xref: /openbmc/linux/arch/arm64/Kconfig (revision fe17b91a7777df140d0f1433991da67ba658796c)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_EXTRA_PHDRS
14	select ARCH_BINFMT_ELF_STATE
15	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
16	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
17	select ARCH_ENABLE_MEMORY_HOTPLUG
18	select ARCH_ENABLE_MEMORY_HOTREMOVE
19	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
20	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
21	select ARCH_HAS_CACHE_LINE_SIZE
22	select ARCH_HAS_CURRENT_STACK_POINTER
23	select ARCH_HAS_DEBUG_VIRTUAL
24	select ARCH_HAS_DEBUG_VM_PGTABLE
25	select ARCH_HAS_DMA_PREP_COHERENT
26	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
27	select ARCH_HAS_FAST_MULTIPLIER
28	select ARCH_HAS_FORTIFY_SOURCE
29	select ARCH_HAS_GCOV_PROFILE_ALL
30	select ARCH_HAS_GIGANTIC_PAGE
31	select ARCH_HAS_KCOV
32	select ARCH_HAS_KEEPINITRD
33	select ARCH_HAS_MEMBARRIER_SYNC_CORE
34	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
35	select ARCH_HAS_PTE_DEVMAP
36	select ARCH_HAS_PTE_SPECIAL
37	select ARCH_HAS_SETUP_DMA_OPS
38	select ARCH_HAS_SET_DIRECT_MAP
39	select ARCH_HAS_SET_MEMORY
40	select ARCH_STACKWALK
41	select ARCH_HAS_STRICT_KERNEL_RWX
42	select ARCH_HAS_STRICT_MODULE_RWX
43	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
44	select ARCH_HAS_SYNC_DMA_FOR_CPU
45	select ARCH_HAS_SYSCALL_WRAPPER
46	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
47	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
48	select ARCH_HAS_VM_GET_PAGE_PROT
49	select ARCH_HAS_ZONE_DMA_SET if EXPERT
50	select ARCH_HAVE_ELF_PROT
51	select ARCH_HAVE_NMI_SAFE_CMPXCHG
52	select ARCH_INLINE_READ_LOCK if !PREEMPTION
53	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
54	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
55	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
56	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
57	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
58	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
60	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
61	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
62	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
64	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
65	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
66	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
68	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
69	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
70	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
71	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
72	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
74	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
75	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
76	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
78	select ARCH_KEEP_MEMBLOCK
79	select ARCH_USE_CMPXCHG_LOCKREF
80	select ARCH_USE_GNU_PROPERTY
81	select ARCH_USE_MEMTEST
82	select ARCH_USE_QUEUED_RWLOCKS
83	select ARCH_USE_QUEUED_SPINLOCKS
84	select ARCH_USE_SYM_ANNOTATIONS
85	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
86	select ARCH_SUPPORTS_HUGETLBFS
87	select ARCH_SUPPORTS_MEMORY_FAILURE
88	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
89	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
90	select ARCH_SUPPORTS_LTO_CLANG_THIN
91	select ARCH_SUPPORTS_CFI_CLANG
92	select ARCH_SUPPORTS_ATOMIC_RMW
93	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
94	select ARCH_SUPPORTS_NUMA_BALANCING
95	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
96	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
97	select ARCH_WANT_DEFAULT_BPF_JIT
98	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
99	select ARCH_WANT_FRAME_POINTERS
100	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
101	select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
102	select ARCH_WANT_LD_ORPHAN_WARN
103	select ARCH_WANTS_NO_INSTR
