xref: /openbmc/linux/arch/arm64/crypto/aes-glue.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
3  *
4  * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <asm/neon.h>
12 #include <asm/hwcap.h>
13 #include <asm/simd.h>
14 #include <crypto/aes.h>
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/simd.h>
17 #include <crypto/internal/skcipher.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
21 
22 #include "aes-ce-setkey.h"
23 #include "aes-ctr-fallback.h"
24 
25 #ifdef USE_V8_CRYPTO_EXTENSIONS
26 #define MODE			"ce"
27 #define PRIO			300
28 #define aes_setkey		ce_aes_setkey
29 #define aes_expandkey		ce_aes_expandkey
30 #define aes_ecb_encrypt		ce_aes_ecb_encrypt
31 #define aes_ecb_decrypt		ce_aes_ecb_decrypt
32 #define aes_cbc_encrypt		ce_aes_cbc_encrypt
33 #define aes_cbc_decrypt		ce_aes_cbc_decrypt
34 #define aes_ctr_encrypt		ce_aes_ctr_encrypt
35 #define aes_xts_encrypt		ce_aes_xts_encrypt
36 #define aes_xts_decrypt		ce_aes_xts_decrypt
37 #define aes_mac_update		ce_aes_mac_update
38 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
39 #else
40 #define MODE			"neon"
41 #define PRIO			200
42 #define aes_setkey		crypto_aes_set_key
43 #define aes_expandkey		crypto_aes_expand_key
44 #define aes_ecb_encrypt		neon_aes_ecb_encrypt
45 #define aes_ecb_decrypt		neon_aes_ecb_decrypt
46 #define aes_cbc_encrypt		neon_aes_cbc_encrypt
47 #define aes_cbc_decrypt		neon_aes_cbc_decrypt
48 #define aes_ctr_encrypt		neon_aes_ctr_encrypt
49 #define aes_xts_encrypt		neon_aes_xts_encrypt
50 #define aes_xts_decrypt		neon_aes_xts_decrypt
51 #define aes_mac_update		neon_aes_mac_update
52 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
53 MODULE_ALIAS_CRYPTO("ecb(aes)");
54 MODULE_ALIAS_CRYPTO("cbc(aes)");
55 MODULE_ALIAS_CRYPTO("ctr(aes)");
56 MODULE_ALIAS_CRYPTO("xts(aes)");
57 MODULE_ALIAS_CRYPTO("cmac(aes)");
58 MODULE_ALIAS_CRYPTO("xcbc(aes)");
59 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
60 #endif
61 
62 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
63 MODULE_LICENSE("GPL v2");
64 
65 /* defined in aes-modes.S */
66 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
67 				int rounds, int blocks);
68 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
69 				int rounds, int blocks);
70 
71 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
72 				int rounds, int blocks, u8 iv[]);
73 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
74 				int rounds, int blocks, u8 iv[]);
75 
76 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
77 				int rounds, int blocks, u8 ctr[]);
78 
79 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
80 				int rounds, int blocks, u8 const rk2[], u8 iv[],
81 				int first);
82 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
83 				int rounds, int blocks, u8 const rk2[], u8 iv[],
84 				int first);
85 
86 asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
87 			       int blocks, u8 dg[], int enc_before,
88 			       int enc_after);
89 
90 struct crypto_aes_xts_ctx {
91 	struct crypto_aes_ctx key1;
92 	struct crypto_aes_ctx __aligned(8) key2;
93 };
94 
95 struct mac_tfm_ctx {
96 	struct crypto_aes_ctx key;
97 	u8 __aligned(8) consts[];
98 };
99 
100 struct mac_desc_ctx {
101 	unsigned int len;
102 	u8 dg[AES_BLOCK_SIZE];
103 };
104 
105 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
106 			       unsigned int key_len)
107 {
108 	return aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len);
109 }
110 
111 static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
112 		       unsigned int key_len)
113 {
114 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
115 	int ret;
116 
117 	ret = xts_verify_key(tfm, in_key, key_len);
118 	if (ret)
119 		return ret;
120 
121 	ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
122 	if (!ret)
123 		ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
124 				    key_len / 2);
125 	if (!ret)
126 		return 0;
127 
128 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
129 	return -EINVAL;
130 }
131 
132 static int ecb_encrypt(struct skcipher_request *req)
