xref: /openbmc/linux/arch/arm64/crypto/aes-glue.c (revision a28b2ed9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
4  *
5  * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/hwcap.h>
10 #include <asm/simd.h>
11 #include <crypto/aes.h>
12 #include <crypto/ctr.h>
13 #include <crypto/sha.h>
14 #include <crypto/internal/hash.h>
15 #include <crypto/internal/simd.h>
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
21 
22 #include "aes-ce-setkey.h"
23 
24 #ifdef USE_V8_CRYPTO_EXTENSIONS
25 #define MODE			"ce"
26 #define PRIO			300
27 #define aes_expandkey		ce_aes_expandkey
28 #define aes_ecb_encrypt		ce_aes_ecb_encrypt
29 #define aes_ecb_decrypt		ce_aes_ecb_decrypt
30 #define aes_cbc_encrypt		ce_aes_cbc_encrypt
31 #define aes_cbc_decrypt		ce_aes_cbc_decrypt
32 #define aes_cbc_cts_encrypt	ce_aes_cbc_cts_encrypt
33 #define aes_cbc_cts_decrypt	ce_aes_cbc_cts_decrypt
34 #define aes_essiv_cbc_encrypt	ce_aes_essiv_cbc_encrypt
35 #define aes_essiv_cbc_decrypt	ce_aes_essiv_cbc_decrypt
36 #define aes_ctr_encrypt		ce_aes_ctr_encrypt
37 #define aes_xts_encrypt		ce_aes_xts_encrypt
38 #define aes_xts_decrypt		ce_aes_xts_decrypt
39 #define aes_mac_update		ce_aes_mac_update
40 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
41 #else
42 #define MODE			"neon"
43 #define PRIO			200
44 #define aes_ecb_encrypt		neon_aes_ecb_encrypt
45 #define aes_ecb_decrypt		neon_aes_ecb_decrypt
46 #define aes_cbc_encrypt		neon_aes_cbc_encrypt
47 #define aes_cbc_decrypt		neon_aes_cbc_decrypt
48 #define aes_cbc_cts_encrypt	neon_aes_cbc_cts_encrypt
49 #define aes_cbc_cts_decrypt	neon_aes_cbc_cts_decrypt
50 #define aes_essiv_cbc_encrypt	neon_aes_essiv_cbc_encrypt
51 #define aes_essiv_cbc_decrypt	neon_aes_essiv_cbc_decrypt
52 #define aes_ctr_encrypt		neon_aes_ctr_encrypt
53 #define aes_xts_encrypt		neon_aes_xts_encrypt
54 #define aes_xts_decrypt		neon_aes_xts_decrypt
55 #define aes_mac_update		neon_aes_mac_update
56 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
57 #endif
58 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !defined(CONFIG_CRYPTO_AES_ARM64_BS)
59 MODULE_ALIAS_CRYPTO("ecb(aes)");
60 MODULE_ALIAS_CRYPTO("cbc(aes)");
61 MODULE_ALIAS_CRYPTO("ctr(aes)");
62 MODULE_ALIAS_CRYPTO("xts(aes)");
63 #endif
64 MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
65 MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
66 MODULE_ALIAS_CRYPTO("cmac(aes)");
67 MODULE_ALIAS_CRYPTO("xcbc(aes)");
68 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
69 
70 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
71 MODULE_LICENSE("GPL v2");
72 
73 /* defined in aes-modes.S */
74 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
75 				int rounds, int blocks);
76 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
77 				int rounds, int blocks);
78 
79 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
80 				int rounds, int blocks, u8 iv[]);
81 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
82 				int rounds, int blocks, u8 iv[]);
83 
84 asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
85 				int rounds, int bytes, u8 const iv[]);
86 asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
87 				int rounds, int bytes, u8 const iv[]);
88 
89 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
90 				int rounds, int blocks, u8 ctr[]);
91 
92 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
93 				int rounds, int bytes, u32 const rk2[], u8 iv[],
94 				int first);
95 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
96 				int rounds, int bytes, u32 const rk2[], u8 iv[],
97 				int first);
98 
99 asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[],
100 				      int rounds, int blocks, u8 iv[],
101 				      u32 const rk2[]);
102 asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[],
103 				      int rounds, int blocks, u8 iv[],
104 				      u32 const rk2[]);
105 
106 asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
107 			       int blocks, u8 dg[], int enc_before,
108 			       int enc_after);
109 
110 struct crypto_aes_xts_ctx {