104	select ARCH_HAS_UBSAN_SANITIZE_ALL
105	select ARM_AMBA
106	select ARM_ARCH_TIMER
107	select ARM_GIC
108	select AUDIT_ARCH_COMPAT_GENERIC
109	select ARM_GIC_V2M if PCI
110	select ARM_GIC_V3
111	select ARM_GIC_V3_ITS if PCI
112	select ARM_PSCI_FW
113	select BUILDTIME_TABLE_SORT
114	select CLONE_BACKWARDS
115	select COMMON_CLK
116	select CPU_PM if (SUSPEND || CPU_IDLE)
117	select CRC32
118	select DCACHE_WORD_ACCESS
119	select DMA_DIRECT_REMAP
120	select EDAC_SUPPORT
121	select FRAME_POINTER
122	select GENERIC_ALLOCATOR
123	select GENERIC_ARCH_TOPOLOGY
124	select GENERIC_CLOCKEVENTS_BROADCAST
125	select GENERIC_CPU_AUTOPROBE
126	select GENERIC_CPU_VULNERABILITIES
127	select GENERIC_EARLY_IOREMAP
128	select GENERIC_IDLE_POLL_SETUP
129	select GENERIC_IRQ_IPI
130	select GENERIC_IRQ_PROBE
131	select GENERIC_IRQ_SHOW
132	select GENERIC_IRQ_SHOW_LEVEL
133	select GENERIC_LIB_DEVMEM_IS_ALLOWED
134	select GENERIC_PCI_IOMAP
135	select GENERIC_PTDUMP
136	select GENERIC_SCHED_CLOCK
137	select GENERIC_SMP_IDLE_THREAD
138	select GENERIC_TIME_VSYSCALL
139	select GENERIC_GETTIMEOFDAY
140	select GENERIC_VDSO_TIME_NS
141	select HARDIRQS_SW_RESEND
142	select HAVE_MOVE_PMD
143	select HAVE_MOVE_PUD
144	select HAVE_PCI
145	select HAVE_ACPI_APEI if (ACPI && EFI)
146	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
147	select HAVE_ARCH_AUDITSYSCALL
148	select HAVE_ARCH_BITREVERSE
149	select HAVE_ARCH_COMPILER_H
150	select HAVE_ARCH_HUGE_VMAP
151	select HAVE_ARCH_JUMP_LABEL
152	select HAVE_ARCH_JUMP_LABEL_RELATIVE
153	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
154	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
155	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
156	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
157	# Some instrumentation may be unsound, hence EXPERT
158	select HAVE_ARCH_KCSAN if EXPERT
159	select HAVE_ARCH_KFENCE
160	select HAVE_ARCH_KGDB
161	select HAVE_ARCH_MMAP_RND_BITS
162	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
163	select HAVE_ARCH_PREL32_RELOCATIONS
164	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
165	select HAVE_ARCH_SECCOMP_FILTER
166	select HAVE_ARCH_STACKLEAK
167	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
168	select HAVE_ARCH_TRACEHOOK
169	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
170	select HAVE_ARCH_VMAP_STACK
171	select HAVE_ARM_SMCCC
172	select HAVE_ASM_MODVERSIONS
173	select HAVE_EBPF_JIT
174	select HAVE_C_RECORDMCOUNT
175	select HAVE_CMPXCHG_DOUBLE
176	select HAVE_CMPXCHG_LOCAL
177	select HAVE_CONTEXT_TRACKING
178	select HAVE_DEBUG_KMEMLEAK
179	select HAVE_DMA_CONTIGUOUS
180	select HAVE_DYNAMIC_FTRACE
181	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
182		if DYNAMIC_FTRACE_WITH_REGS
183	select HAVE_EFFICIENT_UNALIGNED_ACCESS
184	select HAVE_FAST_GUP
185	select HAVE_FTRACE_MCOUNT_RECORD
186	select HAVE_FUNCTION_TRACER
187	select HAVE_FUNCTION_ERROR_INJECTION
188	select HAVE_FUNCTION_GRAPH_TRACER
189	select HAVE_GCC_PLUGINS
190	select HAVE_HW_BREAKPOINT if PERF_EVENTS
191	select HAVE_IRQ_TIME_ACCOUNTING
192	select HAVE_KVM
193	select HAVE_NMI
194	select HAVE_PATA_PLATFORM
195	select HAVE_PERF_EVENTS
196	select HAVE_PERF_REGS
197	select HAVE_PERF_USER_STACK_DUMP
198	select HAVE_PREEMPT_DYNAMIC_KEY
199	select HAVE_REGS_AND_STACK_ACCESS_API
200	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
201	select HAVE_FUNCTION_ARG_ACCESS_API
202	select MMU_GATHER_RCU_TABLE_FREE
203	select HAVE_RSEQ
204	select HAVE_STACKPROTECTOR
205	select HAVE_SYSCALL_TRACEPOINTS
206	select HAVE_KPROBES
207	select HAVE_KRETPROBES
208	select HAVE_GENERIC_VDSO
209	select IOMMU_DMA if IOMMU_SUPPORT
210	select IRQ_DOMAIN
211	select IRQ_FORCED_THREADING
212	select KASAN_VMALLOC if KASAN
213	select MODULES_USE_ELF_RELA
214	select NEED_DMA_MAP_STATE
215	select NEED_SG_DMA_LENGTH
216	select OF
217	select OF_EARLY_FLATTREE
218	select PCI_DOMAINS_GENERIC if PCI
219	select PCI_ECAM if (ACPI && PCI)
