xref: /openbmc/linux/arch/arm64/crypto/aes-ce-glue.c (revision 9adc8050)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * aes-ce-cipher.c - core AES cipher using ARMv8 Crypto Extensions
4  *
5  * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <asm/unaligned.h>
11 #include <crypto/aes.h>
12 #include <crypto/internal/simd.h>
13 #include <linux/cpufeature.h>
14 #include <linux/crypto.h>
15 #include <linux/module.h>
16 
17 #include "aes-ce-setkey.h"
18 
19 MODULE_DESCRIPTION("Synchronous AES cipher using ARMv8 Crypto Extensions");
20 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
21 MODULE_LICENSE("GPL v2");
22 
23 asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
24 asmlinkage void __aes_arm64_decrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
25 
26 struct aes_block {
27 	u8 b[AES_BLOCK_SIZE];
28 };
29 
30 asmlinkage void __aes_ce_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
31 asmlinkage void __aes_ce_decrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
32 
33 asmlinkage u32 __aes_ce_sub(u32 l);
34 asmlinkage void __aes_ce_invert(struct aes_block *out,
35 				const struct aes_block *in);
36 
37 static int num_rounds(struct crypto_aes_ctx *ctx)
38 {
39 	/*
40 	 * # of rounds specified by AES:
41 	 * 128 bit key		10 rounds
42 	 * 192 bit key		12 rounds
43 	 * 256 bit key		14 rounds
44 	 * => n byte key	=> 6 + (n/4) rounds
45 	 */
46 	return 6 + ctx->key_length / 4;
47 }
48 
49 static void aes_cipher_encrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
50 {
51 	struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
52 
53 	if (!crypto_simd_usable()) {
54 		__aes_arm64_encrypt(ctx->key_enc, dst, src, num_rounds(ctx));
55 		return;
56 	}
57 
58 	kernel_neon_begin();
59 	__aes_ce_encrypt(ctx->key_enc, dst, src, num_rounds(ctx));
60 	kernel_neon_end();
61 }
62 
63 static void aes_cipher_decrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
64 {
65 	struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
66 
67 	if (!crypto_simd_usable()) {
68 		__aes_arm64_decrypt(ctx->key_dec, dst, src, num_rounds(ctx));
69 		return;
70 	}
71 
72 	kernel_neon_begin();
73 	__aes_ce_decrypt(ctx->key_dec, dst, src, num_rounds(ctx));
74 	kernel_neon_end();
75 }
76 
77 int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
78 		     unsigned int key_len)
79 {
80 	/*
81 	 * The AES key schedule round constants
82 	 */
83 	static u8 const rcon[] = {
84 		0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
85 	};
86 
87 	u32 kwords = key_len / sizeof(u32);
88 	struct aes_block *key_enc, *key_dec;
89 	int i, j;
90 
91 	if (key_len != AES_KEYSIZE_128 &&
92 	    key_len != AES_KEYSIZE_192 &&
93 	    key_len != AES_KEYSIZE_256)
94 		return -EINVAL;
95 
96 	ctx->key_length = key_len;
97 	for (i = 0; i < kwords; i++)
98 		ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
99 
100 	kernel_neon_begin();
101 	for (i = 0; i < sizeof(rcon); i++) {
102 		u32 *rki = ctx->key_enc + (i * kwords);
103 		u32 *rko = rki + kwords;
104 
105 		rko[0] = ror32(__aes_ce_sub(rki[kwords - 1]), 8) ^ rcon[i] ^ rki[0];
106 		rko[1] = rko[0] ^ rki[1];
107 		rko[2] = rko[1] ^ rki[2];
108 		rko[3] = rko[2] ^ rki[3];
109 
110 		if (key_len == AES_KEYSIZE_192) {
111 			if (i >= 7)
112 				break;
113 			rko[4] = rko[3] ^ rki[4];
114 			rko[5] = rko[4] ^ rki[5];
115 		} else if (key_len == AES_KEYSIZE_256) {
116 			if (i >= 6)
117 				break;
118 			rko[4] = __aes_ce_sub(rko[3]) ^ rki[4];
119 			rko[5] = rko[4] ^ rki[5];
120 			rko[6] = rko[5] ^ rki[6];
121 			rko[7] = rko[6] ^ rki[7];
122 		}
123 	}
124 
125 	/*
126 	 * Generate the decryption keys for the Equivalent Inverse Cipher.
127 	 * This involves reversing the order of the round keys, and applying
128 	 * the Inverse Mix Columns transformation on all but the first and
129 	 * the last one.
130 	 */
131 	key_enc = (struct aes_block *)ctx->key_enc;
132 	key_dec = (struct aes_block *)ctx->key_dec;
133 	j = num_rounds(ctx);
134 
135 	key_dec[0] = key_enc[j];
136 	for (i = 1, j--; j > 0; i++, j--)
137 		__aes_ce_invert(key_dec + i, key_enc + j);
138 	key_dec[i] = key_enc[0];
139 
140 	kernel_neon_end();
141 	return 0;
142 }
143 EXPORT_SYMBOL(ce_aes_expandkey);
144 
145 int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
146 		  unsigned int key_len)
147 {
148 	struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
149 	int ret;
150 
151 	ret = ce_aes_expandkey(ctx, in_key, key_len);
152 	if (!ret)
153 		return 0;
154 
155 	tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
156 	return -EINVAL;
157 }
158 EXPORT_SYMBOL(ce_aes_setkey);
159 
160 static struct crypto_alg aes_alg = {
161 	.cra_name		= "aes",
162 	.cra_driver_name	= "aes-ce",
163 	.cra_priority		= 250,
164 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
165 	.cra_blocksize		= AES_BLOCK_SIZE,
166 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
167 	.cra_module		= THIS_MODULE,
168 	.cra_cipher = {
169 		.cia_min_keysize	= AES_MIN_KEY_SIZE,
170 		.cia_max_keysize	= AES_MAX_KEY_SIZE,
171 		.cia_setkey		= ce_aes_setkey,
172 		.cia_encrypt		= aes_cipher_encrypt,
173 		.cia_decrypt		= aes_cipher_decrypt
174 	}
175 };
176 
177 static int __init aes_mod_init(void)
178 {
179 	return crypto_register_alg(&aes_alg);
180 }
181 
182 static void __exit aes_mod_exit(void)
183 {
184 	crypto_unregister_alg(&aes_alg);
185 }
186 
187 module_cpu_feature_match(AES, aes_mod_init);
188 module_exit(aes_mod_exit);
189