111 	struct crypto_aes_ctx key1;
112 	struct crypto_aes_ctx __aligned(8) key2;
113 };
114 
115 struct crypto_aes_essiv_cbc_ctx {
116 	struct crypto_aes_ctx key1;
117 	struct crypto_aes_ctx __aligned(8) key2;
118 	struct crypto_shash *hash;
119 };
120 
121 struct mac_tfm_ctx {
122 	struct crypto_aes_ctx key;
123 	u8 __aligned(8) consts[];
124 };
125 
126 struct mac_desc_ctx {
127 	unsigned int len;
128 	u8 dg[AES_BLOCK_SIZE];
129 };
130 
131 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
132 			       unsigned int key_len)
133 {
134 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
135 
136 	return aes_expandkey(ctx, in_key, key_len);
137 }
138 
139 static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm,
140 				      const u8 *in_key, unsigned int key_len)
141 {
142 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
143 	int ret;
144 
145 	ret = xts_verify_key(tfm, in_key, key_len);
146 	if (ret)
147 		return ret;
148 
149 	ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
150 	if (!ret)
151 		ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
152 				    key_len / 2);
153 	return ret;
154 }
155 
156 static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm,
157 					    const u8 *in_key,
158 					    unsigned int key_len)
159 {
160 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
161 	u8 digest[SHA256_DIGEST_SIZE];
162 	int ret;
163 
164 	ret = aes_expandkey(&ctx->key1, in_key, key_len);
165 	if (ret)
166 		return ret;
167 
168 	crypto_shash_tfm_digest(ctx->hash, in_key, key_len, digest);
169 
170 	return aes_expandkey(&ctx->key2, digest, sizeof(digest));
171 }
172 
173 static int __maybe_unused ecb_encrypt(struct skcipher_request *req)
174 {
175 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
176 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
177 	int err, rounds = 6 + ctx->key_length / 4;
178 	struct skcipher_walk walk;
179 	unsigned int blocks;
180 
181 	err = skcipher_walk_virt(&walk, req, false);
182 
183 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
184 		kernel_neon_begin();
185 		aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
186 				ctx->key_enc, rounds, blocks);
187 		kernel_neon_end();
188 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
189 	}
190 	return err;
191 }
192 
193 static int __maybe_unused ecb_decrypt(struct skcipher_request *req)
194 {
195 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
196 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
197 	int err, rounds = 6 + ctx->key_length / 4;
198 	struct skcipher_walk walk;
199 	unsigned int blocks;
200 
201 	err = skcipher_walk_virt(&walk, req, false);
202 
203 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
204 		kernel_neon_begin();
205 		aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
206 				ctx->key_dec, rounds, blocks);
207 		kernel_neon_end();
208 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
209 	}
210 	return err;
211 }
212 
213 static int cbc_encrypt_walk(struct skcipher_request *req,
214 			    struct skcipher_walk *walk)
215 {
216 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
217 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
218 	int err = 0, rounds = 6 + ctx->key_length / 4;
219 	unsigned int blocks;
220 
221 	while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
222 		kernel_neon_begin();
223 		aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
224 				ctx->key_enc, rounds, blocks, walk->iv);
225 		kernel_neon_end();
226 		err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
227 	}
228 	return err;
229 }
230 
231 static int __maybe_unused cbc_encrypt(struct skcipher_request *req)
232 {
233 	struct skcipher_walk walk;
234 	int err;
235 
236 	err = skcipher_walk_virt(&walk, req, false);
237 	if (err)
238 		return err;
239 	return cbc_encrypt_walk(req, &walk);
240 }
241 
242 static int cbc_decrypt_walk(struct skcipher_request *req,
243 			    struct skcipher_walk *walk)
244 {
245 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
246 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
