1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Bit sliced AES using NEON instructions
4  *
5  * Copyright (C) 2016 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <crypto/aes.h>
11 #include <crypto/ctr.h>
12 #include <crypto/internal/simd.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/xts.h>
15 #include <linux/module.h>
16 
17 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
18 MODULE_LICENSE("GPL v2");
19 
20 MODULE_ALIAS_CRYPTO("ecb(aes)");
21 MODULE_ALIAS_CRYPTO("cbc(aes)");
22 MODULE_ALIAS_CRYPTO("ctr(aes)");
23 MODULE_ALIAS_CRYPTO("xts(aes)");
24 
25 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
26 
27 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
28 				  int rounds, int blocks);
29 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
30 				  int rounds, int blocks);
31 
32 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
33 				  int rounds, int blocks, u8 iv[]);
34 
35 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
36 				  int rounds, int blocks, u8 iv[], u8 final[]);
37 
38 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
39 				  int rounds, int blocks, u8 iv[]);
40 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
41 				  int rounds, int blocks, u8 iv[]);
42 
43 /* borrowed from aes-neon-blk.ko */
44 asmlinkage void neon_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
45 				     int rounds, int blocks);
46 asmlinkage void neon_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
47 				     int rounds, int blocks, u8 iv[]);
48 
49 struct aesbs_ctx {
50 	u8	rk[13 * (8 * AES_BLOCK_SIZE) + 32];
51 	int	rounds;
52 } __aligned(AES_BLOCK_SIZE);
53 
54 struct aesbs_cbc_ctx {
55 	struct aesbs_ctx	key;
56 	u32			enc[AES_MAX_KEYLENGTH_U32];
57 };
58 
59 struct aesbs_ctr_ctx {
60 	struct aesbs_ctx	key;		/* must be first member */
61 	struct crypto_aes_ctx	fallback;
62 };
63 
64 struct aesbs_xts_ctx {
65 	struct aesbs_ctx	key;
66 	u32			twkey[AES_MAX_KEYLENGTH_U32];
67 };
68 
69 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
70 			unsigned int key_len)
71 {
72 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
73 	struct crypto_aes_ctx rk;
74 	int err;
75 
76 	err = aes_expandkey(&rk, in_key, key_len);
77 	if (err)
78 		return err;
79 
80 	ctx->rounds = 6 + key_len / 4;
81 
82 	kernel_neon_begin();
83 	aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
84 	kernel_neon_end();
85 
86 	return 0;
87 }
88 
89 static int __ecb_crypt(struct skcipher_request *req,
90 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
91 				  int rounds, int blocks))
92 {
93 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
94 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
95 	struct skcipher_walk walk;
96 	int err;
97 
98 	err = skcipher_walk_virt(&walk, req, false);
99 
100 	while (walk.nbytes >= AES_BLOCK_SIZE) {
101 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
102 
103 		if (walk.nbytes < walk.total)
104 			blocks = round_down(blocks,
105 					    walk.stride / AES_BLOCK_SIZE);
106 
107 		kernel_neon_begin();
108 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
109 		   ctx->rounds, blocks);
110 		kernel_neon_end();
111 		err = skcipher_walk_done(&walk,
112 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
113 	}
114 
115 	return err;
116 }
117 
118 static int ecb_encrypt(struct skcipher_request *req)
119 {
120 	return __ecb_crypt(req, aesbs_ecb_encrypt);
121 }
122 
123 static int ecb_decrypt(struct skcipher_request *req)
124 {
125 	return __ecb_crypt(req, aesbs_ecb_decrypt);
126 }
127 
128 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
129 			    unsigned int key_len)
130 {
131 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
132 	struct crypto_aes_ctx rk;
133 	int err;
134 
135 	err = aes_expandkey(&rk, in_key, key_len);
136 	if (err)
137 		return err;
138 
139 	ctx->key.rounds = 6 + key_len / 4;
140 
141 	memcpy(ctx->enc, rk.key_enc, sizeof(ctx->enc));
142 
143 	kernel_neon_begin();
144 	aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
145 	kernel_neon_end();
146 
147 	return 0;
148 }
149 
150 static int cbc_encrypt(struct skcipher_request *req)
151 {
152 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
153 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
154 	struct skcipher_walk walk;
155 	int err;
156 
157 	err = skcipher_walk_virt(&walk, req, false);
158 
159 	while (walk.nbytes >= AES_BLOCK_SIZE) {
160 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
161 
162 		/* fall back to the non-bitsliced NEON implementation */
163 		kernel_neon_begin();
164 		neon_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
165 				     ctx->enc, ctx->key.rounds, blocks,
