xref: /openbmc/linux/arch/arm64/crypto/aes-neonbs-glue.c (revision d0054a470c33902f5ae88835ed8a8ecc3cf8faa4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Bit sliced AES using NEON instructions
4  *
5  * Copyright (C) 2016 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <crypto/aes.h>
11 #include <crypto/ctr.h>
12 #include <crypto/internal/simd.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/scatterwalk.h>
15 #include <crypto/xts.h>
16 #include <linux/module.h>
17 
18 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
19 MODULE_LICENSE("GPL v2");
20 
21 MODULE_ALIAS_CRYPTO("ecb(aes)");
22 MODULE_ALIAS_CRYPTO("cbc(aes)");
23 MODULE_ALIAS_CRYPTO("ctr(aes)");
24 MODULE_ALIAS_CRYPTO("xts(aes)");
25 
26 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
27 
28 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
29 				  int rounds, int blocks);
30 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
31 				  int rounds, int blocks);
32 
33 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
34 				  int rounds, int blocks, u8 iv[]);
35 
36 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
37 				  int rounds, int blocks, u8 iv[], u8 final[]);
38 
39 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
40 				  int rounds, int blocks, u8 iv[]);
41 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
42 				  int rounds, int blocks, u8 iv[]);
43 
44 /* borrowed from aes-neon-blk.ko */
45 asmlinkage void neon_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
46 				     int rounds, int blocks);
47 asmlinkage void neon_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
48 				     int rounds, int blocks, u8 iv[]);
49 asmlinkage void neon_aes_xts_encrypt(u8 out[], u8 const in[],
50 				     u32 const rk1[], int rounds, int bytes,
51 				     u32 const rk2[], u8 iv[], int first);
52 asmlinkage void neon_aes_xts_decrypt(u8 out[], u8 const in[],
53 				     u32 const rk1[], int rounds, int bytes,
54 				     u32 const rk2[], u8 iv[], int first);
55 
56 struct aesbs_ctx {
57 	u8	rk[13 * (8 * AES_BLOCK_SIZE) + 32];
58 	int	rounds;
59 } __aligned(AES_BLOCK_SIZE);
60 
61 struct aesbs_cbc_ctx {
62 	struct aesbs_ctx	key;
63 	u32			enc[AES_MAX_KEYLENGTH_U32];
64 };
65 
66 struct aesbs_xts_ctx {
67 	struct aesbs_ctx	key;
68 	u32			twkey[AES_MAX_KEYLENGTH_U32];
69 	struct crypto_aes_ctx	cts;
70 };
71 
72 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
73 			unsigned int key_len)
74 {
75 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
76 	struct crypto_aes_ctx rk;
77 	int err;
78 
79 	err = aes_expandkey(&rk, in_key, key_len);
80 	if (err)
81 		return err;
82 
83 	ctx->rounds = 6 + key_len / 4;
84 
85 	kernel_neon_begin();
86 	aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
87 	kernel_neon_end();
88 
89 	return 0;
90 }
91 
92 static int __ecb_crypt(struct skcipher_request *req,
93 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
94 				  int rounds, int blocks))
95 {
96 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
97 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
98 	struct skcipher_walk walk;
99 	int err;
100 
101 	err = skcipher_walk_virt(&walk, req, false);
102 
103 	while (walk.nbytes >= AES_BLOCK_SIZE) {
104 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
105 
106 		if (walk.nbytes < walk.total)
107 			blocks = round_down(blocks,
108 					    walk.stride / AES_BLOCK_SIZE);
109 
110 		kernel_neon_begin();
111 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
112 		   ctx->rounds, blocks);
113 		kernel_neon_end();
114 		err = skcipher_walk_done(&walk,
115 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
116 	}
117 
118 	return err;
119 }
120 
121 static int ecb_encrypt(struct skcipher_request *req)
122 {
123 	return __ecb_crypt(req, aesbs_ecb_encrypt);
124 }
125 
126 static int ecb_decrypt(struct skcipher_request *req)
127 {
128 	return __ecb_crypt(req, aesbs_ecb_decrypt);
129 }
130 
131 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
132 			    unsigned int key_len)
133 {
134 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
135 	struct crypto_aes_ctx rk;
136 	int err;
137 
138 	err = aes_expandkey(&rk, in_key, key_len);
139 	if (err)
140 		return err;
141 
142 	ctx->key.rounds = 6 + key_len / 4;
143 
144 	memcpy(ctx->enc, rk.key_enc, sizeof(ctx->enc));
145 
146 	kernel_neon_begin();
147 	aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
148 	kernel_neon_end();
149 	memzero_explicit(&rk, sizeof(rk));
150 
151 	return 0;
152 }
153 
154 static int cbc_encrypt(struct skcipher_request *req)
155 {
156 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