220	select PCI_SYSCALL if PCI
221	select POWER_RESET
222	select POWER_SUPPLY
223	select SPARSE_IRQ
224	select SWIOTLB
225	select SYSCTL_EXCEPTION_TRACE
226	select THREAD_INFO_IN_TASK
227	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
228	select TRACE_IRQFLAGS_SUPPORT
229	help
230	  ARM 64-bit (AArch64) Linux support.
231
232config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
233	def_bool CC_IS_CLANG
234	# https://github.com/ClangBuiltLinux/linux/issues/1507
235	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
236	select HAVE_DYNAMIC_FTRACE_WITH_REGS
237
238config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
239	def_bool CC_IS_GCC
240	depends on $(cc-option,-fpatchable-function-entry=2)
241	select HAVE_DYNAMIC_FTRACE_WITH_REGS
242
243config 64BIT
244	def_bool y
245
246config MMU
247	def_bool y
248
249config ARM64_PAGE_SHIFT
250	int
251	default 16 if ARM64_64K_PAGES
252	default 14 if ARM64_16K_PAGES
253	default 12
254
255config ARM64_CONT_PTE_SHIFT
256	int
257	default 5 if ARM64_64K_PAGES
258	default 7 if ARM64_16K_PAGES
259	default 4
260
261config ARM64_CONT_PMD_SHIFT
262	int
263	default 5 if ARM64_64K_PAGES
264	default 5 if ARM64_16K_PAGES
265	default 4
266
267config ARCH_MMAP_RND_BITS_MIN
268	default 14 if ARM64_64K_PAGES
269	default 16 if ARM64_16K_PAGES
270	default 18
271
272# max bits determined by the following formula:
273#  VA_BITS - PAGE_SHIFT - 3
274config ARCH_MMAP_RND_BITS_MAX
275	default 19 if ARM64_VA_BITS=36
276	default 24 if ARM64_VA_BITS=39
277	default 27 if ARM64_VA_BITS=42
278	default 30 if ARM64_VA_BITS=47
279	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
280	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
281	default 33 if ARM64_VA_BITS=48
282	default 14 if ARM64_64K_PAGES
283	default 16 if ARM64_16K_PAGES
284	default 18
285
286config ARCH_MMAP_RND_COMPAT_BITS_MIN
287	default 7 if ARM64_64K_PAGES
288	default 9 if ARM64_16K_PAGES
289	default 11
290
291config ARCH_MMAP_RND_COMPAT_BITS_MAX
292	default 16
293
294config NO_IOPORT_MAP
295	def_bool y if !PCI
296
297config STACKTRACE_SUPPORT
298	def_bool y
299
300config ILLEGAL_POINTER_VALUE
301	hex
302	default 0xdead000000000000
303
304config LOCKDEP_SUPPORT
305	def_bool y
306
307config GENERIC_BUG
308	def_bool y
309	depends on BUG
310
311config GENERIC_BUG_RELATIVE_POINTERS
312	def_bool y
313	depends on GENERIC_BUG
314
315config GENERIC_HWEIGHT
316	def_bool y
317
318config GENERIC_CSUM
319	def_bool y
320
321config GENERIC_CALIBRATE_DELAY
322	def_bool y
323
324config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
325	def_bool y
326
327config SMP
328	def_bool y
329
330config KERNEL_MODE_NEON
331	def_bool y
332
333config FIX_EARLYCON_MEM
334	def_bool y
335
336config PGTABLE_LEVELS
337	int
338	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
339	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
340	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
341	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
342	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
343	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
344
345config ARCH_SUPPORTS_UPROBES
346	def_bool y
347
348config ARCH_PROC_KCORE_TEXT
349	def_bool y
350
351config BROKEN_GAS_INST
352	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
353
354config KASAN_SHADOW_OFFSET
355	hex
356	depends on KASAN_GENERIC || KASAN_SW_TAGS
357	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
358	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
359	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
360	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
361	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
362	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
363	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
364	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
365	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
366	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
367	default 0xffffffffffffffff
368
369source "arch/arm64/Kconfig.platforms"
370
371menu "Kernel Features"
372
373menu "ARM errata workarounds via the alternatives framework"
374
375config ARM64_WORKAROUND_CLEAN_CACHE
376	bool
377
378config ARM64_ERRATUM_826319
379	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
380	default y
381	select ARM64_WORKAROUND_CLEAN_CACHE
382	help
383	  This option adds an alternative code sequence to work around ARM
384	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
385	  AXI master interface and an L2 cache.
386
387	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
388	  and is unable to accept a certain write via this interface, it will
389	  not progress on read data presented on the read data channel and the
390	  system can deadlock.
391
392	  The workaround promotes data cache clean instructions to
393	  data cache clean-and-invalidate.
394	  Please note that this does not necessarily enable the workaround,
395	  as it depends on the alternative framework, which will only patch
396	  the kernel if an affected CPU is detected.
397
398	  If unsure, say Y.
399
400config ARM64_ERRATUM_827319
401	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
402	default y
403	select ARM64_WORKAROUND_CLEAN_CACHE
404	help
405	  This option adds an alternative code sequence to work around ARM
406	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
407	  master interface and an L2 cache.
408
409	  Under certain conditions this erratum can cause a clean line eviction
410	  to occur at the same time as another transaction to the same address
411	  on the AMBA 5 CHI interface, which can cause data corruption if the
412	  interconnect reorders the two transactions.
413
414	  The workaround promotes data cache clean instructions to
415	  data cache clean-and-invalidate.
416	  Please note that this does not necessarily enable the workaround,
417	  as it depends on the alternative framework, which will only patch
418	  the kernel if an affected CPU is detected.
419
420	  If unsure, say Y.
421
422config ARM64_ERRATUM_824069
423	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
424	default y
425	select ARM64_WORKAROUND_CLEAN_CACHE
426	help
427	  This option adds an alternative code sequence to work around ARM
428	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
429	  to a coherent interconnect.
430
431	  If a Cortex-A53 processor is executing a store or prefetch for
432	  write instruction at the same time as a processor in another
433	  cluster is executing a cache maintenance operation to the same
434	  address, then this erratum might cause a clean cache line to be
435	  incorrectly marked as dirty.