247 	int err = 0, rounds = 6 + ctx->key_length / 4;
248 	unsigned int blocks;
249 
250 	while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
251 		kernel_neon_begin();
252 		aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
253 				ctx->key_dec, rounds, blocks, walk->iv);
254 		kernel_neon_end();
255 		err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
256 	}
257 	return err;
258 }
259 
260 static int __maybe_unused cbc_decrypt(struct skcipher_request *req)
261 {
262 	struct skcipher_walk walk;
263 	int err;
264 
265 	err = skcipher_walk_virt(&walk, req, false);
266 	if (err)
267 		return err;
268 	return cbc_decrypt_walk(req, &walk);
269 }
270 
271 static int cts_cbc_encrypt(struct skcipher_request *req)
272 {
273 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
274 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
275 	int err, rounds = 6 + ctx->key_length / 4;
276 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
277 	struct scatterlist *src = req->src, *dst = req->dst;
278 	struct scatterlist sg_src[2], sg_dst[2];
279 	struct skcipher_request subreq;
280 	struct skcipher_walk walk;
281 
282 	skcipher_request_set_tfm(&subreq, tfm);
283 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
284 				      NULL, NULL);
285 
286 	if (req->cryptlen <= AES_BLOCK_SIZE) {
287 		if (req->cryptlen < AES_BLOCK_SIZE)
288 			return -EINVAL;
289 		cbc_blocks = 1;
290 	}
291 
292 	if (cbc_blocks > 0) {
293 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
294 					   cbc_blocks * AES_BLOCK_SIZE,
295 					   req->iv);
296 
297 		err = skcipher_walk_virt(&walk, &subreq, false) ?:
298 		      cbc_encrypt_walk(&subreq, &walk);
299 		if (err)
300 			return err;
301 
302 		if (req->cryptlen == AES_BLOCK_SIZE)
303 			return 0;
304 
305 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
306 		if (req->dst != req->src)
307 			dst = scatterwalk_ffwd(sg_dst, req->dst,
308 					       subreq.cryptlen);
309 	}
310 
311 	/* handle ciphertext stealing */
312 	skcipher_request_set_crypt(&subreq, src, dst,
313 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
314 				   req->iv);
315 
316 	err = skcipher_walk_virt(&walk, &subreq, false);
317 	if (err)
318 		return err;
319 
320 	kernel_neon_begin();
321 	aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
322 			    ctx->key_enc, rounds, walk.nbytes, walk.iv);
323 	kernel_neon_end();
324 
325 	return skcipher_walk_done(&walk, 0);
326 }
327 
328 static int cts_cbc_decrypt(struct skcipher_request *req)
329 {
330 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
331 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
332 	int err, rounds = 6 + ctx->key_length / 4;
333 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
334 	struct scatterlist *src = req->src, *dst = req->dst;
335 	struct scatterlist sg_src[2], sg_dst[2];
336 	struct skcipher_request subreq;
337 	struct skcipher_walk walk;
338 
339 	skcipher_request_set_tfm(&subreq, tfm);
340 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
341 				      NULL, NULL);
342 
343 	if (req->cryptlen <= AES_BLOCK_SIZE) {
344 		if (req->cryptlen < AES_BLOCK_SIZE)
345 			return -EINVAL;
346 		cbc_blocks = 1;
347 	}
348 
349 	if (cbc_blocks > 0) {
350 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
351 					   cbc_blocks * AES_BLOCK_SIZE,
352 					   req->iv);
353 
354 		err = skcipher_walk_virt(&walk, &subreq, false) ?:
355 		      cbc_decrypt_walk(&subreq, &walk);
356 		if (err)
357 			return err;
358 
359 		if (req->cryptlen == AES_BLOCK_SIZE)
360 			return 0;
361 
362 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
363 		if (req->dst != req->src)
364 			dst = scatterwalk_ffwd(sg_dst, req->dst,
365 					       subreq.cryptlen);
366 	}
367 
368 	/* handle ciphertext stealing */
369 	skcipher_request_set_crypt(&subreq, src, dst,
370 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
371 				   req->iv);
372 
373 	err = skcipher_walk_virt(&walk, &subreq, false);
374 	if (err)
375 		return err;
376 
377 	kernel_neon_begin();
