xref: /openbmc/linux/arch/arm64/crypto/aes-glue.c (revision ee8ec048)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
4  *
5  * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/hwcap.h>
10 #include <asm/simd.h>
11 #include <crypto/aes.h>
12 #include <crypto/ctr.h>
13 #include <crypto/sha2.h>
14 #include <crypto/internal/hash.h>
15 #include <crypto/internal/simd.h>
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
21 
22 #include "aes-ce-setkey.h"
23 
24 #ifdef USE_V8_CRYPTO_EXTENSIONS
25 #define MODE			"ce"
26 #define PRIO			300
27 #define STRIDE			5
28 #define aes_expandkey		ce_aes_expandkey
29 #define aes_ecb_encrypt		ce_aes_ecb_encrypt
30 #define aes_ecb_decrypt		ce_aes_ecb_decrypt
31 #define aes_cbc_encrypt		ce_aes_cbc_encrypt
32 #define aes_cbc_decrypt		ce_aes_cbc_decrypt
33 #define aes_cbc_cts_encrypt	ce_aes_cbc_cts_encrypt
34 #define aes_cbc_cts_decrypt	ce_aes_cbc_cts_decrypt
35 #define aes_essiv_cbc_encrypt	ce_aes_essiv_cbc_encrypt
36 #define aes_essiv_cbc_decrypt	ce_aes_essiv_cbc_decrypt
37 #define aes_ctr_encrypt		ce_aes_ctr_encrypt
38 #define aes_xts_encrypt		ce_aes_xts_encrypt
39 #define aes_xts_decrypt		ce_aes_xts_decrypt
40 #define aes_mac_update		ce_aes_mac_update
41 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
42 #else
43 #define MODE			"neon"
44 #define PRIO			200
45 #define STRIDE			4
46 #define aes_ecb_encrypt		neon_aes_ecb_encrypt
47 #define aes_ecb_decrypt		neon_aes_ecb_decrypt
48 #define aes_cbc_encrypt		neon_aes_cbc_encrypt
49 #define aes_cbc_decrypt		neon_aes_cbc_decrypt
50 #define aes_cbc_cts_encrypt	neon_aes_cbc_cts_encrypt
51 #define aes_cbc_cts_decrypt	neon_aes_cbc_cts_decrypt
52 #define aes_essiv_cbc_encrypt	neon_aes_essiv_cbc_encrypt
53 #define aes_essiv_cbc_decrypt	neon_aes_essiv_cbc_decrypt
54 #define aes_ctr_encrypt		neon_aes_ctr_encrypt
55 #define aes_xts_encrypt		neon_aes_xts_encrypt
56 #define aes_xts_decrypt		neon_aes_xts_decrypt
57 #define aes_mac_update		neon_aes_mac_update
58 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
59 #endif
60 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
61 MODULE_ALIAS_CRYPTO("ecb(aes)");
62 MODULE_ALIAS_CRYPTO("cbc(aes)");
63 MODULE_ALIAS_CRYPTO("ctr(aes)");
64 MODULE_ALIAS_CRYPTO("xts(aes)");
65 #endif
66 MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
67 MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
68 MODULE_ALIAS_CRYPTO("cmac(aes)");
69 MODULE_ALIAS_CRYPTO("xcbc(aes)");
70 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
71 
72 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
73 MODULE_LICENSE("GPL v2");
74 
75 /* defined in aes-modes.S */
76 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
77 				int rounds, int blocks);
78 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
79 				int rounds, int blocks);
80 
81 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
82 				int rounds, int blocks, u8 iv[]);
83 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
84 				int rounds, int blocks, u8 iv[]);
85 
86 asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
87 				int rounds, int bytes, u8 const iv[]);
88 asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
89 				int rounds, int bytes, u8 const iv[]);
90 
91 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
92 				int rounds, int bytes, u8 ctr[], u8 finalbuf[]);
93 
94 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
95 				int rounds, int bytes, u32 const rk2[], u8 iv[],
96 				int first);
97 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
98 				int rounds, int bytes, u32 const rk2[], u8 iv[],
99 				int first);
100 
101 asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[],
102 				      int rounds, int blocks, u8 iv[],
103 				      u32 const rk2[]);
104 asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[],
105 				      int rounds, int blocks, u8 iv[],
