1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Bit sliced AES using NEON instructions
4  *
5  * Copyright (C) 2016 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <crypto/aes.h>
11 #include <crypto/internal/simd.h>
12 #include <crypto/internal/skcipher.h>
13 #include <crypto/xts.h>
14 #include <linux/module.h>
15 
16 #include "aes-ctr-fallback.h"
17 
18 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
19 MODULE_LICENSE("GPL v2");
20 
21 MODULE_ALIAS_CRYPTO("ecb(aes)");
22 MODULE_ALIAS_CRYPTO("cbc(aes)");
23 MODULE_ALIAS_CRYPTO("ctr(aes)");
24 MODULE_ALIAS_CRYPTO("xts(aes)");
25 
26 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
27 
28 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
29 				  int rounds, int blocks);
30 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
31 				  int rounds, int blocks);
32 
33 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
34 				  int rounds, int blocks, u8 iv[]);
35 
36 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
37 				  int rounds, int blocks, u8 iv[], u8 final[]);
38 
39 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
40 				  int rounds, int blocks, u8 iv[]);
41 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
42 				  int rounds, int blocks, u8 iv[]);
43 
44 /* borrowed from aes-neon-blk.ko */
45 asmlinkage void neon_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
46 				     int rounds, int blocks);
47 asmlinkage void neon_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
48 				     int rounds, int blocks, u8 iv[]);
49 
50 struct aesbs_ctx {
51 	u8	rk[13 * (8 * AES_BLOCK_SIZE) + 32];
52 	int	rounds;
53 } __aligned(AES_BLOCK_SIZE);
54 
55 struct aesbs_cbc_ctx {
56 	struct aesbs_ctx	key;
57 	u32			enc[AES_MAX_KEYLENGTH_U32];
58 };
59 
60 struct aesbs_ctr_ctx {
61 	struct aesbs_ctx	key;		/* must be first member */
62 	struct crypto_aes_ctx	fallback;
63 };
64 
65 struct aesbs_xts_ctx {
66 	struct aesbs_ctx	key;
67 	u32			twkey[AES_MAX_KEYLENGTH_U32];
68 };
69 
70 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
71 			unsigned int key_len)
72 {
73 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
74 	struct crypto_aes_ctx rk;
75 	int err;
76 
77 	err = crypto_aes_expand_key(&rk, in_key, key_len);
78 	if (err)
79 		return err;
80 
81 	ctx->rounds = 6 + key_len / 4;
82 
83 	kernel_neon_begin();
84 	aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
85 	kernel_neon_end();
86 
87 	return 0;
88 }
89 
90 static int __ecb_crypt(struct skcipher_request *req,
91 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
92 				  int rounds, int blocks))
93 {
94 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
95 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
96 	struct skcipher_walk walk;
97 	int err;
98 
99 	err = skcipher_walk_virt(&walk, req, false);
100 
101 	while (walk.nbytes >= AES_BLOCK_SIZE) {
102 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
103 
104 		if (walk.nbytes < walk.total)
105 			blocks = round_down(blocks,
106 					    walk.stride / AES_BLOCK_SIZE);
107 
108 		kernel_neon_begin();
109 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
110 		   ctx->rounds, blocks);
111 		kernel_neon_end();
112 		err = skcipher_walk_done(&walk,
113 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
114 	}
115 
116 	return err;
117 }
118 
119 static int ecb_encrypt(struct skcipher_request *req)
120 {
121 	return __ecb_crypt(req, aesbs_ecb_encrypt);
122 }
123 
124 static int ecb_decrypt(struct skcipher_request *req)
125 {
126 	return __ecb_crypt(req, aesbs_ecb_decrypt);
127 }
128 
129 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
130 			    unsigned int key_len)
131 {
132 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
133 	struct crypto_aes_ctx rk;
134 	int err;
135 
136 	err = crypto_aes_expand_key(&rk, in_key, key_len);
137 	if (err)
138 		return err;
139 
140 	ctx->key.rounds = 6 + key_len / 4;
141 
142 	memcpy(ctx->enc, rk.key_enc, sizeof(ctx->enc));
143 
144 	kernel_neon_begin();
145 	aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
146 	kernel_neon_end();
147 
148 	return 0;
149 }
150 
151 static int cbc_encrypt(struct skcipher_request *req)
152 {
153 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
154 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
155 	struct skcipher_walk walk;
156 	int err;
157 
158 	err = skcipher_walk_virt(&walk, req, false);
159 
160 	while (walk.nbytes >= AES_BLOCK_SIZE) {
161 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
162 
163 		/* fall back to the non-bitsliced NEON implementation */
164 		kernel_neon_begin();
