xref: /openbmc/linux/arch/arm64/crypto/aes-glue.c (revision 23966841)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
4  *
5  * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/hwcap.h>
10 #include <asm/simd.h>
11 #include <crypto/aes.h>
12 #include <crypto/ctr.h>
13 #include <crypto/internal/hash.h>
14 #include <crypto/internal/simd.h>
15 #include <crypto/internal/skcipher.h>
16 #include <crypto/scatterwalk.h>
17 #include <linux/module.h>
18 #include <linux/cpufeature.h>
19 #include <crypto/xts.h>
20 
21 #include "aes-ce-setkey.h"
22 
23 #ifdef USE_V8_CRYPTO_EXTENSIONS
24 #define MODE			"ce"
25 #define PRIO			300
26 #define aes_expandkey		ce_aes_expandkey
27 #define aes_ecb_encrypt		ce_aes_ecb_encrypt
28 #define aes_ecb_decrypt		ce_aes_ecb_decrypt
29 #define aes_cbc_encrypt		ce_aes_cbc_encrypt
30 #define aes_cbc_decrypt		ce_aes_cbc_decrypt
31 #define aes_cbc_cts_encrypt	ce_aes_cbc_cts_encrypt
32 #define aes_cbc_cts_decrypt	ce_aes_cbc_cts_decrypt
33 #define aes_ctr_encrypt		ce_aes_ctr_encrypt
34 #define aes_xts_encrypt		ce_aes_xts_encrypt
35 #define aes_xts_decrypt		ce_aes_xts_decrypt
36 #define aes_mac_update		ce_aes_mac_update
37 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
38 #else
39 #define MODE			"neon"
40 #define PRIO			200
41 #define aes_ecb_encrypt		neon_aes_ecb_encrypt
42 #define aes_ecb_decrypt		neon_aes_ecb_decrypt
43 #define aes_cbc_encrypt		neon_aes_cbc_encrypt
44 #define aes_cbc_decrypt		neon_aes_cbc_decrypt
45 #define aes_cbc_cts_encrypt	neon_aes_cbc_cts_encrypt
46 #define aes_cbc_cts_decrypt	neon_aes_cbc_cts_decrypt
47 #define aes_ctr_encrypt		neon_aes_ctr_encrypt
48 #define aes_xts_encrypt		neon_aes_xts_encrypt
49 #define aes_xts_decrypt		neon_aes_xts_decrypt
50 #define aes_mac_update		neon_aes_mac_update
51 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
52 MODULE_ALIAS_CRYPTO("ecb(aes)");
53 MODULE_ALIAS_CRYPTO("cbc(aes)");
54 MODULE_ALIAS_CRYPTO("ctr(aes)");
55 MODULE_ALIAS_CRYPTO("xts(aes)");
56 MODULE_ALIAS_CRYPTO("cmac(aes)");
57 MODULE_ALIAS_CRYPTO("xcbc(aes)");
58 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
59 #endif
60 
61 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
62 MODULE_LICENSE("GPL v2");
63 
64 /* defined in aes-modes.S */
65 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
66 				int rounds, int blocks);
67 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
68 				int rounds, int blocks);
69 
70 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
71 				int rounds, int blocks, u8 iv[]);
72 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
73 				int rounds, int blocks, u8 iv[]);
74 
75 asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
76 				int rounds, int bytes, u8 const iv[]);
77 asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
78 				int rounds, int bytes, u8 const iv[]);
79 
80 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
81 				int rounds, int blocks, u8 ctr[]);
82 
83 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
84 				int rounds, int blocks, u32 const rk2[], u8 iv[],
85 				int first);
86 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
87 				int rounds, int blocks, u32 const rk2[], u8 iv[],
88 				int first);
89 
90 asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
91 			       int blocks, u8 dg[], int enc_before,
92 			       int enc_after);
93 
94 struct cts_cbc_req_ctx {
95 	struct scatterlist sg_src[2];
96 	struct scatterlist sg_dst[2];
97 	struct skcipher_request subreq;
98 };
99 
100 struct crypto_aes_xts_ctx {
101 	struct crypto_aes_ctx key1;
102 	struct crypto_aes_ctx __aligned(8) key2;
103 };
104 
105 struct mac_tfm_ctx {
106 	struct crypto_aes_ctx key;
107 	u8 __aligned(8) consts[];
108 };
109 
110 struct mac_desc_ctx {
111 	unsigned int len;
112 	u8 dg[AES_BLOCK_SIZE];
113 };
114 
115 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
116 			       unsigned int key_len)
117 {
118 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
119 	int ret;
120 
121 	ret = aes_expandkey(ctx, in_key, key_len);
122 	if (ret)
123 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
124 
125 	return ret;
126 }
127 