166 				     walk.iv);
167 		kernel_neon_end();
168 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
169 	}
170 	return err;
171 }
172 
173 static int cbc_decrypt(struct skcipher_request *req)
174 {
175 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
176 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
177 	struct skcipher_walk walk;
178 	int err;
179 
180 	err = skcipher_walk_virt(&walk, req, false);
181 
182 	while (walk.nbytes >= AES_BLOCK_SIZE) {
183 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
184 
185 		if (walk.nbytes < walk.total)
186 			blocks = round_down(blocks,
187 					    walk.stride / AES_BLOCK_SIZE);
188 
189 		kernel_neon_begin();
190 		aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
191 				  ctx->key.rk, ctx->key.rounds, blocks,
192 				  walk.iv);
193 		kernel_neon_end();
194 		err = skcipher_walk_done(&walk,
195 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
196 	}
197 
198 	return err;
199 }
200 
201 static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key,
202 				 unsigned int key_len)
203 {
204 	struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
205 	int err;
206 
207 	err = aes_expandkey(&ctx->fallback, in_key, key_len);
208 	if (err)
209 		return err;
210 
211 	ctx->key.rounds = 6 + key_len / 4;
212 
213 	kernel_neon_begin();
214 	aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds);
215 	kernel_neon_end();
216 
217 	return 0;
218 }
219 
220 static int ctr_encrypt(struct skcipher_request *req)
221 {
222 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
223 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
224 	struct skcipher_walk walk;
225 	u8 buf[AES_BLOCK_SIZE];
226 	int err;
227 
228 	err = skcipher_walk_virt(&walk, req, false);
229 
230 	while (walk.nbytes > 0) {
231 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
232 		u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL;
233 
234 		if (walk.nbytes < walk.total) {
235 			blocks = round_down(blocks,
236 					    walk.stride / AES_BLOCK_SIZE);
237 			final = NULL;
238 		}
239 
240 		kernel_neon_begin();
241 		aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
242 				  ctx->rk, ctx->rounds, blocks, walk.iv, final);
243 		kernel_neon_end();
244 
245 		if (final) {
246 			u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
247 			u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
248 
249 			crypto_xor_cpy(dst, src, final,
250 				       walk.total % AES_BLOCK_SIZE);
251 
252 			err = skcipher_walk_done(&walk, 0);
253 			break;
254 		}
255 		err = skcipher_walk_done(&walk,
256 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
257 	}
258 	return err;
259 }
260 
261 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
262 			    unsigned int key_len)
263 {
264 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
265 	struct crypto_aes_ctx rk;
266 	int err;
267 
268 	err = xts_verify_key(tfm, in_key, key_len);
269 	if (err)
270 		return err;
271 
272 	key_len /= 2;
273 	err = aes_expandkey(&rk, in_key + key_len, key_len);
274 	if (err)
275 		return err;
276 
277 	memcpy(ctx->twkey, rk.key_enc, sizeof(ctx->twkey));
278 
279 	return aesbs_setkey(tfm, in_key, key_len);
280 }
281 
282 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
283 {
284 	struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
285 	unsigned long flags;
286 
287 	/*
288 	 * Temporarily disable interrupts to avoid races where
289 	 * cachelines are evicted when the CPU is interrupted
290 	 * to do something else.
291 	 */
292 	local_irq_save(flags);
293 	aes_encrypt(&ctx->fallback, dst, src);
294 	local_irq_restore(flags);
295 }
296 
297 static int ctr_encrypt_sync(struct skcipher_request *req)
298 {
299 	if (!crypto_simd_usable())
300 		return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
301 
302 	return ctr_encrypt(req);
303 }
304 
305 static int __xts_crypt(struct skcipher_request *req,
306 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
307 				  int rounds, int blocks, u8 iv[]))
308 {
309 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
310 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
311 	struct skcipher_walk walk;
312 	int err;
313 
314 	err = skcipher_walk_virt(&walk, req, false);
315 	if (err)
316 		return err;
317 
318 	kernel_neon_begin();
319 	neon_aes_ecb_encrypt(walk.iv, walk.iv, ctx->twkey, ctx->key.rounds, 1);
320 	kernel_neon_end();
321 
322 	while (walk.nbytes >= AES_BLOCK_SIZE) {
323 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
324 
325 		if (walk.nbytes < walk.total)
326 			blocks = round_down(blocks,
327 					    walk.stride / AES_BLOCK_SIZE);
328 
329 		kernel_neon_begin();
