1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Bit sliced AES using NEON instructions
4  *
5  * Copyright (C) 2016 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <crypto/aes.h>
11 #include <crypto/ctr.h>
12 #include <crypto/internal/simd.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/scatterwalk.h>
15 #include <crypto/xts.h>
16 #include <linux/module.h>
17 
18 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
19 MODULE_LICENSE("GPL v2");
20 
21 MODULE_ALIAS_CRYPTO("ecb(aes)");
22 MODULE_ALIAS_CRYPTO("cbc(aes)");
23 MODULE_ALIAS_CRYPTO("ctr(aes)");
24 MODULE_ALIAS_CRYPTO("xts(aes)");
25 
26 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
27 
28 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
29 				  int rounds, int blocks);
30 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
31 				  int rounds, int blocks);
32 
33 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
34 				  int rounds, int blocks, u8 iv[]);
35 
36 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
37 				  int rounds, int blocks, u8 iv[], u8 final[]);
38 
39 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
40 				  int rounds, int blocks, u8 iv[]);
41 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
42 				  int rounds, int blocks, u8 iv[]);
43 
44 /* borrowed from aes-neon-blk.ko */
45 asmlinkage void neon_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
46 				     int rounds, int blocks);
47 asmlinkage void neon_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
48 				     int rounds, int blocks, u8 iv[]);
49 asmlinkage void neon_aes_xts_encrypt(u8 out[], u8 const in[],
50 				     u32 const rk1[], int rounds, int bytes,
51 				     u32 const rk2[], u8 iv[], int first);
52 asmlinkage void neon_aes_xts_decrypt(u8 out[], u8 const in[],
53 				     u32 const rk1[], int rounds, int bytes,
54 				     u32 const rk2[], u8 iv[], int first);
55 
56 struct aesbs_ctx {
57 	u8	rk[13 * (8 * AES_BLOCK_SIZE) + 32];
58 	int	rounds;
59 } __aligned(AES_BLOCK_SIZE);
60 
61 struct aesbs_cbc_ctx {
62 	struct aesbs_ctx	key;
63 	u32			enc[AES_MAX_KEYLENGTH_U32];
64 };
65 
66 struct aesbs_ctr_ctx {
67 	struct aesbs_ctx	key;		/* must be first member */
68 	struct crypto_aes_ctx	fallback;
69 };
70 
71 struct aesbs_xts_ctx {
72 	struct aesbs_ctx	key;
73 	u32			twkey[AES_MAX_KEYLENGTH_U32];
74 	struct crypto_aes_ctx	cts;
75 };
76 
77 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
78 			unsigned int key_len)
79 {
80 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
81 	struct crypto_aes_ctx rk;
82 	int err;
83 
84 	err = aes_expandkey(&rk, in_key, key_len);
85 	if (err)
86 		return err;
87 
88 	ctx->rounds = 6 + key_len / 4;
89 
90 	kernel_neon_begin();
91 	aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
92 	kernel_neon_end();
93 
94 	return 0;
95 }
96 
97 static int __ecb_crypt(struct skcipher_request *req,
98 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
99 				  int rounds, int blocks))
100 {
101 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
102 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
103 	struct skcipher_walk walk;
104 	int err;
105 
106 	err = skcipher_walk_virt(&walk, req, false);
107 
108 	while (walk.nbytes >= AES_BLOCK_SIZE) {
109 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
110 
111 		if (walk.nbytes < walk.total)
112 			blocks = round_down(blocks,
113 					    walk.stride / AES_BLOCK_SIZE);
114 
115 		kernel_neon_begin();
116 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
117 		   ctx->rounds, blocks);
118 		kernel_neon_end();
119 		err = skcipher_walk_done(&walk,
120 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
121 	}
122 
123 	return err;
124 }
125 
126 static int ecb_encrypt(struct skcipher_request *req)
127 {
128 	return __ecb_crypt(req, aesbs_ecb_encrypt);
129 }
130 
131 static int ecb_decrypt(struct skcipher_request *req)
132 {
133 	return __ecb_crypt(req, aesbs_ecb_decrypt);
134 }
135 
136 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
137 			    unsigned int key_len)
138 {
139 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
140 	struct crypto_aes_ctx rk;
141 	int err;
142 
143 	err = aes_expandkey(&rk, in_key, key_len);
144 	if (err)
145 		return err;
146 
147 	ctx->key.rounds = 6 + key_len / 4;
148 
149 	memcpy(ctx->enc, rk.key_enc, sizeof(ctx->enc));
150 
151 	kernel_neon_begin();