128 static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
129 		       unsigned int key_len)
130 {
131 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
132 	int ret;
133 
134 	ret = xts_verify_key(tfm, in_key, key_len);
135 	if (ret)
136 		return ret;
137 
138 	ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
139 	if (!ret)
140 		ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
141 				    key_len / 2);
142 	if (!ret)
143 		return 0;
144 
145 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
146 	return -EINVAL;
147 }
148 
149 static int ecb_encrypt(struct skcipher_request *req)
150 {
151 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
152 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
153 	int err, rounds = 6 + ctx->key_length / 4;
154 	struct skcipher_walk walk;
155 	unsigned int blocks;
156 
157 	err = skcipher_walk_virt(&walk, req, false);
158 
159 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
160 		kernel_neon_begin();
161 		aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
162 				ctx->key_enc, rounds, blocks);
163 		kernel_neon_end();
164 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
165 	}
166 	return err;
167 }
168 
169 static int ecb_decrypt(struct skcipher_request *req)
170 {
171 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
172 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
173 	int err, rounds = 6 + ctx->key_length / 4;
174 	struct skcipher_walk walk;
175 	unsigned int blocks;
176 
177 	err = skcipher_walk_virt(&walk, req, false);
178 
179 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
180 		kernel_neon_begin();
181 		aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
182 				ctx->key_dec, rounds, blocks);
183 		kernel_neon_end();
184 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
185 	}
186 	return err;
187 }
188 
189 static int cbc_encrypt(struct skcipher_request *req)
190 {
191 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
192 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
193 	int err, rounds = 6 + ctx->key_length / 4;
194 	struct skcipher_walk walk;
195 	unsigned int blocks;
196 
197 	err = skcipher_walk_virt(&walk, req, false);
198 
199 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
200 		kernel_neon_begin();
201 		aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
202 				ctx->key_enc, rounds, blocks, walk.iv);
203 		kernel_neon_end();
204 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
205 	}
206 	return err;
207 }
208 
209 static int cbc_decrypt(struct skcipher_request *req)
210 {
211 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
212 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
213 	int err, rounds = 6 + ctx->key_length / 4;
214 	struct skcipher_walk walk;
215 	unsigned int blocks;
216 
217 	err = skcipher_walk_virt(&walk, req, false);
218 
219 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
220 		kernel_neon_begin();
221 		aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
222 				ctx->key_dec, rounds, blocks, walk.iv);
223 		kernel_neon_end();
224 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
225 	}
226 	return err;
227 }
228 
229 static int cts_cbc_init_tfm(struct crypto_skcipher *tfm)
230 {
231 	crypto_skcipher_set_reqsize(tfm, sizeof(struct cts_cbc_req_ctx));
232 	return 0;
233 }
234 
235 static int cts_cbc_encrypt(struct skcipher_request *req)
236 {
237 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
238 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
239 	struct cts_cbc_req_ctx *rctx = skcipher_request_ctx(req);
240 	int err, rounds = 6 + ctx->key_length / 4;
241 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
242 	struct scatterlist *src = req->src, *dst = req->dst;
243 	struct skcipher_walk walk;
244 
245 	skcipher_request_set_tfm(&rctx->subreq, tfm);
246 
247 	if (req->cryptlen <= AES_BLOCK_SIZE) {
248 		if (req->cryptlen < AES_BLOCK_SIZE)
249 			return -EINVAL;
250 		cbc_blocks = 1;
251 	}
252 
253 	if (cbc_blocks > 0) {
254 		unsigned int blocks;
255 
256 		skcipher_request_set_crypt(&rctx->subreq, req->src, req->dst,
257 					   cbc_blocks * AES_BLOCK_SIZE,
258 					   req->iv);
259 