106 				      u32 const rk2[]);
107 
108 asmlinkage int aes_mac_update(u8 const in[], u32 const rk[], int rounds,
109 			      int blocks, u8 dg[], int enc_before,
110 			      int enc_after);
111 
112 struct crypto_aes_xts_ctx {
113 	struct crypto_aes_ctx key1;
114 	struct crypto_aes_ctx __aligned(8) key2;
115 };
116 
117 struct crypto_aes_essiv_cbc_ctx {
118 	struct crypto_aes_ctx key1;
119 	struct crypto_aes_ctx __aligned(8) key2;
120 	struct crypto_shash *hash;
121 };
122 
123 struct mac_tfm_ctx {
124 	struct crypto_aes_ctx key;
125 	u8 __aligned(8) consts[];
126 };
127 
128 struct mac_desc_ctx {
129 	unsigned int len;
130 	u8 dg[AES_BLOCK_SIZE];
131 };
132 
133 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
134 			       unsigned int key_len)
135 {
136 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
137 
138 	return aes_expandkey(ctx, in_key, key_len);
139 }
140 
141 static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm,
142 				      const u8 *in_key, unsigned int key_len)
143 {
144 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
145 	int ret;
146 
147 	ret = xts_verify_key(tfm, in_key, key_len);
148 	if (ret)
149 		return ret;
150 
151 	ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
152 	if (!ret)
153 		ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
154 				    key_len / 2);
155 	return ret;
156 }
157 
158 static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm,
159 					    const u8 *in_key,
160 					    unsigned int key_len)
161 {
162 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
163 	u8 digest[SHA256_DIGEST_SIZE];
164 	int ret;
165 
166 	ret = aes_expandkey(&ctx->key1, in_key, key_len);
167 	if (ret)
168 		return ret;
169 
170 	crypto_shash_tfm_digest(ctx->hash, in_key, key_len, digest);
171 
172 	return aes_expandkey(&ctx->key2, digest, sizeof(digest));
173 }
174 
175 static int __maybe_unused ecb_encrypt(struct skcipher_request *req)
176 {
177 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
178 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
179 	int err, rounds = 6 + ctx->key_length / 4;
180 	struct skcipher_walk walk;
181 	unsigned int blocks;
182 
183 	err = skcipher_walk_virt(&walk, req, false);
184 
185 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
186 		kernel_neon_begin();
187 		aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
188 				ctx->key_enc, rounds, blocks);
189 		kernel_neon_end();
190 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
191 	}
192 	return err;
193 }
194 
195 static int __maybe_unused ecb_decrypt(struct skcipher_request *req)
196 {
197 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
198 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
199 	int err, rounds = 6 + ctx->key_length / 4;
200 	struct skcipher_walk walk;
201 	unsigned int blocks;
202 
203 	err = skcipher_walk_virt(&walk, req, false);
204 
205 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
206 		kernel_neon_begin();
207 		aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
208 				ctx->key_dec, rounds, blocks);
209 		kernel_neon_end();
210 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
211 	}
212 	return err;
213 }
214 
215 static int cbc_encrypt_walk(struct skcipher_request *req,
216 			    struct skcipher_walk *walk)
217 {
218 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
219 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
220 	int err = 0, rounds = 6 + ctx->key_length / 4;
221 	unsigned int blocks;
222 
223 	while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
224 		kernel_neon_begin();
225 		aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
226 				ctx->key_enc, rounds, blocks, walk->iv);
227 		kernel_neon_end();
228 		err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
229 	}
230 	return err;
231 }
232 
233 static int __maybe_unused cbc_encrypt(struct skcipher_request *req)