133 {
134 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
135 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
136 	int err, rounds = 6 + ctx->key_length / 4;
137 	struct skcipher_walk walk;
138 	unsigned int blocks;
139 
140 	err = skcipher_walk_virt(&walk, req, false);
141 
142 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
143 		kernel_neon_begin();
144 		aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
145 				(u8 *)ctx->key_enc, rounds, blocks);
146 		kernel_neon_end();
147 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
148 	}
149 	return err;
150 }
151 
152 static int ecb_decrypt(struct skcipher_request *req)
153 {
154 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
155 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
156 	int err, rounds = 6 + ctx->key_length / 4;
157 	struct skcipher_walk walk;
158 	unsigned int blocks;
159 
160 	err = skcipher_walk_virt(&walk, req, false);
161 
162 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
163 		kernel_neon_begin();
164 		aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
165 				(u8 *)ctx->key_dec, rounds, blocks);
166 		kernel_neon_end();
167 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
168 	}
169 	return err;
170 }
171 
172 static int cbc_encrypt(struct skcipher_request *req)
173 {
174 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
175 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
176 	int err, rounds = 6 + ctx->key_length / 4;
177 	struct skcipher_walk walk;
178 	unsigned int blocks;
179 
180 	err = skcipher_walk_virt(&walk, req, false);
181 
182 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
183 		kernel_neon_begin();
184 		aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
185 				(u8 *)ctx->key_enc, rounds, blocks, walk.iv);
186 		kernel_neon_end();
187 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
188 	}
189 	return err;
190 }
191 
192 static int cbc_decrypt(struct skcipher_request *req)
193 {
194 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
195 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
196 	int err, rounds = 6 + ctx->key_length / 4;
197 	struct skcipher_walk walk;
198 	unsigned int blocks;
199 
200 	err = skcipher_walk_virt(&walk, req, false);
201 
202 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
203 		kernel_neon_begin();
204 		aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
205 				(u8 *)ctx->key_dec, rounds, blocks, walk.iv);
206 		kernel_neon_end();
207 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
208 	}
209 	return err;
210 }
211 
212 static int ctr_encrypt(struct skcipher_request *req)
213 {
214 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
215 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
216 	int err, rounds = 6 + ctx->key_length / 4;
217 	struct skcipher_walk walk;
218 	int blocks;
219 
220 	err = skcipher_walk_virt(&walk, req, false);
221 
222 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
223 		kernel_neon_begin();
224 		aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
225 				(u8 *)ctx->key_enc, rounds, blocks, walk.iv);
226 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
227 		kernel_neon_end();
228 	}
229 	if (walk.nbytes) {
230 		u8 __aligned(8) tail[AES_BLOCK_SIZE];
231 		unsigned int nbytes = walk.nbytes;
232 		u8 *tdst = walk.dst.virt.addr;
233 		u8 *tsrc = walk.src.virt.addr;
234 
235 		/*
236 		 * Tell aes_ctr_encrypt() to process a tail block.
237 		 */
238 		blocks = -1;
239 
240 		kernel_neon_begin();
241 		aes_ctr_encrypt(tail, NULL, (u8 *)ctx->key_enc, rounds,
242 				blocks, walk.iv);
243 		kernel_neon_end();
244 		crypto_xor_cpy(tdst, tsrc, tail, nbytes);
245 		err = skcipher_walk_done(&walk, 0);
246 	}
247 
248 	return err;
249 }
250 
251 static int ctr_encrypt_sync(struct skcipher_request *req)
252 {
253 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
254 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
255 
256 	if (!may_use_simd())
257 		return aes_ctr_encrypt_fallback(ctx, req);