165 		neon_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
166 				     ctx->enc, ctx->key.rounds, blocks,
167 				     walk.iv);
168 		kernel_neon_end();
169 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
170 	}
171 	return err;
172 }
173 
174 static int cbc_decrypt(struct skcipher_request *req)
175 {
176 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
177 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
178 	struct skcipher_walk walk;
179 	int err;
180 
181 	err = skcipher_walk_virt(&walk, req, false);
182 
183 	while (walk.nbytes >= AES_BLOCK_SIZE) {
184 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
185 
186 		if (walk.nbytes < walk.total)
187 			blocks = round_down(blocks,
188 					    walk.stride / AES_BLOCK_SIZE);
189 
190 		kernel_neon_begin();
191 		aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
192 				  ctx->key.rk, ctx->key.rounds, blocks,
193 				  walk.iv);
194 		kernel_neon_end();
195 		err = skcipher_walk_done(&walk,
196 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
197 	}
198 
199 	return err;
200 }
201 
202 static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key,
203 				 unsigned int key_len)
204 {
205 	struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
206 	int err;
207 
208 	err = crypto_aes_expand_key(&ctx->fallback, in_key, key_len);
209 	if (err)
210 		return err;
211 
212 	ctx->key.rounds = 6 + key_len / 4;
213 
214 	kernel_neon_begin();
215 	aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds);
216 	kernel_neon_end();
217 
218 	return 0;
219 }
220 
221 static int ctr_encrypt(struct skcipher_request *req)
222 {
223 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
224 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
225 	struct skcipher_walk walk;
226 	u8 buf[AES_BLOCK_SIZE];
227 	int err;
228 
229 	err = skcipher_walk_virt(&walk, req, false);
230 
231 	while (walk.nbytes > 0) {
232 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
233 		u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL;
234 
235 		if (walk.nbytes < walk.total) {
236 			blocks = round_down(blocks,
237 					    walk.stride / AES_BLOCK_SIZE);
238 			final = NULL;
239 		}
240 
241 		kernel_neon_begin();
242 		aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
243 				  ctx->rk, ctx->rounds, blocks, walk.iv, final);
244 		kernel_neon_end();
245 
246 		if (final) {
247 			u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
248 			u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
249 
250 			crypto_xor_cpy(dst, src, final,
251 				       walk.total % AES_BLOCK_SIZE);
252 
253 			err = skcipher_walk_done(&walk, 0);
254 			break;
255 		}
256 		err = skcipher_walk_done(&walk,
257 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
258 	}
259 	return err;
260 }
261 
262 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
263 			    unsigned int key_len)
264 {
265 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
266 	struct crypto_aes_ctx rk;
267 	int err;
268 
269 	err = xts_verify_key(tfm, in_key, key_len);
270 	if (err)
271 		return err;
272 
273 	key_len /= 2;
274 	err = crypto_aes_expand_key(&rk, in_key + key_len, key_len);
275 	if (err)
276 		return err;
277 
278 	memcpy(ctx->twkey, rk.key_enc, sizeof(ctx->twkey));
279 
280 	return aesbs_setkey(tfm, in_key, key_len);
281 }
282 
283 static int ctr_encrypt_sync(struct skcipher_request *req)
284 {
285 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
286 	struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
287 
288 	if (!crypto_simd_usable())
289 		return aes_ctr_encrypt_fallback(&ctx->fallback, req);
290 
291 	return ctr_encrypt(req);
292 }
293 
294 static int __xts_crypt(struct skcipher_request *req,
295 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
296 				  int rounds, int blocks, u8 iv[]))
297 {
298 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
299 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
300 	struct skcipher_walk walk;
301 	int err;
302 
303 	err = skcipher_walk_virt(&walk, req, false);
304 	if (err)
305 		return err;
306 
307 	kernel_neon_begin();
308 	neon_aes_ecb_encrypt(walk.iv, walk.iv, ctx->twkey, ctx->key.rounds, 1);
309 	kernel_neon_end();
310 
311 	while (walk.nbytes >= AES_BLOCK_SIZE) {
312 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
313 
314 		if (walk.nbytes < walk.total)
315 			blocks = round_down(blocks,
316 					    walk.stride / AES_BLOCK_SIZE);
317 
318 		kernel_neon_begin();
319 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk,
320 		   ctx->key.rounds, blocks, walk.iv);