260 		err = skcipher_walk_virt(&walk, &rctx->subreq, false);
261 
262 		while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
263 			kernel_neon_begin();
264 			aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
265 					ctx->key_enc, rounds, blocks, walk.iv);
266 			kernel_neon_end();
267 			err = skcipher_walk_done(&walk,
268 						 walk.nbytes % AES_BLOCK_SIZE);
269 		}
270 		if (err)
271 			return err;
272 
273 		if (req->cryptlen == AES_BLOCK_SIZE)
274 			return 0;
275 
276 		dst = src = scatterwalk_ffwd(rctx->sg_src, req->src,
277 					     rctx->subreq.cryptlen);
278 		if (req->dst != req->src)
279 			dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
280 					       rctx->subreq.cryptlen);
281 	}
282 
283 	/* handle ciphertext stealing */
284 	skcipher_request_set_crypt(&rctx->subreq, src, dst,
285 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
286 				   req->iv);
287 
288 	err = skcipher_walk_virt(&walk, &rctx->subreq, false);
289 	if (err)
290 		return err;
291 
292 	kernel_neon_begin();
293 	aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
294 			    ctx->key_enc, rounds, walk.nbytes, walk.iv);
295 	kernel_neon_end();
296 
297 	return skcipher_walk_done(&walk, 0);
298 }
299 
300 static int cts_cbc_decrypt(struct skcipher_request *req)
301 {
302 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
303 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
304 	struct cts_cbc_req_ctx *rctx = skcipher_request_ctx(req);
305 	int err, rounds = 6 + ctx->key_length / 4;
306 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
307 	struct scatterlist *src = req->src, *dst = req->dst;
308 	struct skcipher_walk walk;
309 
310 	skcipher_request_set_tfm(&rctx->subreq, tfm);
311 
312 	if (req->cryptlen <= AES_BLOCK_SIZE) {
313 		if (req->cryptlen < AES_BLOCK_SIZE)
314 			return -EINVAL;
315 		cbc_blocks = 1;
316 	}
317 
318 	if (cbc_blocks > 0) {
319 		unsigned int blocks;
320 
321 		skcipher_request_set_crypt(&rctx->subreq, req->src, req->dst,
322 					   cbc_blocks * AES_BLOCK_SIZE,
323 					   req->iv);
324 
325 		err = skcipher_walk_virt(&walk, &rctx->subreq, false);
326 
327 		while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
328 			kernel_neon_begin();
329 			aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
330 					ctx->key_dec, rounds, blocks, walk.iv);
331 			kernel_neon_end();
332 			err = skcipher_walk_done(&walk,
333 						 walk.nbytes % AES_BLOCK_SIZE);
334 		}
335 		if (err)
336 			return err;
337 
338 		if (req->cryptlen == AES_BLOCK_SIZE)
339 			return 0;
340 
341 		dst = src = scatterwalk_ffwd(rctx->sg_src, req->src,
342 					     rctx->subreq.cryptlen);
343 		if (req->dst != req->src)
344 			dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
345 					       rctx->subreq.cryptlen);
346 	}
347 
348 	/* handle ciphertext stealing */
349 	skcipher_request_set_crypt(&rctx->subreq, src, dst,
350 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
351 				   req->iv);
352 
353 	err = skcipher_walk_virt(&walk, &rctx->subreq, false);
354 	if (err)
355 		return err;
356 
357 	kernel_neon_begin();
358 	aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
359 			    ctx->key_dec, rounds, walk.nbytes, walk.iv);
360 	kernel_neon_end();
361 
362 	return skcipher_walk_done(&walk, 0);
363 }
364 
365 static int ctr_encrypt(struct skcipher_request *req)
366 {
367 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
368 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
369 	int err, rounds = 6 + ctx->key_length / 4;
370 	struct skcipher_walk walk;
371 	int blocks;
372 
373 	err = skcipher_walk_virt(&walk, req, false);
374 
375 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
376 		kernel_neon_begin();
377 		aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
378 				ctx->key_enc, rounds, blocks, walk.iv);
379 		kernel_neon_end();
380 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
381 	}
382 	if (walk.nbytes) {
383 		u8 __aligned(8) tail[AES_BLOCK_SIZE];
384 		unsigned int nbytes = walk.nbytes;
385 		u8 *tdst = walk.dst.virt.addr;
386 		u8 *tsrc = walk.src.virt.addr;
387 
388 		/*
389 		 * Tell aes_ctr_encrypt() to process a tail block.