258 
259 	return ctr_encrypt(req);
260 }
261 
262 static int xts_encrypt(struct skcipher_request *req)
263 {
264 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
265 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
266 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
267 	struct skcipher_walk walk;
268 	unsigned int blocks;
269 
270 	err = skcipher_walk_virt(&walk, req, false);
271 
272 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
273 		kernel_neon_begin();
274 		aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
275 				(u8 *)ctx->key1.key_enc, rounds, blocks,
276 				(u8 *)ctx->key2.key_enc, walk.iv, first);
277 		kernel_neon_end();
278 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
279 	}
280 
281 	return err;
282 }
283 
284 static int xts_decrypt(struct skcipher_request *req)
285 {
286 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
287 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
288 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
289 	struct skcipher_walk walk;
290 	unsigned int blocks;
291 
292 	err = skcipher_walk_virt(&walk, req, false);
293 
294 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
295 		kernel_neon_begin();
296 		aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
297 				(u8 *)ctx->key1.key_dec, rounds, blocks,
298 				(u8 *)ctx->key2.key_enc, walk.iv, first);
299 		kernel_neon_end();
300 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
301 	}
302 
303 	return err;
304 }
305 
306 static struct skcipher_alg aes_algs[] = { {
307 	.base = {
308 		.cra_name		= "__ecb(aes)",
309 		.cra_driver_name	= "__ecb-aes-" MODE,
310 		.cra_priority		= PRIO,
311 		.cra_flags		= CRYPTO_ALG_INTERNAL,
312 		.cra_blocksize		= AES_BLOCK_SIZE,
313 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
314 		.cra_module		= THIS_MODULE,
315 	},
316 	.min_keysize	= AES_MIN_KEY_SIZE,
317 	.max_keysize	= AES_MAX_KEY_SIZE,
318 	.setkey		= skcipher_aes_setkey,
319 	.encrypt	= ecb_encrypt,
320 	.decrypt	= ecb_decrypt,
321 }, {
322 	.base = {
323 		.cra_name		= "__cbc(aes)",
324 		.cra_driver_name	= "__cbc-aes-" MODE,
325 		.cra_priority		= PRIO,
326 		.cra_flags		= CRYPTO_ALG_INTERNAL,
327 		.cra_blocksize		= AES_BLOCK_SIZE,
328 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
329 		.cra_module		= THIS_MODULE,
330 	},
331 	.min_keysize	= AES_MIN_KEY_SIZE,
332 	.max_keysize	= AES_MAX_KEY_SIZE,
333 	.ivsize		= AES_BLOCK_SIZE,
334 	.setkey		= skcipher_aes_setkey,
335 	.encrypt	= cbc_encrypt,
336 	.decrypt	= cbc_decrypt,
337 }, {
338 	.base = {
339 		.cra_name		= "__ctr(aes)",
340 		.cra_driver_name	= "__ctr-aes-" MODE,
341 		.cra_priority		= PRIO,
342 		.cra_flags		= CRYPTO_ALG_INTERNAL,
343 		.cra_blocksize		= 1,
344 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
345 		.cra_module		= THIS_MODULE,
346 	},
347 	.min_keysize	= AES_MIN_KEY_SIZE,
348 	.max_keysize	= AES_MAX_KEY_SIZE,
349 	.ivsize		= AES_BLOCK_SIZE,
350 	.chunksize	= AES_BLOCK_SIZE,
351 	.setkey		= skcipher_aes_setkey,
352 	.encrypt	= ctr_encrypt,
353 	.decrypt	= ctr_encrypt,
354 }, {
355 	.base = {
356 		.cra_name		= "ctr(aes)",
357 		.cra_driver_name	= "ctr-aes-" MODE,
358 		.cra_priority		= PRIO - 1,
359 		.cra_blocksize		= 1,
360 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
361 		.cra_module		= THIS_MODULE,
362 	},
363 	.min_keysize	= AES_MIN_KEY_SIZE,
364 	.max_keysize	= AES_MAX_KEY_SIZE,
365 	.ivsize		= AES_BLOCK_SIZE,
366 	.chunksize	= AES_BLOCK_SIZE,
367 	.setkey		= skcipher_aes_setkey,
368 	.encrypt	= ctr_encrypt_sync,
369 	.decrypt	= ctr_encrypt_sync,
370 }, {
371 	.base = {
372 		.cra_name		= "__xts(aes)",
373 		.cra_driver_name	= "__xts-aes-" MODE,
374 		.cra_priority		= PRIO,
375 		.cra_flags		= CRYPTO_ALG_INTERNAL,
376 		.cra_blocksize		= AES_BLOCK_SIZE,
377 		.cra_ctxsize		= sizeof(struct crypto_aes_xts_ctx),
378 		.cra_module		= THIS_MODULE,
379 	},
380 	.min_keysize	= 2 * AES_MIN_KEY_SIZE,
381 	.max_keysize	= 2 * AES_MAX_KEY_SIZE,
382 	.ivsize		= AES_BLOCK_SIZE,
383 	.setkey		= xts_set_key,
384 	.encrypt	= xts_encrypt,