234 {
235 	struct skcipher_walk walk;
236 	int err;
237 
238 	err = skcipher_walk_virt(&walk, req, false);
239 	if (err)
240 		return err;
241 	return cbc_encrypt_walk(req, &walk);
242 }
243 
244 static int cbc_decrypt_walk(struct skcipher_request *req,
245 			    struct skcipher_walk *walk)
246 {
247 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
248 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
249 	int err = 0, rounds = 6 + ctx->key_length / 4;
250 	unsigned int blocks;
251 
252 	while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
253 		kernel_neon_begin();
254 		aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
255 				ctx->key_dec, rounds, blocks, walk->iv);
256 		kernel_neon_end();
257 		err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
258 	}
259 	return err;
260 }
261 
262 static int __maybe_unused cbc_decrypt(struct skcipher_request *req)
263 {
264 	struct skcipher_walk walk;
265 	int err;
266 
267 	err = skcipher_walk_virt(&walk, req, false);
268 	if (err)
269 		return err;
270 	return cbc_decrypt_walk(req, &walk);
271 }
272 
273 static int cts_cbc_encrypt(struct skcipher_request *req)
274 {
275 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
276 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
277 	int err, rounds = 6 + ctx->key_length / 4;
278 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
279 	struct scatterlist *src = req->src, *dst = req->dst;
280 	struct scatterlist sg_src[2], sg_dst[2];
281 	struct skcipher_request subreq;
282 	struct skcipher_walk walk;
283 
284 	skcipher_request_set_tfm(&subreq, tfm);
285 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
286 				      NULL, NULL);
287 
288 	if (req->cryptlen <= AES_BLOCK_SIZE) {
289 		if (req->cryptlen < AES_BLOCK_SIZE)
290 			return -EINVAL;
291 		cbc_blocks = 1;
292 	}
293 
294 	if (cbc_blocks > 0) {
295 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
296 					   cbc_blocks * AES_BLOCK_SIZE,
297 					   req->iv);
298 
299 		err = skcipher_walk_virt(&walk, &subreq, false) ?:
300 		      cbc_encrypt_walk(&subreq, &walk);
301 		if (err)
302 			return err;
303 
304 		if (req->cryptlen == AES_BLOCK_SIZE)
305 			return 0;
306 
307 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
308 		if (req->dst != req->src)
309 			dst = scatterwalk_ffwd(sg_dst, req->dst,
310 					       subreq.cryptlen);
311 	}
312 
313 	/* handle ciphertext stealing */
314 	skcipher_request_set_crypt(&subreq, src, dst,
315 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
316 				   req->iv);
317 
318 	err = skcipher_walk_virt(&walk, &subreq, false);
319 	if (err)
320 		return err;
321 
322 	kernel_neon_begin();
323 	aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
324 			    ctx->key_enc, rounds, walk.nbytes, walk.iv);
325 	kernel_neon_end();
326 
327 	return skcipher_walk_done(&walk, 0);
328 }
329 
330 static int cts_cbc_decrypt(struct skcipher_request *req)
331 {
332 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
333 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
334 	int err, rounds = 6 + ctx->key_length / 4;
335 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
336 	struct scatterlist *src = req->src, *dst = req->dst;
337 	struct scatterlist sg_src[2], sg_dst[2];
338 	struct skcipher_request subreq;
339 	struct skcipher_walk walk;
340 
341 	skcipher_request_set_tfm(&subreq, tfm);
342 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
343 				      NULL, NULL);
344 
345 	if (req->cryptlen <= AES_BLOCK_SIZE) {
346 		if (req->cryptlen < AES_BLOCK_SIZE)
347 			return -EINVAL;
348 		cbc_blocks = 1;
349 	}
350 
351 	if (cbc_blocks > 0) {
352 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
353 					   cbc_blocks * AES_BLOCK_SIZE,
354 					   req->iv);
355 
356 		err = skcipher_walk_virt(&walk, &subreq, false) ?:
357 		      cbc_decrypt_walk(&subreq, &walk);
358 		if (err)
359 			return err;
360 
361 		if (req->cryptlen == AES_BLOCK_SIZE)
362 			return 0;
363 
364 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
365 		if (req->dst != req->src)
366 			dst = scatterwalk_ffwd(sg_dst, req->dst,
367 					       subreq.cryptlen);
368 	}
369 
370 	/* handle ciphertext stealing */
371 	skcipher_request_set_crypt(&subreq, src, dst,
372 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
373 				   req->iv);
374 
375 	err = skcipher_walk_virt(&walk, &subreq, false);
376 	if (err)
377 		return err;
378 
379 	kernel_neon_begin();
380 	aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
381 			    ctx->key_dec, rounds, walk.nbytes, walk.iv);
382 	kernel_neon_end();
383 
384 	return skcipher_walk_done(&walk, 0);
385 }
386 
387 static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm)
388 {
389 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
390 
391 	ctx->hash = crypto_alloc_shash("sha256", 0, 0);
392 
393 	return PTR_ERR_OR_ZERO(ctx->hash);
394 }
395 
396 static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm)
397 {
398 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
399 
400 	crypto_free_shash(ctx->hash);
401 }
402 
403 static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req)
404 {
405 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
406 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
407 	int err, rounds = 6 + ctx->key1.key_length / 4;
408 	struct skcipher_walk walk;
409 	unsigned int blocks;
410 
411 	err = skcipher_walk_virt(&walk, req, false);
412 
413 	blocks = walk.nbytes / AES_BLOCK_SIZE;
414 	if (blocks) {
415 		kernel_neon_begin();
416 		aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
417 				      ctx->key1.key_enc, rounds, blocks,
418 				      req->iv, ctx->key2.key_enc);
419 		kernel_neon_end();
420 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
421 	}
422 	return err ?: cbc_encrypt_walk(req, &walk);
423 }
424 
425 static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
426 {
427 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
428 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
429 	int err, rounds = 6 + ctx->key1.key_length / 4;
430 	struct skcipher_walk walk;
431 	unsigned int blocks;
432 
433 	err = skcipher_walk_virt(&walk, req, false);
434 
435 	blocks = walk.nbytes / AES_BLOCK_SIZE;
436 	if (blocks) {
437 		kernel_neon_begin();
438 		aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
439 				      ctx->key1.key_dec, rounds, blocks,
440 				      req->iv, ctx->key2.key_enc);
441 		kernel_neon_end();
442 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
443 	}
444 	return err ?: cbc_decrypt_walk(req, &walk);
445 }
446 
447 static int __maybe_unused ctr_encrypt(struct skcipher_request *req)
448 {
449 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
450 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
451 	int err, rounds = 6 + ctx->key_length / 4;
452 	struct skcipher_walk walk;
453 
454 	err = skcipher_walk_virt(&walk, req, false);
455 
456 	while (walk.nbytes > 0) {
457 		const u8 *src = walk.src.virt.addr;
458 		unsigned int nbytes = walk.nbytes;
459 		u8 *dst = walk.dst.virt.addr;
460 		u8 buf[AES_BLOCK_SIZE];
461 		unsigned int tail;
462 
463 		if (unlikely(nbytes < AES_BLOCK_SIZE))
464 			src = memcpy(buf, src, nbytes);
465 		else if (nbytes < walk.total)
466 			nbytes &= ~(AES_BLOCK_SIZE - 1);
467 
468 		kernel_neon_begin();
469 		aes_ctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes,
470 				walk.iv, buf);
471 		kernel_neon_end();
472 
473 		tail = nbytes % (STRIDE * AES_BLOCK_SIZE);
474 		if (tail > 0 && tail < AES_BLOCK_SIZE)
475 			/*
476 			 * The final partial block could not be returned using
477 			 * an overlapping store, so it was passed via buf[]
478 			 * instead.