378 	aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
379 			    ctx->key_dec, rounds, walk.nbytes, walk.iv);
380 	kernel_neon_end();
381 
382 	return skcipher_walk_done(&walk, 0);
383 }
384 
385 static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm)
386 {
387 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
388 
389 	ctx->hash = crypto_alloc_shash("sha256", 0, 0);
390 
391 	return PTR_ERR_OR_ZERO(ctx->hash);
392 }
393 
394 static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm)
395 {
396 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
397 
398 	crypto_free_shash(ctx->hash);
399 }
400 
401 static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req)
402 {
403 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
404 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
405 	int err, rounds = 6 + ctx->key1.key_length / 4;
406 	struct skcipher_walk walk;
407 	unsigned int blocks;
408 
409 	err = skcipher_walk_virt(&walk, req, false);
410 
411 	blocks = walk.nbytes / AES_BLOCK_SIZE;
412 	if (blocks) {
413 		kernel_neon_begin();
414 		aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
415 				      ctx->key1.key_enc, rounds, blocks,
416 				      req->iv, ctx->key2.key_enc);
417 		kernel_neon_end();
418 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
419 	}
420 	return err ?: cbc_encrypt_walk(req, &walk);
421 }
422 
423 static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
424 {
425 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
426 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
427 	int err, rounds = 6 + ctx->key1.key_length / 4;
428 	struct skcipher_walk walk;
429 	unsigned int blocks;
430 
431 	err = skcipher_walk_virt(&walk, req, false);
432 
433 	blocks = walk.nbytes / AES_BLOCK_SIZE;
434 	if (blocks) {
435 		kernel_neon_begin();
436 		aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
437 				      ctx->key1.key_dec, rounds, blocks,
438 				      req->iv, ctx->key2.key_enc);
439 		kernel_neon_end();
440 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
441 	}
442 	return err ?: cbc_decrypt_walk(req, &walk);
443 }
444 
445 static int ctr_encrypt(struct skcipher_request *req)
446 {
447 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
448 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
449 	int err, rounds = 6 + ctx->key_length / 4;
450 	struct skcipher_walk walk;
451 	int blocks;
452 
453 	err = skcipher_walk_virt(&walk, req, false);
454 
455 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
456 		kernel_neon_begin();
457 		aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
458 				ctx->key_enc, rounds, blocks, walk.iv);
459 		kernel_neon_end();
460 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
461 	}
462 	if (walk.nbytes) {
463 		u8 __aligned(8) tail[AES_BLOCK_SIZE];
464 		unsigned int nbytes = walk.nbytes;
465 		u8 *tdst = walk.dst.virt.addr;
466 		u8 *tsrc = walk.src.virt.addr;
467 
468 		/*
469 		 * Tell aes_ctr_encrypt() to process a tail block.
470 		 */
471 		blocks = -1;
472 
473 		kernel_neon_begin();
474 		aes_ctr_encrypt(tail, NULL, ctx->key_enc, rounds,
475 				blocks, walk.iv);
476 		kernel_neon_end();
477 		crypto_xor_cpy(tdst, tsrc, tail, nbytes);
478 		err = skcipher_walk_done(&walk, 0);
479 	}
480 
481 	return err;
482 }
483 
484 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
485 {
486 	const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
487 	unsigned long flags;
488 
489 	/*
490 	 * Temporarily disable interrupts to avoid races where
491 	 * cachelines are evicted when the CPU is interrupted
492 	 * to do something else.
493 	 */
494 	local_irq_save(flags);
495 	aes_encrypt(ctx, dst, src);
496 	local_irq_restore(flags);
497 }
498 
499 static int __maybe_unused ctr_encrypt_sync(struct skcipher_request *req)
500 {
501 	if (!crypto_simd_usable())
502 		return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
503 
504 	return ctr_encrypt(req);
505 }
506 
507 static int __maybe_unused xts_encrypt(struct skcipher_request *req)
508 {
