
291 	kernel_neon_end();
292 
293 	return err;
294 }
295 
296 static int xts_encrypt(struct skcipher_request *req)
297 {
298 	return __xts_crypt(req, aesbs_xts_encrypt);
299 }
300 
301 static int xts_decrypt(struct skcipher_request *req)
302 {
303 	return __xts_crypt(req, aesbs_xts_decrypt);
304 }
305 
306 static struct skcipher_alg aes_algs[] = { {
307 	.base.cra_name		= "__ecb(aes)",
308 	.base.cra_driver_name	= "__ecb-aes-neonbs",
309 	.base.cra_priority	= 250,
310 	.base.cra_blocksize	= AES_BLOCK_SIZE,
311 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
312 	.base.cra_module	= THIS_MODULE,
313 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
314 
315 	.min_keysize		= AES_MIN_KEY_SIZE,
316 	.max_keysize		= AES_MAX_KEY_SIZE,
317 	.walksize		= 8 * AES_BLOCK_SIZE,
318 	.setkey			= aesbs_setkey,
319 	.encrypt		= ecb_encrypt,
320 	.decrypt		= ecb_decrypt,
321 }, {
322 	.base.cra_name		= "__cbc(aes)",
323 	.base.cra_driver_name	= "__cbc-aes-neonbs",
324 	.base.cra_priority	= 250,
325 	.base.cra_blocksize	= AES_BLOCK_SIZE,
326 	.base.cra_ctxsize	= sizeof(struct aesbs_cbc_ctx),
327 	.base.cra_module	= THIS_MODULE,
328 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
329 
330 	.min_keysize		= AES_MIN_KEY_SIZE,
331 	.max_keysize		= AES_MAX_KEY_SIZE,
332 	.walksize		= 8 * AES_BLOCK_SIZE,
333 	.ivsize			= AES_BLOCK_SIZE,
334 	.setkey			= aesbs_cbc_setkey,
335 	.encrypt		= cbc_encrypt,
336 	.decrypt		= cbc_decrypt,
337 }, {
338 	.base.cra_name		= "__ctr(aes)",
339 	.base.cra_driver_name	= "__ctr-aes-neonbs",
340 	.base.cra_priority	= 250,
341 	.base.cra_blocksize	= 1,
342 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
343 	.base.cra_module	= THIS_MODULE,
344 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
345 
346 	.min_keysize		= AES_MIN_KEY_SIZE,
347 	.max_keysize		= AES_MAX_KEY_SIZE,
348 	.chunksize		= AES_BLOCK_SIZE,
349 	.walksize		= 8 * AES_BLOCK_SIZE,
350 	.ivsize			= AES_BLOCK_SIZE,
351 	.setkey			= aesbs_setkey,
352 	.encrypt		= ctr_encrypt,
353 	.decrypt		= ctr_encrypt,
354 }, {
355 	.base.cra_name		= "ctr(aes)",
356 	.base.cra_driver_name	= "ctr-aes-neonbs",
357 	.base.cra_priority	= 250 - 1,
358 	.base.cra_blocksize	= 1,
359 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
360 	.base.cra_module	= THIS_MODULE,
361 
362 	.min_keysize		= AES_MIN_KEY_SIZE,
363 	.max_keysize		= AES_MAX_KEY_SIZE,
364 	.chunksize		= AES_BLOCK_SIZE,
365 	.walksize		= 8 * AES_BLOCK_SIZE,
366 	.ivsize			= AES_BLOCK_SIZE,
367 	.setkey			= aesbs_setkey,
368 	.encrypt		= ctr_encrypt,
369 	.decrypt		= ctr_encrypt,
370 }, {
371 	.base.cra_name		= "__xts(aes)",
372 	.base.cra_driver_name	= "__xts-aes-neonbs",
373 	.base.cra_priority	= 250,
374 	.base.cra_blocksize	= AES_BLOCK_SIZE,
375 	.base.cra_ctxsize	= sizeof(struct aesbs_xts_ctx),
376 	.base.cra_module	= THIS_MODULE,
377 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
378 
379 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
380 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
381 	.walksize		= 8 * AES_BLOCK_SIZE,
382 	.ivsize			= AES_BLOCK_SIZE,
383 	.setkey			= aesbs_xts_setkey,
384 	.encrypt		= xts_encrypt,
385 	.decrypt		= xts_decrypt,
386 } };
387 
388 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
389 
390 static void aes_exit(void)
391 {
392 	int i;
393 
394 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
395 		if (aes_simd_algs[i])
396 			simd_skcipher_free(aes_simd_algs[i]);
397 
398 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
399 }
400 
401 static int __init aes_init(void)
402 {
403 	struct simd_skcipher_alg *simd;
404 	const char *basename;
405 	const char *algname;
406 	const char *drvname;
407 	int err;
408 	int i;
409 
410 	if (!(elf_hwcap & HWCAP_ASIMD))
411 		return -ENODEV;
412 
413 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
414 	if (err)
415 		return err;
416 
417 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
418 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
419 			continue;
420 
421 		algname = aes_algs[i].base.cra_name + 2;
422 		drvname = aes_algs[i].base.cra_driver_name + 2;
423 		basename = aes_algs[i].base.cra_driver_name;
424 		simd = simd_skcipher_create_compat(algname, drvname, basename);
425 		err = PTR_ERR(simd);
426 		if (IS_ERR(simd))
427 			goto unregister_simds;
428 
429 		aes_simd_algs[i] = simd;
430 	}
431 	return 0;
432 
433 unregister_simds:
434 	aes_exit();
435 	return err;
436 }
437 
438 module_init(aes_init);
439 module_exit(aes_exit);
440