390 		 */
391 		blocks = -1;
392 
393 		kernel_neon_begin();
394 		aes_ctr_encrypt(tail, NULL, ctx->key_enc, rounds,
395 				blocks, walk.iv);
396 		kernel_neon_end();
397 		crypto_xor_cpy(tdst, tsrc, tail, nbytes);
398 		err = skcipher_walk_done(&walk, 0);
399 	}
400 
401 	return err;
402 }
403 
404 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
405 {
406 	const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
407 	unsigned long flags;
408 
409 	/*
410 	 * Temporarily disable interrupts to avoid races where
411 	 * cachelines are evicted when the CPU is interrupted
412 	 * to do something else.
413 	 */
414 	local_irq_save(flags);
415 	aes_encrypt(ctx, dst, src);
416 	local_irq_restore(flags);
417 }
418 
419 static int ctr_encrypt_sync(struct skcipher_request *req)
420 {
421 	if (!crypto_simd_usable())
422 		return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
423 
424 	return ctr_encrypt(req);
425 }
426 
427 static int xts_encrypt(struct skcipher_request *req)
428 {
429 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
430 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
431 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
432 	struct skcipher_walk walk;
433 	unsigned int blocks;
434 
435 	err = skcipher_walk_virt(&walk, req, false);
436 
437 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
438 		kernel_neon_begin();
439 		aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
440 				ctx->key1.key_enc, rounds, blocks,
441 				ctx->key2.key_enc, walk.iv, first);
442 		kernel_neon_end();
443 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
444 	}
445 
446 	return err;
447 }
448 
449 static int xts_decrypt(struct skcipher_request *req)
450 {
451 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
452 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
453 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
454 	struct skcipher_walk walk;
455 	unsigned int blocks;
456 
457 	err = skcipher_walk_virt(&walk, req, false);
458 
459 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
460 		kernel_neon_begin();
461 		aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
462 				ctx->key1.key_dec, rounds, blocks,
463 				ctx->key2.key_enc, walk.iv, first);
464 		kernel_neon_end();
465 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
466 	}
467 
468 	return err;
469 }
470 
471 static struct skcipher_alg aes_algs[] = { {
472 	.base = {
473 		.cra_name		= "__ecb(aes)",
474 		.cra_driver_name	= "__ecb-aes-" MODE,
475 		.cra_priority		= PRIO,
476 		.cra_flags		= CRYPTO_ALG_INTERNAL,
477 		.cra_blocksize		= AES_BLOCK_SIZE,
478 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
479 		.cra_module		= THIS_MODULE,
480 	},
481 	.min_keysize	= AES_MIN_KEY_SIZE,
482 	.max_keysize	= AES_MAX_KEY_SIZE,
483 	.setkey		= skcipher_aes_setkey,
484 	.encrypt	= ecb_encrypt,
485 	.decrypt	= ecb_decrypt,
486 }, {
487 	.base = {
488 		.cra_name		= "__cbc(aes)",
489 		.cra_driver_name	= "__cbc-aes-" MODE,
490 		.cra_priority		= PRIO,
491 		.cra_flags		= CRYPTO_ALG_INTERNAL,
492 		.cra_blocksize		= AES_BLOCK_SIZE,
493 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
494 		.cra_module		= THIS_MODULE,
495 	},
496 	.min_keysize	= AES_MIN_KEY_SIZE,
497 	.max_keysize	= AES_MAX_KEY_SIZE,
498 	.ivsize		= AES_BLOCK_SIZE,
499 	.setkey		= skcipher_aes_setkey,