436
437	  The workaround promotes data cache clean instructions to
438	  data cache clean-and-invalidate.
439	  Please note that this option does not necessarily enable the
440	  workaround, as it depends on the alternative framework, which will
441	  only patch the kernel if an affected CPU is detected.
442
443	  If unsure, say Y.
444
445config ARM64_ERRATUM_819472
446	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
447	default y
448	select ARM64_WORKAROUND_CLEAN_CACHE
449	help
450	  This option adds an alternative code sequence to work around ARM
451	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
452	  present when it is connected to a coherent interconnect.
453
454	  If the processor is executing a load and store exclusive sequence at
455	  the same time as a processor in another cluster is executing a cache
456	  maintenance operation to the same address, then this erratum might
457	  cause data corruption.
458
459	  The workaround promotes data cache clean instructions to
460	  data cache clean-and-invalidate.
461	  Please note that this does not necessarily enable the workaround,
462	  as it depends on the alternative framework, which will only patch
463	  the kernel if an affected CPU is detected.
464
465	  If unsure, say Y.
466
467config ARM64_ERRATUM_832075
468	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
469	default y
470	help
471	  This option adds an alternative code sequence to work around ARM
472	  erratum 832075 on Cortex-A57 parts up to r1p2.
473
474	  Affected Cortex-A57 parts might deadlock when exclusive load/store
475	  instructions to Write-Back memory are mixed with Device loads.
476
477	  The workaround is to promote device loads to use Load-Acquire
478	  semantics.
479	  Please note that this does not necessarily enable the workaround,
480	  as it depends on the alternative framework, which will only patch
481	  the kernel if an affected CPU is detected.
482
483	  If unsure, say Y.
484
485config ARM64_ERRATUM_834220
486	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
487	depends on KVM
488	default y
489	help
490	  This option adds an alternative code sequence to work around ARM
491	  erratum 834220 on Cortex-A57 parts up to r1p2.
492
493	  Affected Cortex-A57 parts might report a Stage 2 translation
494	  fault as the result of a Stage 1 fault for load crossing a
495	  page boundary when there is a permission or device memory
496	  alignment fault at Stage 1 and a translation fault at Stage 2.
497
498	  The workaround is to verify that the Stage 1 translation
499	  doesn't generate a fault before handling the Stage 2 fault.
500	  Please note that this does not necessarily enable the workaround,
501	  as it depends on the alternative framework, which will only patch
502	  the kernel if an affected CPU is detected.
503
504	  If unsure, say Y.
505
506config ARM64_ERRATUM_845719
507	bool "Cortex-A53: 845719: a load might read incorrect data"
508	depends on COMPAT
509	default y
510	help
511	  This option adds an alternative code sequence to work around ARM
512	  erratum 845719 on Cortex-A53 parts up to r0p4.
513
514	  When running a compat (AArch32) userspace on an affected Cortex-A53
515	  part, a load at EL0 from a virtual address that matches the bottom 32
516	  bits of the virtual address used by a recent load at (AArch64) EL1
517	  might return incorrect data.
518
519	  The workaround is to write the contextidr_el1 register on exception
520	  return to a 32-bit task.
521	  Please note that this does not necessarily enable the workaround,
522	  as it depends on the alternative framework, which will only patch
523	  the kernel if an affected CPU is detected.
524
525	  If unsure, say Y.
526
527config ARM64_ERRATUM_843419
528	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
529	default y
530	select ARM64_MODULE_PLTS if MODULES
531	help
532	  This option links the kernel with '--fix-cortex-a53-843419' and
533	  enables PLT support to replace certain ADRP instructions, which can
534	  cause subsequent memory accesses to use an incorrect address on
535	  Cortex-A53 parts up to r0p4.
536
537	  If unsure, say Y.
538
539config ARM64_LD_HAS_FIX_ERRATUM_843419
540	def_bool $(ld-option,--fix-cortex-a53-843419)
541
542config ARM64_ERRATUM_1024718
543	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
544	default y
545	help
546	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
547
548	  Affected Cortex-A55 cores (all revisions) could cause incorrect
549	  update of the hardware dirty bit when the DBM/AP bits are updated
550	  without a break-before-make. The workaround is to disable the usage
551	  of hardware DBM locally on the affected cores. CPUs not affected by
552	  this erratum will continue to use the feature.
553
554	  If unsure, say Y.
555
556config ARM64_ERRATUM_1418040
557	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
558	default y
559	depends on COMPAT
560	help
561	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
562	  errata 1188873 and 1418040.
563
564	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
565	  cause register corruption when accessing the timer registers
566	  from AArch32 userspace.
567
568	  If unsure, say Y.
569
570config ARM64_WORKAROUND_SPECULATIVE_AT
571	bool
572
573config ARM64_ERRATUM_1165522
574	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
575	default y
576	select ARM64_WORKAROUND_SPECULATIVE_AT
577	help
578	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
579
580	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
581	  corrupted TLBs by speculating an AT instruction during a guest
582	  context switch.