509 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
510 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
511 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
512 	int tail = req->cryptlen % AES_BLOCK_SIZE;
513 	struct scatterlist sg_src[2], sg_dst[2];
514 	struct skcipher_request subreq;
515 	struct scatterlist *src, *dst;
516 	struct skcipher_walk walk;
517 
518 	if (req->cryptlen < AES_BLOCK_SIZE)
519 		return -EINVAL;
520 
521 	err = skcipher_walk_virt(&walk, req, false);
522 
523 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
524 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
525 					      AES_BLOCK_SIZE) - 2;
526 
527 		skcipher_walk_abort(&walk);
528 
529 		skcipher_request_set_tfm(&subreq, tfm);
530 		skcipher_request_set_callback(&subreq,
531 					      skcipher_request_flags(req),
532 					      NULL, NULL);
533 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
534 					   xts_blocks * AES_BLOCK_SIZE,
535 					   req->iv);
536 		req = &subreq;
537 		err = skcipher_walk_virt(&walk, req, false);
538 	} else {
539 		tail = 0;
540 	}
541 
542 	for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
543 		int nbytes = walk.nbytes;
544 
545 		if (walk.nbytes < walk.total)
546 			nbytes &= ~(AES_BLOCK_SIZE - 1);
547 
548 		kernel_neon_begin();
549 		aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
550 				ctx->key1.key_enc, rounds, nbytes,
551 				ctx->key2.key_enc, walk.iv, first);
552 		kernel_neon_end();
553 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
554 	}
555 
556 	if (err || likely(!tail))
557 		return err;
558 
559 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
560 	if (req->dst != req->src)
561 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
562 
563 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
564 				   req->iv);
565 
566 	err = skcipher_walk_virt(&walk, &subreq, false);
567 	if (err)
568 		return err;
569 
570 	kernel_neon_begin();
571 	aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
572 			ctx->key1.key_enc, rounds, walk.nbytes,
573 			ctx->key2.key_enc, walk.iv, first);
574 	kernel_neon_end();
575 
576 	return skcipher_walk_done(&walk, 0);
577 }
578 
579 static int __maybe_unused xts_decrypt(struct skcipher_request *req)
580 {
581 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
582 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
583 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
584 	int tail = req->cryptlen % AES_BLOCK_SIZE;
585 	struct scatterlist sg_src[2], sg_dst[2];
586 	struct skcipher_request subreq;
587 	struct scatterlist *src, *dst;
588 	struct skcipher_walk walk;
589 
590 	if (req->cryptlen < AES_BLOCK_SIZE)
591 		return -EINVAL;
592 
593 	err = skcipher_walk_virt(&walk, req, false);
594 
595 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
596 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
597 					      AES_BLOCK_SIZE) - 2;
598 
599 		skcipher_walk_abort(&walk);
600 
601 		skcipher_request_set_tfm(&subreq, tfm);
602 		skcipher_request_set_callback(&subreq,
603 					      skcipher_request_flags(req),
604 					      NULL, NULL);
605 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
606 					   xts_blocks * AES_BLOCK_SIZE,
607 					   req->iv);
608 		req = &subreq;
609 		err = skcipher_walk_virt(&walk, req, false);
610 	} else {
611 		tail = 0;
612 	}
613 
614 	for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
615 		int nbytes = walk.nbytes;
616 
617 		if (walk.nbytes < walk.total)
618 			nbytes &= ~(AES_BLOCK_SIZE - 1);
619 
620 		kernel_neon_begin();
621 		aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
622 				ctx->key1.key_dec, rounds, nbytes,
623 				ctx->key2.key_enc, walk.iv, first);
624 		kernel_neon_end();
625 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
626 	}
627 
628 	if (err || likely(!tail))
629 		return err;
630 
631 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
632 	if (req->dst != req->src)
633 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
634 
635 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