479 			 */
480 			memcpy(dst + nbytes - tail, buf, tail);
481 
482 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
483 	}
484 
485 	return err;
486 }
487 
488 static int __maybe_unused xts_encrypt(struct skcipher_request *req)
489 {
490 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
491 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
492 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
493 	int tail = req->cryptlen % AES_BLOCK_SIZE;
494 	struct scatterlist sg_src[2], sg_dst[2];
495 	struct skcipher_request subreq;
496 	struct scatterlist *src, *dst;
497 	struct skcipher_walk walk;
498 
499 	if (req->cryptlen < AES_BLOCK_SIZE)
500 		return -EINVAL;
501 
502 	err = skcipher_walk_virt(&walk, req, false);
503 
504 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
505 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
506 					      AES_BLOCK_SIZE) - 2;
507 
508 		skcipher_walk_abort(&walk);
509 
510 		skcipher_request_set_tfm(&subreq, tfm);
511 		skcipher_request_set_callback(&subreq,
512 					      skcipher_request_flags(req),
513 					      NULL, NULL);
514 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
515 					   xts_blocks * AES_BLOCK_SIZE,
516 					   req->iv);
517 		req = &subreq;
518 		err = skcipher_walk_virt(&walk, req, false);
519 	} else {
520 		tail = 0;
521 	}
522 
523 	for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
524 		int nbytes = walk.nbytes;
525 
526 		if (walk.nbytes < walk.total)
527 			nbytes &= ~(AES_BLOCK_SIZE - 1);
528 
529 		kernel_neon_begin();
530 		aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
531 				ctx->key1.key_enc, rounds, nbytes,
532 				ctx->key2.key_enc, walk.iv, first);
533 		kernel_neon_end();
534 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
535 	}
536 
537 	if (err || likely(!tail))
538 		return err;
539 
540 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
541 	if (req->dst != req->src)
542 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
543 
544 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
545 				   req->iv);
546 
547 	err = skcipher_walk_virt(&walk, &subreq, false);
548 	if (err)
549 		return err;
550 
551 	kernel_neon_begin();
552 	aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
553 			ctx->key1.key_enc, rounds, walk.nbytes,
554 			ctx->key2.key_enc, walk.iv, first);
555 	kernel_neon_end();
556 
557 	return skcipher_walk_done(&walk, 0);
558 }
559 
560 static int __maybe_unused xts_decrypt(struct skcipher_request *req)
561 {
562 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
563 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
564 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
565 	int tail = req->cryptlen % AES_BLOCK_SIZE;
566 	struct scatterlist sg_src[2], sg_dst[2];
567 	struct skcipher_request subreq;
568 	struct scatterlist *src, *dst;
569 	struct skcipher_walk walk;
570 
571 	if (req->cryptlen < AES_BLOCK_SIZE)
572 		return -EINVAL;
573 
574 	err = skcipher_walk_virt(&walk, req, false);
575 
576 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
577 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
578 					      AES_BLOCK_SIZE) - 2;
579 
580 		skcipher_walk_abort(&walk);
581 
582 		skcipher_request_set_tfm(&subreq, tfm);
583 		skcipher_request_set_callback(&subreq,
584 					      skcipher_request_flags(req),
585 					      NULL, NULL);
586 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
587 					   xts_blocks * AES_BLOCK_SIZE,
588 					   req->iv);
589 		req = &subreq;
590 		err = skcipher_walk_virt(&walk, req, false);
591 	} else {
592 		tail = 0;
593 	}
594 
595 	for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
596 		int nbytes = walk.nbytes;
597 
598 		if (walk.nbytes < walk.total)