583
584	  If unsure, say Y.
585
586config ARM64_ERRATUM_1319367
587	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
588	default y
589	select ARM64_WORKAROUND_SPECULATIVE_AT
590	help
591	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
592	  and A72 erratum 1319367
593
594	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
595	  speculating an AT instruction during a guest context switch.
596
597	  If unsure, say Y.
598
599config ARM64_ERRATUM_1530923
600	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
601	default y
602	select ARM64_WORKAROUND_SPECULATIVE_AT
603	help
604	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
605
606	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
607	  corrupted TLBs by speculating an AT instruction during a guest
608	  context switch.
609
610	  If unsure, say Y.
611
612config ARM64_WORKAROUND_REPEAT_TLBI
613	bool
614
615config ARM64_ERRATUM_1286807
616	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
617	default y
618	select ARM64_WORKAROUND_REPEAT_TLBI
619	help
620	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
621
622	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
623	  address for a cacheable mapping of a location is being
624	  accessed by a core while another core is remapping the virtual
625	  address to a new physical page using the recommended
626	  break-before-make sequence, then under very rare circumstances
627	  TLBI+DSB completes before a read using the translation being
628	  invalidated has been observed by other observers. The
629	  workaround repeats the TLBI+DSB operation.
630
631config ARM64_ERRATUM_1463225
632	bool "Cortex-A76: Software Step might prevent interrupt recognition"
633	default y
634	help
635	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
636
637	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
638	  of a system call instruction (SVC) can prevent recognition of
639	  subsequent interrupts when software stepping is disabled in the
640	  exception handler of the system call and either kernel debugging
641	  is enabled or VHE is in use.
642
643	  Work around the erratum by triggering a dummy step exception
644	  when handling a system call from a task that is being stepped
645	  in a VHE configuration of the kernel.
646
647	  If unsure, say Y.
648
649config ARM64_ERRATUM_1542419
650	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
651	default y
652	help
653	  This option adds a workaround for ARM Neoverse-N1 erratum
654	  1542419.
655
656	  Affected Neoverse-N1 cores could execute a stale instruction when
657	  modified by another CPU. The workaround depends on a firmware
658	  counterpart.
659
660	  Workaround the issue by hiding the DIC feature from EL0. This
661	  forces user-space to perform cache maintenance.
662
663	  If unsure, say Y.
664
665config ARM64_ERRATUM_1508412
666	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
667	default y
668	help
669	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
670
671	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
672	  of a store-exclusive or read of PAR_EL1 and a load with device or
673	  non-cacheable memory attributes. The workaround depends on a firmware
674	  counterpart.
675
676	  KVM guests must also have the workaround implemented or they can
677	  deadlock the system.
678
679	  Work around the issue by inserting DMB SY barriers around PAR_EL1
680	  register reads and warning KVM users. The DMB barrier is sufficient
681	  to prevent a speculative PAR_EL1 read.
682
683	  If unsure, say Y.
684
685config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
686	bool
687
688config ARM64_ERRATUM_2051678
689	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
690	default y
691	help
692	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
693	  Affected Cortex-A510 might not respect the ordering rules for
694	  hardware update of the page table's dirty bit. The workaround
695	  is to not enable the feature on affected CPUs.
696
697	  If unsure, say Y.
698
699config ARM64_ERRATUM_2077057
700	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
701	default y
702	help
703	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
704	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
705	  expected, but a Pointer Authentication trap is taken instead. The
706	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
707	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
708
709	  This can only happen when EL2 is stepping EL1.
710
711	  When these conditions occur, the SPSR_EL2 value is unchanged from the
712	  previous guest entry, and can be restored from the in-memory copy.
713
714	  If unsure, say Y.
715
716config ARM64_ERRATUM_2119858
717	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
718	default y
719	depends on CORESIGHT_TRBE
720	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
721	help
722	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
723
724	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
725	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
726	  the event of a WRAP event.
727
728	  Work around the issue by always making sure we move the TRBPTR_EL1 by
729	  256 bytes before enabling the buffer and filling the first 256 bytes of
730	  the buffer with ETM ignore packets upon disabling.
731
732	  If unsure, say Y.
733
734config ARM64_ERRATUM_2139208
735	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
736	default y
737	depends on CORESIGHT_TRBE
738	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
739	help
740	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
741
742	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
743	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
744	  the event of a WRAP event.
745
746	  Work around the issue by always making sure we move the TRBPTR_EL1 by
747	  256 bytes before enabling the buffer and filling the first 256 bytes of
748	  the buffer with ETM ignore packets upon disabling.
749
750	  If unsure, say Y.
751
752config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
753	bool
754
755config ARM64_ERRATUM_2054223
756	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
757	default y
758	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
759	help
760	  Enable workaround for ARM Cortex-A710 erratum 2054223
761
762	  Affected cores may fail to flush the trace data on a TSB instruction, when
763	  the PE is in trace prohibited state. This will cause losing a few bytes
764	  of the trace cached.
765
766	  Workaround is to issue two TSB consecutively on affected cores.
767
768	  If unsure, say Y.
769
770config ARM64_ERRATUM_2067961
771	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
772	default y
773	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
774	help
775	  Enable workaround for ARM Neoverse-N2 erratum 2067961
776
777	  Affected cores may fail to flush the trace data on a TSB instruction, when
778	  the PE is in trace prohibited state. This will cause losing a few bytes
779	  of the trace cached.