636 				   req->iv);
637 
638 	err = skcipher_walk_virt(&walk, &subreq, false);
639 	if (err)
640 		return err;
641 
642 
643 	kernel_neon_begin();
644 	aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
645 			ctx->key1.key_dec, rounds, walk.nbytes,
646 			ctx->key2.key_enc, walk.iv, first);
647 	kernel_neon_end();
648 
649 	return skcipher_walk_done(&walk, 0);
650 }
651 
652 static struct skcipher_alg aes_algs[] = { {
653 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !defined(CONFIG_CRYPTO_AES_ARM64_BS)
654 	.base = {
655 		.cra_name		= "__ecb(aes)",
656 		.cra_driver_name	= "__ecb-aes-" MODE,
657 		.cra_priority		= PRIO,
658 		.cra_flags		= CRYPTO_ALG_INTERNAL,
659 		.cra_blocksize		= AES_BLOCK_SIZE,
660 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
661 		.cra_module		= THIS_MODULE,
662 	},
663 	.min_keysize	= AES_MIN_KEY_SIZE,
664 	.max_keysize	= AES_MAX_KEY_SIZE,
665 	.setkey		= skcipher_aes_setkey,
666 	.encrypt	= ecb_encrypt,
667 	.decrypt	= ecb_decrypt,
668 }, {
669 	.base = {
670 		.cra_name		= "__cbc(aes)",
671 		.cra_driver_name	= "__cbc-aes-" MODE,
672 		.cra_priority		= PRIO,
673 		.cra_flags		= CRYPTO_ALG_INTERNAL,
674 		.cra_blocksize		= AES_BLOCK_SIZE,
675 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
676 		.cra_module		= THIS_MODULE,
677 	},
678 	.min_keysize	= AES_MIN_KEY_SIZE,
679 	.max_keysize	= AES_MAX_KEY_SIZE,
680 	.ivsize		= AES_BLOCK_SIZE,
681 	.setkey		= skcipher_aes_setkey,
682 	.encrypt	= cbc_encrypt,
683 	.decrypt	= cbc_decrypt,
684 }, {
685 	.base = {
686 		.cra_name		= "__ctr(aes)",
687 		.cra_driver_name	= "__ctr-aes-" MODE,
688 		.cra_priority		= PRIO,
689 		.cra_flags		= CRYPTO_ALG_INTERNAL,
690 		.cra_blocksize		= 1,
691 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
692 		.cra_module		= THIS_MODULE,
693 	},
694 	.min_keysize	= AES_MIN_KEY_SIZE,
695 	.max_keysize	= AES_MAX_KEY_SIZE,
696 	.ivsize		= AES_BLOCK_SIZE,
697 	.chunksize	= AES_BLOCK_SIZE,
698 	.setkey		= skcipher_aes_setkey,
699 	.encrypt	= ctr_encrypt,
700 	.decrypt	= ctr_encrypt,
701 }, {
702 	.base = {
703 		.cra_name		= "ctr(aes)",
704 		.cra_driver_name	= "ctr-aes-" MODE,
705 		.cra_priority		= PRIO - 1,
706 		.cra_blocksize		= 1,
707 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
708 		.cra_module		= THIS_MODULE,
709 	},
710 	.min_keysize	= AES_MIN_KEY_SIZE,
711 	.max_keysize	= AES_MAX_KEY_SIZE,
712 	.ivsize		= AES_BLOCK_SIZE,
713 	.chunksize	= AES_BLOCK_SIZE,
714 	.setkey		= skcipher_aes_setkey,
715 	.encrypt	= ctr_encrypt_sync,
716 	.decrypt	= ctr_encrypt_sync,
717 }, {
718 	.base = {
719 		.cra_name		= "__xts(aes)",
720 		.cra_driver_name	= "__xts-aes-" MODE,
721 		.cra_priority		= PRIO,
722 		.cra_flags		= CRYPTO_ALG_INTERNAL,
723 		.cra_blocksize		= AES_BLOCK_SIZE,
724 		.cra_ctxsize		= sizeof(struct crypto_aes_xts_ctx),
725 		.cra_module		= THIS_MODULE,
726 	},
727 	.min_keysize	= 2 * AES_MIN_KEY_SIZE,
728 	.max_keysize	= 2 * AES_MAX_KEY_SIZE,
729 	.ivsize		= AES_BLOCK_SIZE,
730 	.walksize	= 2 * AES_BLOCK_SIZE,
731 	.setkey		= xts_set_key,
732 	.encrypt	= xts_encrypt,
733 	.decrypt	= xts_decrypt,
734 }, {
735 #endif
736 	.base = {
737 		.cra_name		= "__cts(cbc(aes))",
738 		.cra_driver_name	= "__cts-cbc-aes-" MODE,
739 		.cra_priority		= PRIO,
740 		.cra_flags		= CRYPTO_ALG_INTERNAL,
741 		.cra_blocksize		= AES_BLOCK_SIZE,
742 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
743 		.cra_module		= THIS_MODULE,
744 	},
745 	.min_keysize	= AES_MIN_KEY_SIZE,
746 	.max_keysize	= AES_MAX_KEY_SIZE,
747 	.ivsize		= AES_BLOCK_SIZE,
748 	.walksize	= 2 * AES_BLOCK_SIZE,
749 	.setkey		= skcipher_aes_setkey,
750 	.encrypt	= cts_cbc_encrypt,
751 	.decrypt	= cts_cbc_decrypt,
752 }, {
753 	.base = {
754 		.cra_name		= "__essiv(cbc(aes),sha256)",
755 		.cra_driver_name	= "__essiv-cbc-aes-sha256-" MODE,
756 		.cra_priority		= PRIO + 1,
757 		.cra_flags		= CRYPTO_ALG_INTERNAL,
758 		.cra_blocksize		= AES_BLOCK_SIZE,
759 		.cra_ctxsize		= sizeof(struct crypto_aes_essiv_cbc_ctx),
760 		.cra_module		= THIS_MODULE,
761 	},