152 	aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
153 	kernel_neon_end();
154 	memzero_explicit(&rk, sizeof(rk));
155 
156 	return 0;
157 }
158 
159 static int cbc_encrypt(struct skcipher_request *req)
160 {
161 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
162 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
163 	struct skcipher_walk walk;
164 	int err;
165 
166 	err = skcipher_walk_virt(&walk, req, false);
167 
168 	while (walk.nbytes >= AES_BLOCK_SIZE) {
169 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
170 
171 		/* fall back to the non-bitsliced NEON implementation */
172 		kernel_neon_begin();
173 		neon_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
174 				     ctx->enc, ctx->key.rounds, blocks,
175 				     walk.iv);
176 		kernel_neon_end();
177 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
178 	}
179 	return err;
180 }
181 
182 static int cbc_decrypt(struct skcipher_request *req)
183 {
184 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
185 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
186 	struct skcipher_walk walk;
187 	int err;
188 
189 	err = skcipher_walk_virt(&walk, req, false);
190 
191 	while (walk.nbytes >= AES_BLOCK_SIZE) {
192 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
193 
194 		if (walk.nbytes < walk.total)
195 			blocks = round_down(blocks,
196 					    walk.stride / AES_BLOCK_SIZE);
197 
198 		kernel_neon_begin();
199 		aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
200 				  ctx->key.rk, ctx->key.rounds, blocks,
201 				  walk.iv);
202 		kernel_neon_end();
203 		err = skcipher_walk_done(&walk,
204 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
205 	}
206 
207 	return err;
208 }
209 
210 static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key,
211 				 unsigned int key_len)
212 {
213 	struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
214 	int err;
215 
216 	err = aes_expandkey(&ctx->fallback, in_key, key_len);
217 	if (err)
218 		return err;
219 
220 	ctx->key.rounds = 6 + key_len / 4;
221 
222 	kernel_neon_begin();
223 	aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds);
224 	kernel_neon_end();
225 
226 	return 0;
227 }
228 
229 static int ctr_encrypt(struct skcipher_request *req)
230 {
231 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
232 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
233 	struct skcipher_walk walk;
234 	u8 buf[AES_BLOCK_SIZE];
235 	int err;
236 
237 	err = skcipher_walk_virt(&walk, req, false);
238 
239 	while (walk.nbytes > 0) {
240 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
241 		u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL;
242 
243 		if (walk.nbytes < walk.total) {
244 			blocks = round_down(blocks,
245 					    walk.stride / AES_BLOCK_SIZE);
246 			final = NULL;
247 		}
248 
249 		kernel_neon_begin();
250 		aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
251 				  ctx->rk, ctx->rounds, blocks, walk.iv, final);
252 		kernel_neon_end();
253 
254 		if (final) {
255 			u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
256 			u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
257 
258 			crypto_xor_cpy(dst, src, final,
259 				       walk.total % AES_BLOCK_SIZE);
260 
261 			err = skcipher_walk_done(&walk, 0);
262 			break;
263 		}
264 		err = skcipher_walk_done(&walk,
265 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
266 	}
267 	return err;
268 }
269 
270 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
271 			    unsigned int key_len)
272 {
273 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
274 	struct crypto_aes_ctx rk;
275 	int err;
276 
277 	err = xts_verify_key(tfm, in_key, key_len);
278 	if (err)
279 		return err;
280 
281 	key_len /= 2;
282 	err = aes_expandkey(&ctx->cts, in_key, key_len);
283 	if (err)
284 		return err;
285 
286 	err = aes_expandkey(&rk, in_key + key_len, key_len);
287 	if (err)
288 		return err;
289 
290 	memcpy(ctx->twkey, rk.key_enc, sizeof(ctx->twkey));
291 
292 	return aesbs_setkey(tfm, in_key, key_len);
293 }
294 
295 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
296 {
297 	struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
298 	unsigned long flags;
299 
300 	/*
301 	 * Temporarily disable interrupts to avoid races where
302 	 * cachelines are evicted when the CPU is interrupted
303 	 * to do something else.