385 	.decrypt	= xts_decrypt,
386 } };
387 
388 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
389 			 unsigned int key_len)
390 {
391 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
392 	int err;
393 
394 	err = aes_expandkey(&ctx->key, in_key, key_len);
395 	if (err)
396 		crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
397 
398 	return err;
399 }
400 
401 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
402 {
403 	u64 a = be64_to_cpu(x->a);
404 	u64 b = be64_to_cpu(x->b);
405 
406 	y->a = cpu_to_be64((a << 1) | (b >> 63));
407 	y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
408 }
409 
410 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
411 		       unsigned int key_len)
412 {
413 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
414 	be128 *consts = (be128 *)ctx->consts;
415 	u8 *rk = (u8 *)ctx->key.key_enc;
416 	int rounds = 6 + key_len / 4;
417 	int err;
418 
419 	err = cbcmac_setkey(tfm, in_key, key_len);
420 	if (err)
421 		return err;
422 
423 	/* encrypt the zero vector */
424 	kernel_neon_begin();
425 	aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, rk, rounds, 1);
426 	kernel_neon_end();
427 
428 	cmac_gf128_mul_by_x(consts, consts);
429 	cmac_gf128_mul_by_x(consts + 1, consts);
430 
431 	return 0;
432 }
433 
434 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
435 		       unsigned int key_len)
436 {
437 	static u8 const ks[3][AES_BLOCK_SIZE] = {
438 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
439 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
440 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
441 	};
442 
443 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
444 	u8 *rk = (u8 *)ctx->key.key_enc;
445 	int rounds = 6 + key_len / 4;
446 	u8 key[AES_BLOCK_SIZE];
447 	int err;
448 
449 	err = cbcmac_setkey(tfm, in_key, key_len);
450 	if (err)
451 		return err;
452 
453 	kernel_neon_begin();
454 	aes_ecb_encrypt(key, ks[0], rk, rounds, 1);
455 	aes_ecb_encrypt(ctx->consts, ks[1], rk, rounds, 2);
456 	kernel_neon_end();
457 
458 	return cbcmac_setkey(tfm, key, sizeof(key));
459 }
460 
461 static int mac_init(struct shash_desc *desc)
462 {
463 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
464 
465 	memset(ctx->dg, 0, AES_BLOCK_SIZE);
466 	ctx->len = 0;
467 
468 	return 0;
469 }
470 
471 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
472 			  u8 dg[], int enc_before, int enc_after)
473 {
474 	int rounds = 6 + ctx->key_length / 4;
475 
476 	if (may_use_simd()) {
477 		kernel_neon_begin();
478 		aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
479 			       enc_after);
480 		kernel_neon_end();
481 	} else {
482 		if (enc_before)
483 			__aes_arm64_encrypt(ctx->key_enc, dg, dg, rounds);
484 
485 		while (blocks--) {
486 			crypto_xor(dg, in, AES_BLOCK_SIZE);
487 			in += AES_BLOCK_SIZE;
488 
489 			if (blocks || enc_after)
490 				__aes_arm64_encrypt(ctx->key_enc, dg, dg,
491 						    rounds);
492 		}
493 	}
494 }
495 
496 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
497 {
498 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
499 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
500 
501 	while (len > 0) {
502 		unsigned int l;
503 
504 		if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
505 		    (ctx->len + len) > AES_BLOCK_SIZE) {
506 
507 			int blocks = len / AES_BLOCK_SIZE;
508 
509 			len %= AES_BLOCK_SIZE;
510 
511 			mac_do_update(&tctx->key, p, blocks, ctx->dg,
512 				      (ctx->len != 0), (len != 0));
513 
514 			p += blocks * AES_BLOCK_SIZE;
515 
516 			if (!len) {
517 				ctx->len = AES_BLOCK_SIZE;
518 				break;
519 			}
520 			ctx->len = 0;
521 		}
522 
523 		l = min(len, AES_BLOCK_SIZE - ctx->len);
524 
525 		if (l <= AES_BLOCK_SIZE) {
526 			crypto_xor(ctx->dg + ctx->len, p, l);
527 			ctx->len += l;
528 			len -= l;
529 			p += l;
530 		}
531 	}
532 
533 	return 0;
534 }
535 
536 static int cbcmac_final(struct shash_desc *desc, u8 *out)
537 {
538 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