599 			nbytes &= ~(AES_BLOCK_SIZE - 1);
600 
601 		kernel_neon_begin();
602 		aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
603 				ctx->key1.key_dec, rounds, nbytes,
604 				ctx->key2.key_enc, walk.iv, first);
605 		kernel_neon_end();
606 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
607 	}
608 
609 	if (err || likely(!tail))
610 		return err;
611 
612 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
613 	if (req->dst != req->src)
614 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
615 
616 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
617 				   req->iv);
618 
619 	err = skcipher_walk_virt(&walk, &subreq, false);
620 	if (err)
621 		return err;
622 
623 
624 	kernel_neon_begin();
625 	aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
626 			ctx->key1.key_dec, rounds, walk.nbytes,
627 			ctx->key2.key_enc, walk.iv, first);
628 	kernel_neon_end();
629 
630 	return skcipher_walk_done(&walk, 0);
631 }
632 
633 static struct skcipher_alg aes_algs[] = { {
634 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
635 	.base = {
636 		.cra_name		= "ecb(aes)",
637 		.cra_driver_name	= "ecb-aes-" MODE,
638 		.cra_priority		= PRIO,
639 		.cra_blocksize		= AES_BLOCK_SIZE,
640 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
641 		.cra_module		= THIS_MODULE,
642 	},
643 	.min_keysize	= AES_MIN_KEY_SIZE,
644 	.max_keysize	= AES_MAX_KEY_SIZE,
645 	.setkey		= skcipher_aes_setkey,
646 	.encrypt	= ecb_encrypt,
647 	.decrypt	= ecb_decrypt,
648 }, {
649 	.base = {
650 		.cra_name		= "cbc(aes)",
651 		.cra_driver_name	= "cbc-aes-" MODE,
652 		.cra_priority		= PRIO,
653 		.cra_blocksize		= AES_BLOCK_SIZE,
654 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
655 		.cra_module		= THIS_MODULE,
656 	},
657 	.min_keysize	= AES_MIN_KEY_SIZE,
658 	.max_keysize	= AES_MAX_KEY_SIZE,
659 	.ivsize		= AES_BLOCK_SIZE,
660 	.setkey		= skcipher_aes_setkey,
661 	.encrypt	= cbc_encrypt,
662 	.decrypt	= cbc_decrypt,
663 }, {
664 	.base = {
665 		.cra_name		= "ctr(aes)",
666 		.cra_driver_name	= "ctr-aes-" MODE,
667 		.cra_priority		= PRIO,
668 		.cra_blocksize		= 1,
669 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
670 		.cra_module		= THIS_MODULE,
671 	},
672 	.min_keysize	= AES_MIN_KEY_SIZE,
673 	.max_keysize	= AES_MAX_KEY_SIZE,
674 	.ivsize		= AES_BLOCK_SIZE,
675 	.chunksize	= AES_BLOCK_SIZE,
676 	.setkey		= skcipher_aes_setkey,
677 	.encrypt	= ctr_encrypt,
678 	.decrypt	= ctr_encrypt,
679 }, {
680 	.base = {
681 		.cra_name		= "xts(aes)",
682 		.cra_driver_name	= "xts-aes-" MODE,
683 		.cra_priority		= PRIO,
684 		.cra_blocksize		= AES_BLOCK_SIZE,
685 		.cra_ctxsize		= sizeof(struct crypto_aes_xts_ctx),
686 		.cra_module		= THIS_MODULE,
687 	},
688 	.min_keysize	= 2 * AES_MIN_KEY_SIZE,
689 	.max_keysize	= 2 * AES_MAX_KEY_SIZE,
690 	.ivsize		= AES_BLOCK_SIZE,
691 	.walksize	= 2 * AES_BLOCK_SIZE,
692 	.setkey		= xts_set_key,
693 	.encrypt	= xts_encrypt,
694 	.decrypt	= xts_decrypt,
695 }, {
696 #endif
697 	.base = {
698 		.cra_name		= "cts(cbc(aes))",
699 		.cra_driver_name	= "cts-cbc-aes-" MODE,
700 		.cra_priority		= PRIO,
701 		.cra_blocksize		= AES_BLOCK_SIZE,
702 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
703 		.cra_module		= THIS_MODULE,
704 	},
705 	.min_keysize	= AES_MIN_KEY_SIZE,
706 	.max_keysize	= AES_MAX_KEY_SIZE,
707 	.ivsize		= AES_BLOCK_SIZE,
708 	.walksize	= 2 * AES_BLOCK_SIZE,
709 	.setkey		= skcipher_aes_setkey,
710 	.encrypt	= cts_cbc_encrypt,
711 	.decrypt	= cts_cbc_decrypt,
712 }, {
713 	.base = {
714 		.cra_name		= "essiv(cbc(aes),sha256)",
715 		.cra_driver_name	= "essiv-cbc-aes-sha256-" MODE,
716 		.cra_priority		= PRIO + 1,
717 		.cra_blocksize		= AES_BLOCK_SIZE,