157 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
158 	struct skcipher_walk walk;
159 	int err;
160 
161 	err = skcipher_walk_virt(&walk, req, false);
162 
163 	while (walk.nbytes >= AES_BLOCK_SIZE) {
164 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
165 
166 		/* fall back to the non-bitsliced NEON implementation */
167 		kernel_neon_begin();
168 		neon_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
169 				     ctx->enc, ctx->key.rounds, blocks,
170 				     walk.iv);
171 		kernel_neon_end();
172 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
173 	}
174 	return err;
175 }
176 
177 static int cbc_decrypt(struct skcipher_request *req)
178 {
179 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
180 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
181 	struct skcipher_walk walk;
182 	int err;
183 
184 	err = skcipher_walk_virt(&walk, req, false);
185 
186 	while (walk.nbytes >= AES_BLOCK_SIZE) {
187 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
188 
189 		if (walk.nbytes < walk.total)
190 			blocks = round_down(blocks,
191 					    walk.stride / AES_BLOCK_SIZE);
192 
193 		kernel_neon_begin();
194 		aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
195 				  ctx->key.rk, ctx->key.rounds, blocks,
196 				  walk.iv);
197 		kernel_neon_end();
198 		err = skcipher_walk_done(&walk,
199 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
200 	}
201 
202 	return err;
203 }
204 
205 static int ctr_encrypt(struct skcipher_request *req)
206 {
207 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
208 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
209 	struct skcipher_walk walk;
210 	u8 buf[AES_BLOCK_SIZE];
211 	int err;
212 
213 	err = skcipher_walk_virt(&walk, req, false);
214 
215 	while (walk.nbytes > 0) {
216 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
217 		u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL;
218 
219 		if (walk.nbytes < walk.total) {
220 			blocks = round_down(blocks,
221 					    walk.stride / AES_BLOCK_SIZE);
222 			final = NULL;
223 		}
224 
225 		kernel_neon_begin();
226 		aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
227 				  ctx->rk, ctx->rounds, blocks, walk.iv, final);
228 		kernel_neon_end();
229 
230 		if (final) {
231 			u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
232 			u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
233 
234 			crypto_xor_cpy(dst, src, final,
235 				       walk.total % AES_BLOCK_SIZE);
236 
237 			err = skcipher_walk_done(&walk, 0);
238 			break;
239 		}
240 		err = skcipher_walk_done(&walk,
241 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
242 	}
243 	return err;
244 }
245 
246 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
247 			    unsigned int key_len)
248 {
249 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
250 	struct crypto_aes_ctx rk;
251 	int err;
252 
253 	err = xts_verify_key(tfm, in_key, key_len);
254 	if (err)
255 		return err;
256 
257 	key_len /= 2;
258 	err = aes_expandkey(&ctx->cts, in_key, key_len);
259 	if (err)
260 		return err;
261 
262 	err = aes_expandkey(&rk, in_key + key_len, key_len);
263 	if (err)
264 		return err;
265 
266 	memcpy(ctx->twkey, rk.key_enc, sizeof(ctx->twkey));
267 
268 	return aesbs_setkey(tfm, in_key, key_len);
269 }
270 
271 static int __xts_crypt(struct skcipher_request *req, bool encrypt,
272 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
273 				  int rounds, int blocks, u8 iv[]))
274 {
275 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
276 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
277 	int tail = req->cryptlen % (8 * AES_BLOCK_SIZE);
278 	struct scatterlist sg_src[2], sg_dst[2];
279 	struct skcipher_request subreq;
280 	struct scatterlist *src, *dst;
281 	struct skcipher_walk walk;
282 	int nbytes, err;
283 	int first = 1;
284 	u8 *out, *in;
285 
286 	if (req->cryptlen < AES_BLOCK_SIZE)
287 		return -EINVAL;
288 
289 	/* ensure that the cts tail is covered by a single step */
290 	if (unlikely(tail > 0 && tail < AES_BLOCK_SIZE)) {
291 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
292 					      AES_BLOCK_SIZE) - 2;
293 
294 		skcipher_request_set_tfm(&subreq, tfm);
295 		skcipher_request_set_callback(&subreq,
296 					      skcipher_request_flags(req),
297 					      NULL, NULL);
298 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
299 					   xts_blocks * AES_BLOCK_SIZE,
300 					   req->iv);
301 		req = &subreq;
302 	} else {
303 		tail = 0;
304 	}
305 
306 	err = skcipher_walk_virt(&walk, req, false);
307 	if (err)
308 		return err;
309 