539 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
540 
541 	mac_do_update(&tctx->key, NULL, 0, ctx->dg, 1, 0);
542 
543 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
544 
545 	return 0;
546 }
547 
548 static int cmac_final(struct shash_desc *desc, u8 *out)
549 {
550 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
551 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
552 	u8 *consts = tctx->consts;
553 
554 	if (ctx->len != AES_BLOCK_SIZE) {
555 		ctx->dg[ctx->len] ^= 0x80;
556 		consts += AES_BLOCK_SIZE;
557 	}
558 
559 	mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
560 
561 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
562 
563 	return 0;
564 }
565 
566 static struct shash_alg mac_algs[] = { {
567 	.base.cra_name		= "cmac(aes)",
568 	.base.cra_driver_name	= "cmac-aes-" MODE,
569 	.base.cra_priority	= PRIO,
570 	.base.cra_flags		= CRYPTO_ALG_TYPE_SHASH,
571 	.base.cra_blocksize	= AES_BLOCK_SIZE,
572 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
573 				  2 * AES_BLOCK_SIZE,
574 	.base.cra_module	= THIS_MODULE,
575 
576 	.digestsize		= AES_BLOCK_SIZE,
577 	.init			= mac_init,
578 	.update			= mac_update,
579 	.final			= cmac_final,
580 	.setkey			= cmac_setkey,
581 	.descsize		= sizeof(struct mac_desc_ctx),
582 }, {
583 	.base.cra_name		= "xcbc(aes)",
584 	.base.cra_driver_name	= "xcbc-aes-" MODE,
585 	.base.cra_priority	= PRIO,
586 	.base.cra_flags		= CRYPTO_ALG_TYPE_SHASH,
587 	.base.cra_blocksize	= AES_BLOCK_SIZE,
588 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
589 				  2 * AES_BLOCK_SIZE,
590 	.base.cra_module	= THIS_MODULE,
591 
592 	.digestsize		= AES_BLOCK_SIZE,
593 	.init			= mac_init,
594 	.update			= mac_update,
595 	.final			= cmac_final,
596 	.setkey			= xcbc_setkey,
597 	.descsize		= sizeof(struct mac_desc_ctx),
598 }, {
599 	.base.cra_name		= "cbcmac(aes)",
600 	.base.cra_driver_name	= "cbcmac-aes-" MODE,
601 	.base.cra_priority	= PRIO,
602 	.base.cra_flags		= CRYPTO_ALG_TYPE_SHASH,
603 	.base.cra_blocksize	= 1,
604 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx),
605 	.base.cra_module	= THIS_MODULE,
606 
607 	.digestsize		= AES_BLOCK_SIZE,
608 	.init			= mac_init,
609 	.update			= mac_update,
610 	.final			= cbcmac_final,
611 	.setkey			= cbcmac_setkey,
612 	.descsize		= sizeof(struct mac_desc_ctx),
613 } };
614 
615 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
616 
617 static void aes_exit(void)
618 {
619 	int i;
620 
621 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
622 		if (aes_simd_algs[i])
623 			simd_skcipher_free(aes_simd_algs[i]);
624 
625 	crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
626 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
627 }
628 
629 static int __init aes_init(void)
630 {
631 	struct simd_skcipher_alg *simd;
632 	const char *basename;
633 	const char *algname;
634 	const char *drvname;
635 	int err;
636 	int i;
637 
638 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
639 	if (err)
640 		return err;
641 
642 	err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
643 	if (err)
644 		goto unregister_ciphers;
645 
646 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
647 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
648 			continue;
649 
650 		algname = aes_algs[i].base.cra_name + 2;
651 		drvname = aes_algs[i].base.cra_driver_name + 2;
652 		basename = aes_algs[i].base.cra_driver_name;
653 		simd = simd_skcipher_create_compat(algname, drvname, basename);
654 		err = PTR_ERR(simd);
655 		if (IS_ERR(simd))
656 			goto unregister_simds;
657 
658 		aes_simd_algs[i] = simd;
659 	}
660 
661 	return 0;
662 
663 unregister_simds:
664 	aes_exit();
665 	return err;
666 unregister_ciphers:
667 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
668 	return err;
669 }
670 
671 #ifdef USE_V8_CRYPTO_EXTENSIONS
672 module_cpu_feature_match(AES, aes_init);
673 #else
674 module_init(aes_init);
675 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
676 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
677 #endif
678 module_exit(aes_exit);
679