500 	.encrypt	= cbc_encrypt,
501 	.decrypt	= cbc_decrypt,
502 }, {
503 	.base = {
504 		.cra_name		= "__cts(cbc(aes))",
505 		.cra_driver_name	= "__cts-cbc-aes-" MODE,
506 		.cra_priority		= PRIO,
507 		.cra_flags		= CRYPTO_ALG_INTERNAL,
508 		.cra_blocksize		= AES_BLOCK_SIZE,
509 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
510 		.cra_module		= THIS_MODULE,
511 	},
512 	.min_keysize	= AES_MIN_KEY_SIZE,
513 	.max_keysize	= AES_MAX_KEY_SIZE,
514 	.ivsize		= AES_BLOCK_SIZE,
515 	.walksize	= 2 * AES_BLOCK_SIZE,
516 	.setkey		= skcipher_aes_setkey,
517 	.encrypt	= cts_cbc_encrypt,
518 	.decrypt	= cts_cbc_decrypt,
519 	.init		= cts_cbc_init_tfm,
520 }, {
521 	.base = {
522 		.cra_name		= "__ctr(aes)",
523 		.cra_driver_name	= "__ctr-aes-" MODE,
524 		.cra_priority		= PRIO,
525 		.cra_flags		= CRYPTO_ALG_INTERNAL,
526 		.cra_blocksize		= 1,
527 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
528 		.cra_module		= THIS_MODULE,
529 	},
530 	.min_keysize	= AES_MIN_KEY_SIZE,
531 	.max_keysize	= AES_MAX_KEY_SIZE,
532 	.ivsize		= AES_BLOCK_SIZE,
533 	.chunksize	= AES_BLOCK_SIZE,
534 	.setkey		= skcipher_aes_setkey,
535 	.encrypt	= ctr_encrypt,
536 	.decrypt	= ctr_encrypt,
537 }, {
538 	.base = {
539 		.cra_name		= "ctr(aes)",
540 		.cra_driver_name	= "ctr-aes-" MODE,
541 		.cra_priority		= PRIO - 1,
542 		.cra_blocksize		= 1,
543 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
544 		.cra_module		= THIS_MODULE,
545 	},
546 	.min_keysize	= AES_MIN_KEY_SIZE,
547 	.max_keysize	= AES_MAX_KEY_SIZE,
548 	.ivsize		= AES_BLOCK_SIZE,
549 	.chunksize	= AES_BLOCK_SIZE,
550 	.setkey		= skcipher_aes_setkey,
551 	.encrypt	= ctr_encrypt_sync,
552 	.decrypt	= ctr_encrypt_sync,
553 }, {
554 	.base = {
555 		.cra_name		= "__xts(aes)",
556 		.cra_driver_name	= "__xts-aes-" MODE,
557 		.cra_priority		= PRIO,
558 		.cra_flags		= CRYPTO_ALG_INTERNAL,
559 		.cra_blocksize		= AES_BLOCK_SIZE,
560 		.cra_ctxsize		= sizeof(struct crypto_aes_xts_ctx),
561 		.cra_module		= THIS_MODULE,
562 	},
563 	.min_keysize	= 2 * AES_MIN_KEY_SIZE,
564 	.max_keysize	= 2 * AES_MAX_KEY_SIZE,
565 	.ivsize		= AES_BLOCK_SIZE,
566 	.setkey		= xts_set_key,
567 	.encrypt	= xts_encrypt,
568 	.decrypt	= xts_decrypt,
569 } };
570 
571 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
572 			 unsigned int key_len)
573 {
574 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
575 	int err;
576 
577 	err = aes_expandkey(&ctx->key, in_key, key_len);
578 	if (err)
579 		crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
580 
581 	return err;
582 }
583 
584 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
585 {
586 	u64 a = be64_to_cpu(x->a);
587 	u64 b = be64_to_cpu(x->b);
588 
589 	y->a = cpu_to_be64((a << 1) | (b >> 63));
590 	y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
591 }
592 
593 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
594 		       unsigned int key_len)
595 {
596 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
597 	be128 *consts = (be128 *)ctx->consts;
598 	int rounds = 6 + key_len / 4;
599 	int err;
600 
601 	err = cbcmac_setkey(tfm, in_key, key_len);
602 	if (err)
603 		return err;
604 
605 	/* encrypt the zero vector */
606 	kernel_neon_begin();
607 	aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
608 			rounds, 1);
609 	kernel_neon_end();
610 
611 	cmac_gf128_mul_by_x(consts, consts);