762 	.min_keysize	= AES_MIN_KEY_SIZE,
763 	.max_keysize	= AES_MAX_KEY_SIZE,
764 	.ivsize		= AES_BLOCK_SIZE,
765 	.setkey		= essiv_cbc_set_key,
766 	.encrypt	= essiv_cbc_encrypt,
767 	.decrypt	= essiv_cbc_decrypt,
768 	.init		= essiv_cbc_init_tfm,
769 	.exit		= essiv_cbc_exit_tfm,
770 } };
771 
772 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
773 			 unsigned int key_len)
774 {
775 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
776 
777 	return aes_expandkey(&ctx->key, in_key, key_len);
778 }
779 
780 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
781 {
782 	u64 a = be64_to_cpu(x->a);
783 	u64 b = be64_to_cpu(x->b);
784 
785 	y->a = cpu_to_be64((a << 1) | (b >> 63));
786 	y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
787 }
788 
789 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
790 		       unsigned int key_len)
791 {
792 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
793 	be128 *consts = (be128 *)ctx->consts;
794 	int rounds = 6 + key_len / 4;
795 	int err;
796 
797 	err = cbcmac_setkey(tfm, in_key, key_len);
798 	if (err)
799 		return err;
800 
801 	/* encrypt the zero vector */
802 	kernel_neon_begin();
803 	aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
804 			rounds, 1);
805 	kernel_neon_end();
806 
807 	cmac_gf128_mul_by_x(consts, consts);
808 	cmac_gf128_mul_by_x(consts + 1, consts);
809 
810 	return 0;
811 }
812 
813 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
814 		       unsigned int key_len)
815 {
816 	static u8 const ks[3][AES_BLOCK_SIZE] = {
817 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
818 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
819 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
820 	};
821 
822 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
823 	int rounds = 6 + key_len / 4;
824 	u8 key[AES_BLOCK_SIZE];
825 	int err;
826 
827 	err = cbcmac_setkey(tfm, in_key, key_len);
828 	if (err)
829 		return err;
830 
831 	kernel_neon_begin();
832 	aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
833 	aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
834 	kernel_neon_end();
835 
836 	return cbcmac_setkey(tfm, key, sizeof(key));
837 }
838 
839 static int mac_init(struct shash_desc *desc)
840 {
841 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
842 
843 	memset(ctx->dg, 0, AES_BLOCK_SIZE);
844 	ctx->len = 0;
845 
846 	return 0;
847 }
848 
849 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
850 			  u8 dg[], int enc_before, int enc_after)
851 {
852 	int rounds = 6 + ctx->key_length / 4;
853 
854 	if (crypto_simd_usable()) {
855 		kernel_neon_begin();
856 		aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
857 			       enc_after);
858 		kernel_neon_end();
859 	} else {
860 		if (enc_before)
861 			aes_encrypt(ctx, dg, dg);
862 
863 		while (blocks--) {
864 			crypto_xor(dg, in, AES_BLOCK_SIZE);
865 			in += AES_BLOCK_SIZE;
866 
867 			if (blocks || enc_after)
868 				aes_encrypt(ctx, dg, dg);
869 		}
870 	}
871 }
872 
873 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
874 {
875 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
876 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
877 
878 	while (len > 0) {
879 		unsigned int l;
880 
881 		if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
882 		    (ctx->len + len) > AES_BLOCK_SIZE) {
883 
884 			int blocks = len / AES_BLOCK_SIZE;
885 
886 			len %= AES_BLOCK_SIZE;
887 
888 			mac_do_update(&tctx->key, p, blocks, ctx->dg,
889 				      (ctx->len != 0), (len != 0));
890 
891 			p += blocks * AES_BLOCK_SIZE;
892 
893 			if (!len) {
894 				ctx->len = AES_BLOCK_SIZE;
895 				break;
896 			}
897 			ctx->len = 0;
898 		}
899 
900 		l = min(len, AES_BLOCK_SIZE - ctx->len);
901 
902 		if (l <= AES_BLOCK_SIZE) {
903 			crypto_xor(ctx->dg + ctx->len, p, l);
904 			ctx->len += l;
905 			len -= l;
906 			p += l;
907 		}
908 	}
909 
910 	return 0;
911 }
912 
913 static int cbcmac_final(struct shash_desc *desc, u8 *out)
914 {
915 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