718 		.cra_ctxsize		= sizeof(struct crypto_aes_essiv_cbc_ctx),
719 		.cra_module		= THIS_MODULE,
720 	},
721 	.min_keysize	= AES_MIN_KEY_SIZE,
722 	.max_keysize	= AES_MAX_KEY_SIZE,
723 	.ivsize		= AES_BLOCK_SIZE,
724 	.setkey		= essiv_cbc_set_key,
725 	.encrypt	= essiv_cbc_encrypt,
726 	.decrypt	= essiv_cbc_decrypt,
727 	.init		= essiv_cbc_init_tfm,
728 	.exit		= essiv_cbc_exit_tfm,
729 } };
730 
731 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
732 			 unsigned int key_len)
733 {
734 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
735 
736 	return aes_expandkey(&ctx->key, in_key, key_len);
737 }
738 
739 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
740 {
741 	u64 a = be64_to_cpu(x->a);
742 	u64 b = be64_to_cpu(x->b);
743 
744 	y->a = cpu_to_be64((a << 1) | (b >> 63));
745 	y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
746 }
747 
748 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
749 		       unsigned int key_len)
750 {
751 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
752 	be128 *consts = (be128 *)ctx->consts;
753 	int rounds = 6 + key_len / 4;
754 	int err;
755 
756 	err = cbcmac_setkey(tfm, in_key, key_len);
757 	if (err)
758 		return err;
759 
760 	/* encrypt the zero vector */
761 	kernel_neon_begin();
762 	aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
763 			rounds, 1);
764 	kernel_neon_end();
765 
766 	cmac_gf128_mul_by_x(consts, consts);
767 	cmac_gf128_mul_by_x(consts + 1, consts);
768 
769 	return 0;
770 }
771 
772 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
773 		       unsigned int key_len)
774 {
775 	static u8 const ks[3][AES_BLOCK_SIZE] = {
776 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
777 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
778 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
779 	};
780 
781 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
782 	int rounds = 6 + key_len / 4;
783 	u8 key[AES_BLOCK_SIZE];
784 	int err;
785 
786 	err = cbcmac_setkey(tfm, in_key, key_len);
787 	if (err)
788 		return err;
789 
790 	kernel_neon_begin();
791 	aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
792 	aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
793 	kernel_neon_end();
794 
795 	return cbcmac_setkey(tfm, key, sizeof(key));
796 }
797 
798 static int mac_init(struct shash_desc *desc)
799 {
800 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
801 
802 	memset(ctx->dg, 0, AES_BLOCK_SIZE);
803 	ctx->len = 0;
804 
805 	return 0;
806 }
807 
808 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
809 			  u8 dg[], int enc_before, int enc_after)
810 {
811 	int rounds = 6 + ctx->key_length / 4;
812 
813 	if (crypto_simd_usable()) {
814 		int rem;
815 
816 		do {
817 			kernel_neon_begin();
818 			rem = aes_mac_update(in, ctx->key_enc, rounds, blocks,
819 					     dg, enc_before, enc_after);
820 			kernel_neon_end();
821 			in += (blocks - rem) * AES_BLOCK_SIZE;
822 			blocks = rem;
823 			enc_before = 0;
824 		} while (blocks);
825 	} else {
826 		if (enc_before)
827 			aes_encrypt(ctx, dg, dg);
828 
829 		while (blocks--) {
830 			crypto_xor(dg, in, AES_BLOCK_SIZE);
831 			in += AES_BLOCK_SIZE;
832 
833 			if (blocks || enc_after)
834 				aes_encrypt(ctx, dg, dg);
835 		}
836 	}
837 }
838 
839 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
840 {
841 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
842 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
843 
844 	while (len > 0) {
845 		unsigned int l;
846 
847 		if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
848 		    (ctx->len + len) > AES_BLOCK_SIZE) {
849 
850 			int blocks = len / AES_BLOCK_SIZE;
851 
852 			len %= AES_BLOCK_SIZE;
853 