304 	 */
305 	local_irq_save(flags);
306 	aes_encrypt(&ctx->fallback, dst, src);
307 	local_irq_restore(flags);
308 }
309 
310 static int ctr_encrypt_sync(struct skcipher_request *req)
311 {
312 	if (!crypto_simd_usable())
313 		return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
314 
315 	return ctr_encrypt(req);
316 }
317 
318 static int __xts_crypt(struct skcipher_request *req, bool encrypt,
319 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
320 				  int rounds, int blocks, u8 iv[]))
321 {
322 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
323 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
324 	int tail = req->cryptlen % (8 * AES_BLOCK_SIZE);
325 	struct scatterlist sg_src[2], sg_dst[2];
326 	struct skcipher_request subreq;
327 	struct scatterlist *src, *dst;
328 	struct skcipher_walk walk;
329 	int nbytes, err;
330 	int first = 1;
331 	u8 *out, *in;
332 
333 	if (req->cryptlen < AES_BLOCK_SIZE)
334 		return -EINVAL;
335 
336 	/* ensure that the cts tail is covered by a single step */
337 	if (unlikely(tail > 0 && tail < AES_BLOCK_SIZE)) {
338 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
339 					      AES_BLOCK_SIZE) - 2;
340 
341 		skcipher_request_set_tfm(&subreq, tfm);
342 		skcipher_request_set_callback(&subreq,
343 					      skcipher_request_flags(req),
344 					      NULL, NULL);
345 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
346 					   xts_blocks * AES_BLOCK_SIZE,
347 					   req->iv);
348 		req = &subreq;
349 	} else {
350 		tail = 0;
351 	}
352 
353 	err = skcipher_walk_virt(&walk, req, false);
354 	if (err)
355 		return err;
356 
357 	while (walk.nbytes >= AES_BLOCK_SIZE) {
358 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
359 
360 		if (walk.nbytes < walk.total || walk.nbytes % AES_BLOCK_SIZE)
361 			blocks = round_down(blocks,
362 					    walk.stride / AES_BLOCK_SIZE);
363 
364 		out = walk.dst.virt.addr;
365 		in = walk.src.virt.addr;
366 		nbytes = walk.nbytes;
367 
368 		kernel_neon_begin();
369 		if (likely(blocks > 6)) { /* plain NEON is faster otherwise */
370 			if (first)
371 				neon_aes_ecb_encrypt(walk.iv, walk.iv,
372 						     ctx->twkey,
373 						     ctx->key.rounds, 1);
374 			first = 0;
375 
376 			fn(out, in, ctx->key.rk, ctx->key.rounds, blocks,
377 			   walk.iv);
378 
379 			out += blocks * AES_BLOCK_SIZE;
380 			in += blocks * AES_BLOCK_SIZE;
381 			nbytes -= blocks * AES_BLOCK_SIZE;
382 		}
383 
384 		if (walk.nbytes == walk.total && nbytes > 0)
385 			goto xts_tail;
386 
387 		kernel_neon_end();
388 		err = skcipher_walk_done(&walk, nbytes);
389 	}
390 
391 	if (err || likely(!tail))
392 		return err;
393 
394 	/* handle ciphertext stealing */
395 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
396 	if (req->dst != req->src)
397 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
398 
399 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
400 				   req->iv);
401 
402 	err = skcipher_walk_virt(&walk, req, false);
403 	if (err)
404 		return err;
405 
406 	out = walk.dst.virt.addr;
407 	in = walk.src.virt.addr;
408 	nbytes = walk.nbytes;
409 
410 	kernel_neon_begin();
411 xts_tail:
412 	if (encrypt)
413 		neon_aes_xts_encrypt(out, in, ctx->cts.key_enc, ctx->key.rounds,
414 				     nbytes, ctx->twkey, walk.iv, first ?: 2);
415 	else
416 		neon_aes_xts_decrypt(out, in, ctx->cts.key_dec, ctx->key.rounds,
417 				     nbytes, ctx->twkey, walk.iv, first ?: 2);
418 	kernel_neon_end();
419 
420 	return skcipher_walk_done(&walk, 0);
421 }
422 
423 static int xts_encrypt(struct skcipher_request *req)
424 {
425 	return __xts_crypt(req, true, aesbs_xts_encrypt);
426 }
427 
428 static int xts_decrypt(struct skcipher_request *req)
429 {
430 	return __xts_crypt(req, false, aesbs_xts_decrypt);
431 }
432 
433 static struct skcipher_alg aes_algs[] = { {
434 	.base.cra_name		= "__ecb(aes)",
435 	.base.cra_driver_name	= "__ecb-aes-neonbs",
436 	.base.cra_priority	= 250,
437 	.base.cra_blocksize	= AES_BLOCK_SIZE,