780
781	  Workaround is to issue two TSB consecutively on affected cores.
782
783	  If unsure, say Y.
784
785config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
786	bool
787
788config ARM64_ERRATUM_2253138
789	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
790	depends on CORESIGHT_TRBE
791	default y
792	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
793	help
794	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
795
796	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
797	  for TRBE. Under some conditions, the TRBE might generate a write to the next
798	  virtually addressed page following the last page of the TRBE address space
799	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
800
801	  Work around this in the driver by always making sure that there is a
802	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
803
804	  If unsure, say Y.
805
806config ARM64_ERRATUM_2224489
807	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
808	depends on CORESIGHT_TRBE
809	default y
810	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
811	help
812	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
813
814	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
815	  for TRBE. Under some conditions, the TRBE might generate a write to the next
816	  virtually addressed page following the last page of the TRBE address space
817	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
818
819	  Work around this in the driver by always making sure that there is a
820	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
821
822	  If unsure, say Y.
823
824config ARM64_ERRATUM_2064142
825	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
826	depends on CORESIGHT_TRBE
827	default y
828	help
829	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
830
831	  Affected Cortex-A510 core might fail to write into system registers after the
832	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
833	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
834	  and TRBTRG_EL1 will be ignored and will not be effected.
835
836	  Work around this in the driver by executing TSB CSYNC and DSB after collection
837	  is stopped and before performing a system register write to one of the affected
838	  registers.
839
840	  If unsure, say Y.
841
842config ARM64_ERRATUM_2038923
843	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
844	depends on CORESIGHT_TRBE
845	default y
846	help
847	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
848
849	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
850	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
851	  might be corrupted. This happens after TRBE buffer has been enabled by setting
852	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
853	  execution changes from a context, in which trace is prohibited to one where it
854	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
855	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
856	  the trace buffer state might be corrupted.
857
858	  Work around this in the driver by preventing an inconsistent view of whether the
859	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
860	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
861	  two ISB instructions if no ERET is to take place.
862
863	  If unsure, say Y.
864
865config ARM64_ERRATUM_1902691
866	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
867	depends on CORESIGHT_TRBE
868	default y
869	help
870	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
871
872	  Affected Cortex-A510 core might cause trace data corruption, when being written
873	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
874	  trace data.
875
876	  Work around this problem in the driver by just preventing TRBE initialization on
877	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
878	  on such implementations. This will cover the kernel for any firmware that doesn't
879	  do this already.
880
881	  If unsure, say Y.
882
883config CAVIUM_ERRATUM_22375
884	bool "Cavium erratum 22375, 24313"
885	default y
886	help
887	  Enable workaround for errata 22375 and 24313.
888
889	  This implements two gicv3-its errata workarounds for ThunderX. Both
890	  with a small impact affecting only ITS table allocation.
891
892	    erratum 22375: only alloc 8MB table size
893	    erratum 24313: ignore memory access type
894
895	  The fixes are in ITS initialization and basically ignore memory access
896	  type and table size provided by the TYPER and BASER registers.
897
898	  If unsure, say Y.
899
900config CAVIUM_ERRATUM_23144
901	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
902	depends on NUMA
903	default y
904	help
905	  ITS SYNC command hang for cross node io and collections/cpu mapping.
906
907	  If unsure, say Y.
908
909config CAVIUM_ERRATUM_23154
910	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
911	default y
912	help
913	  The ThunderX GICv3 implementation requires a modified version for
914	  reading the IAR status to ensure data synchronization
915	  (access to icc_iar1_el1 is not sync'ed before and after).
916
917	  It also suffers from erratum 38545 (also present on Marvell's
918	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
919	  spuriously presented to the CPU interface.
920
921	  If unsure, say Y.
922
923config CAVIUM_ERRATUM_27456
924	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
925	default y
926	help
927	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
928	  instructions may cause the icache to become corrupted if it
929	  contains data for a non-current ASID.  The fix is to
930	  invalidate the icache when changing the mm context.
931
932	  If unsure, say Y.
933
934config CAVIUM_ERRATUM_30115
935	bool "Cavium erratum 30115: Guest may disable interrupts in host"
936	default y
937	help
938	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
939	  1.2, and T83 Pass 1.0, KVM guest execution may disable
940	  interrupts in host. Trapping both GICv3 group-0 and group-1
941	  accesses sidesteps the issue.
942
943	  If unsure, say Y.
944
945config CAVIUM_TX2_ERRATUM_219
946	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
947	default y
948	help
949	  On Cavium ThunderX2, a load, store or prefetch instruction between a
950	  TTBR update and the corresponding context synchronizing operation can
951	  cause a spurious Data Abort to be delivered to any hardware thread in
952	  the CPU core.
953
954	  Work around the issue by avoiding the problematic code sequence and
955	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
956	  trap handler performs the corresponding register access, skips the
957	  instruction and ensures context synchronization by virtue of the
958	  exception return.