854 			mac_do_update(&tctx->key, p, blocks, ctx->dg,
855 				      (ctx->len != 0), (len != 0));
856 
857 			p += blocks * AES_BLOCK_SIZE;
858 
859 			if (!len) {
860 				ctx->len = AES_BLOCK_SIZE;
861 				break;
862 			}
863 			ctx->len = 0;
864 		}
865 
866 		l = min(len, AES_BLOCK_SIZE - ctx->len);
867 
868 		if (l <= AES_BLOCK_SIZE) {
869 			crypto_xor(ctx->dg + ctx->len, p, l);
870 			ctx->len += l;
871 			len -= l;
872 			p += l;
873 		}
874 	}
875 
876 	return 0;
877 }
878 
879 static int cbcmac_final(struct shash_desc *desc, u8 *out)
880 {
881 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
882 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
883 
884 	mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
885 
886 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
887 
888 	return 0;
889 }
890 
891 static int cmac_final(struct shash_desc *desc, u8 *out)
892 {
893 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
894 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
895 	u8 *consts = tctx->consts;
896 
897 	if (ctx->len != AES_BLOCK_SIZE) {
898 		ctx->dg[ctx->len] ^= 0x80;
899 		consts += AES_BLOCK_SIZE;
900 	}
901 
902 	mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
903 
904 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
905 
906 	return 0;
907 }
908 
909 static struct shash_alg mac_algs[] = { {
910 	.base.cra_name		= "cmac(aes)",
911 	.base.cra_driver_name	= "cmac-aes-" MODE,
912 	.base.cra_priority	= PRIO,
913 	.base.cra_blocksize	= AES_BLOCK_SIZE,
914 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
915 				  2 * AES_BLOCK_SIZE,
916 	.base.cra_module	= THIS_MODULE,
917 
918 	.digestsize		= AES_BLOCK_SIZE,
919 	.init			= mac_init,
920 	.update			= mac_update,
921 	.final			= cmac_final,
922 	.setkey			= cmac_setkey,
923 	.descsize		= sizeof(struct mac_desc_ctx),
924 }, {
925 	.base.cra_name		= "xcbc(aes)",
926 	.base.cra_driver_name	= "xcbc-aes-" MODE,
927 	.base.cra_priority	= PRIO,
928 	.base.cra_blocksize	= AES_BLOCK_SIZE,
929 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
930 				  2 * AES_BLOCK_SIZE,
931 	.base.cra_module	= THIS_MODULE,
932 
933 	.digestsize		= AES_BLOCK_SIZE,
934 	.init			= mac_init,
935 	.update			= mac_update,
936 	.final			= cmac_final,
937 	.setkey			= xcbc_setkey,
938 	.descsize		= sizeof(struct mac_desc_ctx),
939 }, {
940 	.base.cra_name		= "cbcmac(aes)",
941 	.base.cra_driver_name	= "cbcmac-aes-" MODE,
942 	.base.cra_priority	= PRIO,
943 	.base.cra_blocksize	= 1,
944 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx),
945 	.base.cra_module	= THIS_MODULE,
946 
947 	.digestsize		= AES_BLOCK_SIZE,
948 	.init			= mac_init,
949 	.update			= mac_update,
950 	.final			= cbcmac_final,
951 	.setkey			= cbcmac_setkey,
952 	.descsize		= sizeof(struct mac_desc_ctx),
953 } };
954 
955 static void aes_exit(void)
956 {
957 	crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
958 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
959 }
960 
961 static int __init aes_init(void)
962 {
963 	int err;
964 
965 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
966 	if (err)
967 		return err;
968 
969 	err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
970 	if (err)
971 		goto unregister_ciphers;
972 
973 	return 0;
974 
975 unregister_ciphers:
976 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
977 	return err;
978 }
979 
980 #ifdef USE_V8_CRYPTO_EXTENSIONS
981 module_cpu_feature_match(AES, aes_init);
982 #else
983 module_init(aes_init);
984 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
985 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
986 EXPORT_SYMBOL(neon_aes_xts_encrypt);
987 EXPORT_SYMBOL(neon_aes_xts_decrypt);
988 #endif
989 module_exit(aes_exit);
990