916 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
917 
918 	mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
919 
920 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
921 
922 	return 0;
923 }
924 
925 static int cmac_final(struct shash_desc *desc, u8 *out)
926 {
927 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
928 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
929 	u8 *consts = tctx->consts;
930 
931 	if (ctx->len != AES_BLOCK_SIZE) {
932 		ctx->dg[ctx->len] ^= 0x80;
933 		consts += AES_BLOCK_SIZE;
934 	}
935 
936 	mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
937 
938 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
939 
940 	return 0;
941 }
942 
943 static struct shash_alg mac_algs[] = { {
944 	.base.cra_name		= "cmac(aes)",
945 	.base.cra_driver_name	= "cmac-aes-" MODE,
946 	.base.cra_priority	= PRIO,
947 	.base.cra_blocksize	= AES_BLOCK_SIZE,
948 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
949 				  2 * AES_BLOCK_SIZE,
950 	.base.cra_module	= THIS_MODULE,
951 
952 	.digestsize		= AES_BLOCK_SIZE,
953 	.init			= mac_init,
954 	.update			= mac_update,
955 	.final			= cmac_final,
956 	.setkey			= cmac_setkey,
957 	.descsize		= sizeof(struct mac_desc_ctx),
958 }, {
959 	.base.cra_name		= "xcbc(aes)",
960 	.base.cra_driver_name	= "xcbc-aes-" MODE,
961 	.base.cra_priority	= PRIO,
962 	.base.cra_blocksize	= AES_BLOCK_SIZE,
963 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
964 				  2 * AES_BLOCK_SIZE,
965 	.base.cra_module	= THIS_MODULE,
966 
967 	.digestsize		= AES_BLOCK_SIZE,
968 	.init			= mac_init,
969 	.update			= mac_update,
970 	.final			= cmac_final,
971 	.setkey			= xcbc_setkey,
972 	.descsize		= sizeof(struct mac_desc_ctx),
973 }, {
974 	.base.cra_name		= "cbcmac(aes)",
975 	.base.cra_driver_name	= "cbcmac-aes-" MODE,
976 	.base.cra_priority	= PRIO,
977 	.base.cra_blocksize	= 1,
978 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx),
979 	.base.cra_module	= THIS_MODULE,
980 
981 	.digestsize		= AES_BLOCK_SIZE,
982 	.init			= mac_init,
983 	.update			= mac_update,
984 	.final			= cbcmac_final,
985 	.setkey			= cbcmac_setkey,
986 	.descsize		= sizeof(struct mac_desc_ctx),
987 } };
988 
989 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
990 
991 static void aes_exit(void)
992 {
993 	int i;
994 
995 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
996 		if (aes_simd_algs[i])
997 			simd_skcipher_free(aes_simd_algs[i]);
998 
999 	crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
1000 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1001 }
1002 
1003 static int __init aes_init(void)
1004 {
1005 	struct simd_skcipher_alg *simd;
1006 	const char *basename;
1007 	const char *algname;
1008 	const char *drvname;
1009 	int err;
1010 	int i;
1011 
1012 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1013 	if (err)
1014 		return err;
1015 
1016 	err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
1017 	if (err)
1018 		goto unregister_ciphers;
1019 
1020 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1021 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
1022 			continue;
1023 
1024 		algname = aes_algs[i].base.cra_name + 2;
1025 		drvname = aes_algs[i].base.cra_driver_name + 2;
1026 		basename = aes_algs[i].base.cra_driver_name;
1027 		simd = simd_skcipher_create_compat(algname, drvname, basename);
1028 		err = PTR_ERR(simd);
1029 		if (IS_ERR(simd))
1030 			goto unregister_simds;
1031 
1032 		aes_simd_algs[i] = simd;
1033 	}
1034 
1035 	return 0;
1036 
1037 unregister_simds:
1038 	aes_exit();
1039 	return err;
1040 unregister_ciphers:
1041 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1042 	return err;
1043 }
1044 
1045 #ifdef USE_V8_CRYPTO_EXTENSIONS
1046 module_cpu_feature_match(AES, aes_init);
1047 #else
1048 module_init(aes_init);
1049 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
1050 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
1051 EXPORT_SYMBOL(neon_aes_xts_encrypt);
1052 EXPORT_SYMBOL(neon_aes_xts_decrypt);
1053 #endif
1054 module_exit(aes_exit);
1055