959
960	  If unsure, say Y.
961
962config FUJITSU_ERRATUM_010001
963	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
964	default y
965	help
966	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
967	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
968	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
969	  This fault occurs under a specific hardware condition when a
970	  load/store instruction performs an address translation using:
971	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
972	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
973	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
974	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
975
976	  The workaround is to ensure these bits are clear in TCR_ELx.
977	  The workaround only affects the Fujitsu-A64FX.
978
979	  If unsure, say Y.
980
981config HISILICON_ERRATUM_161600802
982	bool "Hip07 161600802: Erroneous redistributor VLPI base"
983	default y
984	help
985	  The HiSilicon Hip07 SoC uses the wrong redistributor base
986	  when issued ITS commands such as VMOVP and VMAPP, and requires
987	  a 128kB offset to be applied to the target address in this commands.
988
989	  If unsure, say Y.
990
991config QCOM_FALKOR_ERRATUM_1003
992	bool "Falkor E1003: Incorrect translation due to ASID change"
993	default y
994	help
995	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
996	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
997	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
998	  then only for entries in the walk cache, since the leaf translation
999	  is unchanged. Work around the erratum by invalidating the walk cache
1000	  entries for the trampoline before entering the kernel proper.
1001
1002config QCOM_FALKOR_ERRATUM_1009
1003	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1004	default y
1005	select ARM64_WORKAROUND_REPEAT_TLBI
1006	help
1007	  On Falkor v1, the CPU may prematurely complete a DSB following a
1008	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1009	  one more time to fix the issue.
1010
1011	  If unsure, say Y.
1012
1013config QCOM_QDF2400_ERRATUM_0065
1014	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1015	default y
1016	help
1017	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1018	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1019	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1020
1021	  If unsure, say Y.
1022
1023config QCOM_FALKOR_ERRATUM_E1041
1024	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1025	default y
1026	help
1027	  Falkor CPU may speculatively fetch instructions from an improper
1028	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1029	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1030
1031	  If unsure, say Y.
1032
1033config NVIDIA_CARMEL_CNP_ERRATUM
1034	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1035	default y
1036	help
1037	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1038	  invalidate shared TLB entries installed by a different core, as it would
1039	  on standard ARM cores.
1040
1041	  If unsure, say Y.
1042
1043config SOCIONEXT_SYNQUACER_PREITS
1044	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1045	default y
1046	help
1047	  Socionext Synquacer SoCs implement a separate h/w block to generate
1048	  MSI doorbell writes with non-zero values for the device ID.
1049
1050	  If unsure, say Y.
1051
1052endmenu # "ARM errata workarounds via the alternatives framework"
1053
1054choice
1055	prompt "Page size"
1056	default ARM64_4K_PAGES
1057	help
1058	  Page size (translation granule) configuration.
1059
1060config ARM64_4K_PAGES
1061	bool "4KB"
1062	help
1063	  This feature enables 4KB pages support.
1064
1065config ARM64_16K_PAGES
1066	bool "16KB"
1067	help
1068	  The system will use 16KB pages support. AArch32 emulation
1069	  requires applications compiled with 16K (or a multiple of 16K)
1070	  aligned segments.
1071
1072config ARM64_64K_PAGES
1073	bool "64KB"
1074	help
1075	  This feature enables 64KB pages support (4KB by default)
1076	  allowing only two levels of page tables and faster TLB
1077	  look-up. AArch32 emulation requires applications compiled
1078	  with 64K aligned segments.
1079
1080endchoice
1081
1082choice
1083	prompt "Virtual address space size"
1084	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1085	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1086	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1087	help
1088	  Allows choosing one of multiple possible virtual address
1089	  space sizes. The level of translation table is determined by
1090	  a combination of page size and virtual address space size.
1091
1092config ARM64_VA_BITS_36
1093	bool "36-bit" if EXPERT
1094	depends on ARM64_16K_PAGES
1095
1096config ARM64_VA_BITS_39
1097	bool "39-bit"
1098	depends on ARM64_4K_PAGES
1099
1100config ARM64_VA_BITS_42
1101	bool "42-bit"
1102	depends on ARM64_64K_PAGES
1103
1104config ARM64_VA_BITS_47
1105	bool "47-bit"
1106	depends on ARM64_16K_PAGES
1107
1108config ARM64_VA_BITS_48
1109	bool "48-bit"
1110
1111config ARM64_VA_BITS_52
1112	bool "52-bit"
1113	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1114	help
1115	  Enable 52-bit virtual addressing for userspace when explicitly
1116	  requested via a hint to mmap(). The kernel will also use 52-bit
1117	  virtual addresses for its own mappings (provided HW support for
1118	  this feature is available, otherwise it reverts to 48-bit).
1119
1120	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1121	  ARMv8.3 Pointer Authentication will result in the PAC being
1122	  reduced from 7 bits to 3 bits, which may have a significant
1123	  impact on its susceptibility to brute-force attacks.