330 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk,
331 		   ctx->key.rounds, blocks, walk.iv);
332 		kernel_neon_end();
333 		err = skcipher_walk_done(&walk,
334 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
335 	}
336 	return err;
337 }
338 
339 static int xts_encrypt(struct skcipher_request *req)
340 {
341 	return __xts_crypt(req, aesbs_xts_encrypt);
342 }
343 
344 static int xts_decrypt(struct skcipher_request *req)
345 {
346 	return __xts_crypt(req, aesbs_xts_decrypt);
347 }
348 
349 static struct skcipher_alg aes_algs[] = { {
350 	.base.cra_name		= "__ecb(aes)",
351 	.base.cra_driver_name	= "__ecb-aes-neonbs",
352 	.base.cra_priority	= 250,
353 	.base.cra_blocksize	= AES_BLOCK_SIZE,
354 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
355 	.base.cra_module	= THIS_MODULE,
356 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
357 
358 	.min_keysize		= AES_MIN_KEY_SIZE,
359 	.max_keysize		= AES_MAX_KEY_SIZE,
360 	.walksize		= 8 * AES_BLOCK_SIZE,
361 	.setkey			= aesbs_setkey,
362 	.encrypt		= ecb_encrypt,
363 	.decrypt		= ecb_decrypt,
364 }, {
365 	.base.cra_name		= "__cbc(aes)",
366 	.base.cra_driver_name	= "__cbc-aes-neonbs",
367 	.base.cra_priority	= 250,
368 	.base.cra_blocksize	= AES_BLOCK_SIZE,
369 	.base.cra_ctxsize	= sizeof(struct aesbs_cbc_ctx),
370 	.base.cra_module	= THIS_MODULE,
371 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
372 
373 	.min_keysize		= AES_MIN_KEY_SIZE,
374 	.max_keysize		= AES_MAX_KEY_SIZE,
375 	.walksize		= 8 * AES_BLOCK_SIZE,
376 	.ivsize			= AES_BLOCK_SIZE,
377 	.setkey			= aesbs_cbc_setkey,
378 	.encrypt		= cbc_encrypt,
379 	.decrypt		= cbc_decrypt,
380 }, {
381 	.base.cra_name		= "__ctr(aes)",
382 	.base.cra_driver_name	= "__ctr-aes-neonbs",
383 	.base.cra_priority	= 250,
384 	.base.cra_blocksize	= 1,
385 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
386 	.base.cra_module	= THIS_MODULE,
387 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
388 
389 	.min_keysize		= AES_MIN_KEY_SIZE,
390 	.max_keysize		= AES_MAX_KEY_SIZE,
391 	.chunksize		= AES_BLOCK_SIZE,
392 	.walksize		= 8 * AES_BLOCK_SIZE,
393 	.ivsize			= AES_BLOCK_SIZE,
394 	.setkey			= aesbs_setkey,
395 	.encrypt		= ctr_encrypt,
396 	.decrypt		= ctr_encrypt,
397 }, {
398 	.base.cra_name		= "ctr(aes)",
399 	.base.cra_driver_name	= "ctr-aes-neonbs",
400 	.base.cra_priority	= 250 - 1,
401 	.base.cra_blocksize	= 1,
402 	.base.cra_ctxsize	= sizeof(struct aesbs_ctr_ctx),
403 	.base.cra_module	= THIS_MODULE,
404 
405 	.min_keysize		= AES_MIN_KEY_SIZE,
406 	.max_keysize		= AES_MAX_KEY_SIZE,
407 	.chunksize		= AES_BLOCK_SIZE,
408 	.walksize		= 8 * AES_BLOCK_SIZE,
409 	.ivsize			= AES_BLOCK_SIZE,
410 	.setkey			= aesbs_ctr_setkey_sync,
411 	.encrypt		= ctr_encrypt_sync,
412 	.decrypt		= ctr_encrypt_sync,
413 }, {
414 	.base.cra_name		= "__xts(aes)",
415 	.base.cra_driver_name	= "__xts-aes-neonbs",
416 	.base.cra_priority	= 250,
417 	.base.cra_blocksize	= AES_BLOCK_SIZE,
418 	.base.cra_ctxsize	= sizeof(struct aesbs_xts_ctx),
419 	.base.cra_module	= THIS_MODULE,
420 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
421 
422 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
423 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
424 	.walksize		= 8 * AES_BLOCK_SIZE,
425 	.ivsize			= AES_BLOCK_SIZE,
426 	.setkey			= aesbs_xts_setkey,
427 	.encrypt		= xts_encrypt,
428 	.decrypt		= xts_decrypt,
429 } };
430 
431 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
432 
433 static void aes_exit(void)
434 {
435 	int i;
436 
437 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
438 		if (aes_simd_algs[i])
439 			simd_skcipher_free(aes_simd_algs[i]);
440 
441 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
442 }
443 
444 static int __init aes_init(void)
445 {
446 	struct simd_skcipher_alg *simd;
447 	const char *basename;
448 	const char *algname;
449 	const char *drvname;
450 	int err;
451 	int i;
452 
453 	if (!cpu_have_named_feature(ASIMD))
454 		return -ENODEV;
455 
456 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
457 	if (err)
458 		return err;
459 
460 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
461 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
462 			continue;
463 
464 		algname = aes_algs[i].base.cra_name + 2;
465 		drvname = aes_algs[i].base.cra_driver_name + 2;
466 		basename = aes_algs[i].base.cra_driver_name;
467 		simd = simd_skcipher_create_compat(algname, drvname, basename);
468 		err = PTR_ERR(simd);
469 		if (IS_ERR(simd))
470 			goto unregister_simds;
471 
472 		aes_simd_algs[i] = simd;
473 	}
474 	return 0;
475 
476 unregister_simds:
477 	aes_exit();
478 	return err;
479 }
480 
481 module_init(aes_init);
482 module_exit(aes_exit);
483