321 		kernel_neon_end();
322 		err = skcipher_walk_done(&walk,
323 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
324 	}
325 	return err;
326 }
327 
328 static int xts_encrypt(struct skcipher_request *req)
329 {
330 	return __xts_crypt(req, aesbs_xts_encrypt);
331 }
332 
333 static int xts_decrypt(struct skcipher_request *req)
334 {
335 	return __xts_crypt(req, aesbs_xts_decrypt);
336 }
337 
338 static struct skcipher_alg aes_algs[] = { {
339 	.base.cra_name		= "__ecb(aes)",
340 	.base.cra_driver_name	= "__ecb-aes-neonbs",
341 	.base.cra_priority	= 250,
342 	.base.cra_blocksize	= AES_BLOCK_SIZE,
343 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
344 	.base.cra_module	= THIS_MODULE,
345 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
346 
347 	.min_keysize		= AES_MIN_KEY_SIZE,
348 	.max_keysize		= AES_MAX_KEY_SIZE,
349 	.walksize		= 8 * AES_BLOCK_SIZE,
350 	.setkey			= aesbs_setkey,
351 	.encrypt		= ecb_encrypt,
352 	.decrypt		= ecb_decrypt,
353 }, {
354 	.base.cra_name		= "__cbc(aes)",
355 	.base.cra_driver_name	= "__cbc-aes-neonbs",
356 	.base.cra_priority	= 250,
357 	.base.cra_blocksize	= AES_BLOCK_SIZE,
358 	.base.cra_ctxsize	= sizeof(struct aesbs_cbc_ctx),
359 	.base.cra_module	= THIS_MODULE,
360 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
361 
362 	.min_keysize		= AES_MIN_KEY_SIZE,
363 	.max_keysize		= AES_MAX_KEY_SIZE,
364 	.walksize		= 8 * AES_BLOCK_SIZE,
365 	.ivsize			= AES_BLOCK_SIZE,
366 	.setkey			= aesbs_cbc_setkey,
367 	.encrypt		= cbc_encrypt,
368 	.decrypt		= cbc_decrypt,
369 }, {
370 	.base.cra_name		= "__ctr(aes)",
371 	.base.cra_driver_name	= "__ctr-aes-neonbs",
372 	.base.cra_priority	= 250,
373 	.base.cra_blocksize	= 1,
374 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
375 	.base.cra_module	= THIS_MODULE,
376 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
377 
378 	.min_keysize		= AES_MIN_KEY_SIZE,
379 	.max_keysize		= AES_MAX_KEY_SIZE,
380 	.chunksize		= AES_BLOCK_SIZE,
381 	.walksize		= 8 * AES_BLOCK_SIZE,
382 	.ivsize			= AES_BLOCK_SIZE,
383 	.setkey			= aesbs_setkey,
384 	.encrypt		= ctr_encrypt,
385 	.decrypt		= ctr_encrypt,
386 }, {
387 	.base.cra_name		= "ctr(aes)",
388 	.base.cra_driver_name	= "ctr-aes-neonbs",
389 	.base.cra_priority	= 250 - 1,
390 	.base.cra_blocksize	= 1,
391 	.base.cra_ctxsize	= sizeof(struct aesbs_ctr_ctx),
392 	.base.cra_module	= THIS_MODULE,
393 
394 	.min_keysize		= AES_MIN_KEY_SIZE,
395 	.max_keysize		= AES_MAX_KEY_SIZE,
396 	.chunksize		= AES_BLOCK_SIZE,
397 	.walksize		= 8 * AES_BLOCK_SIZE,
398 	.ivsize			= AES_BLOCK_SIZE,
399 	.setkey			= aesbs_ctr_setkey_sync,
400 	.encrypt		= ctr_encrypt_sync,
401 	.decrypt		= ctr_encrypt_sync,
402 }, {
403 	.base.cra_name		= "__xts(aes)",
404 	.base.cra_driver_name	= "__xts-aes-neonbs",
405 	.base.cra_priority	= 250,
406 	.base.cra_blocksize	= AES_BLOCK_SIZE,
407 	.base.cra_ctxsize	= sizeof(struct aesbs_xts_ctx),
408 	.base.cra_module	= THIS_MODULE,
409 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
410 
411 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
412 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
413 	.walksize		= 8 * AES_BLOCK_SIZE,
414 	.ivsize			= AES_BLOCK_SIZE,
415 	.setkey			= aesbs_xts_setkey,
416 	.encrypt		= xts_encrypt,
417 	.decrypt		= xts_decrypt,
418 } };
419 
420 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
421 
422 static void aes_exit(void)
423 {
424 	int i;
425 
426 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
427 		if (aes_simd_algs[i])
428 			simd_skcipher_free(aes_simd_algs[i]);
429 
430 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
431 }
432 
433 static int __init aes_init(void)
434 {
435 	struct simd_skcipher_alg *simd;
436 	const char *basename;
437 	const char *algname;
438 	const char *drvname;
439 	int err;
440 	int i;
441 
442 	if (!cpu_have_named_feature(ASIMD))
443 		return -ENODEV;
444 
445 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
446 	if (err)
447 		return err;
448 
449 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
450 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
451 			continue;
452 
453 		algname = aes_algs[i].base.cra_name + 2;
454 		drvname = aes_algs[i].base.cra_driver_name + 2;
455 		basename = aes_algs[i].base.cra_driver_name;
456 		simd = simd_skcipher_create_compat(algname, drvname, basename);
457 		err = PTR_ERR(simd);
458 		if (IS_ERR(simd))
459 			goto unregister_simds;
460 
461 		aes_simd_algs[i] = simd;
462 	}
463 	return 0;
464 
465 unregister_simds:
466 	aes_exit();
467 	return err;
468 }
469 
470 module_init(aes_init);
471 module_exit(aes_exit);
472