612 	cmac_gf128_mul_by_x(consts + 1, consts);
613 
614 	return 0;
615 }
616 
617 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
618 		       unsigned int key_len)
619 {
620 	static u8 const ks[3][AES_BLOCK_SIZE] = {
621 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
622 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
623 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
624 	};
625 
626 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
627 	int rounds = 6 + key_len / 4;
628 	u8 key[AES_BLOCK_SIZE];
629 	int err;
630 
631 	err = cbcmac_setkey(tfm, in_key, key_len);
632 	if (err)
633 		return err;
634 
635 	kernel_neon_begin();
636 	aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
637 	aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
638 	kernel_neon_end();
639 
640 	return cbcmac_setkey(tfm, key, sizeof(key));
641 }
642 
643 static int mac_init(struct shash_desc *desc)
644 {
645 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
646 
647 	memset(ctx->dg, 0, AES_BLOCK_SIZE);
648 	ctx->len = 0;
649 
650 	return 0;
651 }
652 
653 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
654 			  u8 dg[], int enc_before, int enc_after)
655 {
656 	int rounds = 6 + ctx->key_length / 4;
657 
658 	if (crypto_simd_usable()) {
659 		kernel_neon_begin();
660 		aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
661 			       enc_after);
662 		kernel_neon_end();
663 	} else {
664 		if (enc_before)
665 			aes_encrypt(ctx, dg, dg);
666 
667 		while (blocks--) {
668 			crypto_xor(dg, in, AES_BLOCK_SIZE);
669 			in += AES_BLOCK_SIZE;
670 
671 			if (blocks || enc_after)
672 				aes_encrypt(ctx, dg, dg);
673 		}
674 	}
675 }
676 
677 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
678 {
679 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
680 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
681 
682 	while (len > 0) {
683 		unsigned int l;
684 
685 		if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
686 		    (ctx->len + len) > AES_BLOCK_SIZE) {
687 
688 			int blocks = len / AES_BLOCK_SIZE;
689 
690 			len %= AES_BLOCK_SIZE;
691 
692 			mac_do_update(&tctx->key, p, blocks, ctx->dg,
693 				      (ctx->len != 0), (len != 0));
694 
695 			p += blocks * AES_BLOCK_SIZE;
696 
697 			if (!len) {
698 				ctx->len = AES_BLOCK_SIZE;
699 				break;
700 			}
701 			ctx->len = 0;
702 		}
703 
704 		l = min(len, AES_BLOCK_SIZE - ctx->len);
705 
706 		if (l <= AES_BLOCK_SIZE) {
707 			crypto_xor(ctx->dg + ctx->len, p, l);
708 			ctx->len += l;
709 			len -= l;
710 			p += l;
711 		}
712 	}
713 
714 	return 0;
715 }
716 
717 static int cbcmac_final(struct shash_desc *desc, u8 *out)
718 {
719 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
720 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
721 
722 	mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
723 
724 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
725 
726 	return 0;
727 }
728 
729 static int cmac_final(struct shash_desc *desc, u8 *out)
730 {
731 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
732 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
733 	u8 *consts = tctx->consts;
734 
735 	if (ctx->len != AES_BLOCK_SIZE) {
736 		ctx->dg[ctx->len] ^= 0x80;
737 		consts += AES_BLOCK_SIZE;
738 	}
739 
740 	mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