310 	while (walk.nbytes >= AES_BLOCK_SIZE) {
311 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
312 
313 		if (walk.nbytes < walk.total || walk.nbytes % AES_BLOCK_SIZE)
314 			blocks = round_down(blocks,
315 					    walk.stride / AES_BLOCK_SIZE);
316 
317 		out = walk.dst.virt.addr;
318 		in = walk.src.virt.addr;
319 		nbytes = walk.nbytes;
320 
321 		kernel_neon_begin();
322 		if (likely(blocks > 6)) { /* plain NEON is faster otherwise */
323 			if (first)
324 				neon_aes_ecb_encrypt(walk.iv, walk.iv,
325 						     ctx->twkey,
326 						     ctx->key.rounds, 1);
327 			first = 0;
328 
329 			fn(out, in, ctx->key.rk, ctx->key.rounds, blocks,
330 			   walk.iv);
331 
332 			out += blocks * AES_BLOCK_SIZE;
333 			in += blocks * AES_BLOCK_SIZE;
334 			nbytes -= blocks * AES_BLOCK_SIZE;
335 		}
336 
337 		if (walk.nbytes == walk.total && nbytes > 0)
338 			goto xts_tail;
339 
340 		kernel_neon_end();
341 		err = skcipher_walk_done(&walk, nbytes);
342 	}
343 
344 	if (err || likely(!tail))
345 		return err;
346 
347 	/* handle ciphertext stealing */
348 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
349 	if (req->dst != req->src)
350 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
351 
352 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
353 				   req->iv);
354 
355 	err = skcipher_walk_virt(&walk, req, false);
356 	if (err)
357 		return err;
358 
359 	out = walk.dst.virt.addr;
360 	in = walk.src.virt.addr;
361 	nbytes = walk.nbytes;
362 
363 	kernel_neon_begin();
364 xts_tail:
365 	if (encrypt)
366 		neon_aes_xts_encrypt(out, in, ctx->cts.key_enc, ctx->key.rounds,
367 				     nbytes, ctx->twkey, walk.iv, first ?: 2);
368 	else
369 		neon_aes_xts_decrypt(out, in, ctx->cts.key_dec, ctx->key.rounds,
370 				     nbytes, ctx->twkey, walk.iv, first ?: 2);
371 	kernel_neon_end();
372 
373 	return skcipher_walk_done(&walk, 0);
374 }
375 
376 static int xts_encrypt(struct skcipher_request *req)
377 {
378 	return __xts_crypt(req, true, aesbs_xts_encrypt);
379 }
380 
381 static int xts_decrypt(struct skcipher_request *req)
382 {
383 	return __xts_crypt(req, false, aesbs_xts_decrypt);
384 }
385 
386 static struct skcipher_alg aes_algs[] = { {
387 	.base.cra_name		= "ecb(aes)",
388 	.base.cra_driver_name	= "ecb-aes-neonbs",
389 	.base.cra_priority	= 250,
390 	.base.cra_blocksize	= AES_BLOCK_SIZE,
391 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
392 	.base.cra_module	= THIS_MODULE,
393 
394 	.min_keysize		= AES_MIN_KEY_SIZE,
395 	.max_keysize		= AES_MAX_KEY_SIZE,
396 	.walksize		= 8 * AES_BLOCK_SIZE,
397 	.setkey			= aesbs_setkey,
398 	.encrypt		= ecb_encrypt,
399 	.decrypt		= ecb_decrypt,
400 }, {
401 	.base.cra_name		= "cbc(aes)",
402 	.base.cra_driver_name	= "cbc-aes-neonbs",
403 	.base.cra_priority	= 250,
404 	.base.cra_blocksize	= AES_BLOCK_SIZE,
405 	.base.cra_ctxsize	= sizeof(struct aesbs_cbc_ctx),
406 	.base.cra_module	= THIS_MODULE,
407 
408 	.min_keysize		= AES_MIN_KEY_SIZE,
409 	.max_keysize		= AES_MAX_KEY_SIZE,
410 	.walksize		= 8 * AES_BLOCK_SIZE,
411 	.ivsize			= AES_BLOCK_SIZE,
412 	.setkey			= aesbs_cbc_setkey,
413 	.encrypt		= cbc_encrypt,
414 	.decrypt		= cbc_decrypt,
415 }, {
416 	.base.cra_name		= "ctr(aes)",
417 	.base.cra_driver_name	= "ctr-aes-neonbs",
418 	.base.cra_priority	= 250,
419 	.base.cra_blocksize	= 1,
420 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
421 	.base.cra_module	= THIS_MODULE,
422 
423 	.min_keysize		= AES_MIN_KEY_SIZE,
424 	.max_keysize		= AES_MAX_KEY_SIZE,
425 	.chunksize		= AES_BLOCK_SIZE,
426 	.walksize		= 8 * AES_BLOCK_SIZE,
427 	.ivsize			= AES_BLOCK_SIZE,
428 	.setkey			= aesbs_setkey,
429 	.encrypt		= ctr_encrypt,
430 	.decrypt		= ctr_encrypt,
431 }, {
432 	.base.cra_name		= "xts(aes)",
433 	.base.cra_driver_name	= "xts-aes-neonbs",
434 	.base.cra_priority	= 250,
435 	.base.cra_blocksize	= AES_BLOCK_SIZE,
436 	.base.cra_ctxsize	= sizeof(struct aesbs_xts_ctx),
437 	.base.cra_module	= THIS_MODULE,
438 
439 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
440 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
441 	.walksize		= 8 * AES_BLOCK_SIZE,
442 	.ivsize			= AES_BLOCK_SIZE,
443 	.setkey			= aesbs_xts_setkey,
444 	.encrypt		= xts_encrypt,
445 	.decrypt		= xts_decrypt,
446 } };
447 
448 static void aes_exit(void)
449 {
450 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
451 }
452 
453 static int __init aes_init(void)
454 {
455 	if (!cpu_have_named_feature(ASIMD))
456 		return -ENODEV;
457 
458 	return crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
459 }
460 
461 module_init(aes_init);
462 module_exit(aes_exit);
463