438 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
439 	.base.cra_module	= THIS_MODULE,
440 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
441 
442 	.min_keysize		= AES_MIN_KEY_SIZE,
443 	.max_keysize		= AES_MAX_KEY_SIZE,
444 	.walksize		= 8 * AES_BLOCK_SIZE,
445 	.setkey			= aesbs_setkey,
446 	.encrypt		= ecb_encrypt,
447 	.decrypt		= ecb_decrypt,
448 }, {
449 	.base.cra_name		= "__cbc(aes)",
450 	.base.cra_driver_name	= "__cbc-aes-neonbs",
451 	.base.cra_priority	= 250,
452 	.base.cra_blocksize	= AES_BLOCK_SIZE,
453 	.base.cra_ctxsize	= sizeof(struct aesbs_cbc_ctx),
454 	.base.cra_module	= THIS_MODULE,
455 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
456 
457 	.min_keysize		= AES_MIN_KEY_SIZE,
458 	.max_keysize		= AES_MAX_KEY_SIZE,
459 	.walksize		= 8 * AES_BLOCK_SIZE,
460 	.ivsize			= AES_BLOCK_SIZE,
461 	.setkey			= aesbs_cbc_setkey,
462 	.encrypt		= cbc_encrypt,
463 	.decrypt		= cbc_decrypt,
464 }, {
465 	.base.cra_name		= "__ctr(aes)",
466 	.base.cra_driver_name	= "__ctr-aes-neonbs",
467 	.base.cra_priority	= 250,
468 	.base.cra_blocksize	= 1,
469 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
470 	.base.cra_module	= THIS_MODULE,
471 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
472 
473 	.min_keysize		= AES_MIN_KEY_SIZE,
474 	.max_keysize		= AES_MAX_KEY_SIZE,
475 	.chunksize		= AES_BLOCK_SIZE,
476 	.walksize		= 8 * AES_BLOCK_SIZE,
477 	.ivsize			= AES_BLOCK_SIZE,
478 	.setkey			= aesbs_setkey,
479 	.encrypt		= ctr_encrypt,
480 	.decrypt		= ctr_encrypt,
481 }, {
482 	.base.cra_name		= "ctr(aes)",
483 	.base.cra_driver_name	= "ctr-aes-neonbs",
484 	.base.cra_priority	= 250 - 1,
485 	.base.cra_blocksize	= 1,
486 	.base.cra_ctxsize	= sizeof(struct aesbs_ctr_ctx),
487 	.base.cra_module	= THIS_MODULE,
488 
489 	.min_keysize		= AES_MIN_KEY_SIZE,
490 	.max_keysize		= AES_MAX_KEY_SIZE,
491 	.chunksize		= AES_BLOCK_SIZE,
492 	.walksize		= 8 * AES_BLOCK_SIZE,
493 	.ivsize			= AES_BLOCK_SIZE,
494 	.setkey			= aesbs_ctr_setkey_sync,
495 	.encrypt		= ctr_encrypt_sync,
496 	.decrypt		= ctr_encrypt_sync,
497 }, {
498 	.base.cra_name		= "__xts(aes)",
499 	.base.cra_driver_name	= "__xts-aes-neonbs",
500 	.base.cra_priority	= 250,
501 	.base.cra_blocksize	= AES_BLOCK_SIZE,
502 	.base.cra_ctxsize	= sizeof(struct aesbs_xts_ctx),
503 	.base.cra_module	= THIS_MODULE,
504 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
505 
506 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
507 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
508 	.walksize		= 8 * AES_BLOCK_SIZE,
509 	.ivsize			= AES_BLOCK_SIZE,
510 	.setkey			= aesbs_xts_setkey,
511 	.encrypt		= xts_encrypt,
512 	.decrypt		= xts_decrypt,
513 } };
514 
515 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
516 
517 static void aes_exit(void)
518 {
519 	int i;
520 
521 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
522 		if (aes_simd_algs[i])
523 			simd_skcipher_free(aes_simd_algs[i]);
524 
525 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
526 }
527 
528 static int __init aes_init(void)
529 {
530 	struct simd_skcipher_alg *simd;
531 	const char *basename;
532 	const char *algname;
533 	const char *drvname;
534 	int err;
535 	int i;
536 
537 	if (!cpu_have_named_feature(ASIMD))
538 		return -ENODEV;
539 
540 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
541 	if (err)
542 		return err;
543 
544 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
545 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
546 			continue;
547 
548 		algname = aes_algs[i].base.cra_name + 2;
549 		drvname = aes_algs[i].base.cra_driver_name + 2;
550 		basename = aes_algs[i].base.cra_driver_name;
551 		simd = simd_skcipher_create_compat(algname, drvname, basename);
552 		err = PTR_ERR(simd);
553 		if (IS_ERR(simd))
554 			goto unregister_simds;
555 
556 		aes_simd_algs[i] = simd;
557 	}
558 	return 0;
559 
560 unregister_simds:
561 	aes_exit();
562 	return err;
563 }
564 
565 module_init(aes_init);
566 module_exit(aes_exit);
567