741 
742 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
743 
744 	return 0;
745 }
746 
747 static struct shash_alg mac_algs[] = { {
748 	.base.cra_name		= "cmac(aes)",
749 	.base.cra_driver_name	= "cmac-aes-" MODE,
750 	.base.cra_priority	= PRIO,
751 	.base.cra_blocksize	= AES_BLOCK_SIZE,
752 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
753 				  2 * AES_BLOCK_SIZE,
754 	.base.cra_module	= THIS_MODULE,
755 
756 	.digestsize		= AES_BLOCK_SIZE,
757 	.init			= mac_init,
758 	.update			= mac_update,
759 	.final			= cmac_final,
760 	.setkey			= cmac_setkey,
761 	.descsize		= sizeof(struct mac_desc_ctx),
762 }, {
763 	.base.cra_name		= "xcbc(aes)",
764 	.base.cra_driver_name	= "xcbc-aes-" MODE,
765 	.base.cra_priority	= PRIO,
766 	.base.cra_blocksize	= AES_BLOCK_SIZE,
767 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
768 				  2 * AES_BLOCK_SIZE,
769 	.base.cra_module	= THIS_MODULE,
770 
771 	.digestsize		= AES_BLOCK_SIZE,
772 	.init			= mac_init,
773 	.update			= mac_update,
774 	.final			= cmac_final,
775 	.setkey			= xcbc_setkey,
776 	.descsize		= sizeof(struct mac_desc_ctx),
777 }, {
778 	.base.cra_name		= "cbcmac(aes)",
779 	.base.cra_driver_name	= "cbcmac-aes-" MODE,
780 	.base.cra_priority	= PRIO,
781 	.base.cra_blocksize	= 1,
782 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx),
783 	.base.cra_module	= THIS_MODULE,
784 
785 	.digestsize		= AES_BLOCK_SIZE,
786 	.init			= mac_init,
787 	.update			= mac_update,
788 	.final			= cbcmac_final,
789 	.setkey			= cbcmac_setkey,
790 	.descsize		= sizeof(struct mac_desc_ctx),
791 } };
792 
793 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
794 
795 static void aes_exit(void)
796 {
797 	int i;
798 
799 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
800 		if (aes_simd_algs[i])
801 			simd_skcipher_free(aes_simd_algs[i]);
802 
803 	crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
804 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
805 }
806 
807 static int __init aes_init(void)
808 {
809 	struct simd_skcipher_alg *simd;
810 	const char *basename;
811 	const char *algname;
812 	const char *drvname;
813 	int err;
814 	int i;
815 
816 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
817 	if (err)
818 		return err;
819 
820 	err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
821 	if (err)
822 		goto unregister_ciphers;
823 
824 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
825 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
826 			continue;
827 
828 		algname = aes_algs[i].base.cra_name + 2;
829 		drvname = aes_algs[i].base.cra_driver_name + 2;
830 		basename = aes_algs[i].base.cra_driver_name;
831 		simd = simd_skcipher_create_compat(algname, drvname, basename);
832 		err = PTR_ERR(simd);
833 		if (IS_ERR(simd))
834 			goto unregister_simds;
835 
836 		aes_simd_algs[i] = simd;
837 	}
838 
839 	return 0;
840 
841 unregister_simds:
842 	aes_exit();
843 	return err;
844 unregister_ciphers:
845 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
846 	return err;
847 }
848 
849 #ifdef USE_V8_CRYPTO_EXTENSIONS
850 module_cpu_feature_match(AES, aes_init);
851 #else
852 module_init(aes_init);
853 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
854 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
855 #endif
856 module_exit(aes_exit);
857