1124
1125	  If unsure, select 48-bit virtual addressing instead.
1126
1127endchoice
1128
1129config ARM64_FORCE_52BIT
1130	bool "Force 52-bit virtual addresses for userspace"
1131	depends on ARM64_VA_BITS_52 && EXPERT
1132	help
1133	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1134	  to maintain compatibility with older software by providing 48-bit VAs
1135	  unless a hint is supplied to mmap.
1136
1137	  This configuration option disables the 48-bit compatibility logic, and
1138	  forces all userspace addresses to be 52-bit on HW that supports it. One
1139	  should only enable this configuration option for stress testing userspace
1140	  memory management code. If unsure say N here.
1141
1142config ARM64_VA_BITS
1143	int
1144	default 36 if ARM64_VA_BITS_36
1145	default 39 if ARM64_VA_BITS_39
1146	default 42 if ARM64_VA_BITS_42
1147	default 47 if ARM64_VA_BITS_47
1148	default 48 if ARM64_VA_BITS_48
1149	default 52 if ARM64_VA_BITS_52
1150
1151choice
1152	prompt "Physical address space size"
1153	default ARM64_PA_BITS_48
1154	help
1155	  Choose the maximum physical address range that the kernel will
1156	  support.
1157
1158config ARM64_PA_BITS_48
1159	bool "48-bit"
1160
1161config ARM64_PA_BITS_52
1162	bool "52-bit (ARMv8.2)"
1163	depends on ARM64_64K_PAGES
1164	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1165	help
1166	  Enable support for a 52-bit physical address space, introduced as
1167	  part of the ARMv8.2-LPA extension.
1168
1169	  With this enabled, the kernel will also continue to work on CPUs that
1170	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1171	  minor performance overhead).
1172
1173endchoice
1174
1175config ARM64_PA_BITS
1176	int
1177	default 48 if ARM64_PA_BITS_48
1178	default 52 if ARM64_PA_BITS_52
1179
1180choice
1181	prompt "Endianness"
1182	default CPU_LITTLE_ENDIAN
1183	help
1184	  Select the endianness of data accesses performed by the CPU. Userspace
1185	  applications will need to be compiled and linked for the endianness
1186	  that is selected here.
1187
1188config CPU_BIG_ENDIAN
1189	bool "Build big-endian kernel"
1190	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1191	help
1192	  Say Y if you plan on running a kernel with a big-endian userspace.
1193
1194config CPU_LITTLE_ENDIAN
1195	bool "Build little-endian kernel"
1196	help
1197	  Say Y if you plan on running a kernel with a little-endian userspace.
1198	  This is usually the case for distributions targeting arm64.
1199
1200endchoice
1201
1202config SCHED_MC
1203	bool "Multi-core scheduler support"
1204	help
1205	  Multi-core scheduler support improves the CPU scheduler's decision
1206	  making when dealing with multi-core CPU chips at a cost of slightly
1207	  increased overhead in some places. If unsure say N here.
1208
1209config SCHED_CLUSTER
1210	bool "Cluster scheduler support"
1211	help
1212	  Cluster scheduler support improves the CPU scheduler's decision
1213	  making when dealing with machines that have clusters of CPUs.
1214	  Cluster usually means a couple of CPUs which are placed closely
1215	  by sharing mid-level caches, last-level cache tags or internal
1216	  busses.
1217
1218config SCHED_SMT
1219	bool "SMT scheduler support"
1220	help
1221	  Improves the CPU scheduler's decision making when dealing with
1222	  MultiThreading at a cost of slightly increased overhead in some
1223	  places. If unsure say N here.
1224
1225config NR_CPUS
1226	int "Maximum number of CPUs (2-4096)"
1227	range 2 4096
1228	default "256"
1229
1230config HOTPLUG_CPU
1231	bool "Support for hot-pluggable CPUs"
1232	select GENERIC_IRQ_MIGRATION
1233	help
1234	  Say Y here to experiment with turning CPUs off and on.  CPUs
1235	  can be controlled through /sys/devices/system/cpu.
1236
1237# Common NUMA Features
1238config NUMA
1239	bool "NUMA Memory Allocation and Scheduler Support"
1240	select GENERIC_ARCH_NUMA
1241	select ACPI_NUMA if ACPI
1242	select OF_NUMA
1243	select HAVE_SETUP_PER_CPU_AREA
1244	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1245	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1246	select USE_PERCPU_NUMA_NODE_ID
1247	help
1248	  Enable NUMA (Non-Uniform Memory Access) support.
1249
1250	  The kernel will try to allocate memory used by a CPU on the
1251	  local memory of the CPU and add some more
1252	  NUMA awareness to the kernel.
1253
1254config NODES_SHIFT
1255	int "Maximum NUMA Nodes (as a power of 2)"
1256	range 1 10
1257	default "4"
1258	depends on NUMA
1259	help
1260	  Specify the maximum number of NUMA Nodes available on the target
1261	  system.  Increases memory reserved to accommodate various tables.
1262
1263source "kernel/Kconfig.hz"
1264
1265config ARCH_SPARSEMEM_ENABLE
1266	def_bool y
1267	select SPARSEMEM_VMEMMAP_ENABLE
1268	select SPARSEMEM_VMEMMAP
1269
1270config HW_PERF_EVENTS
1271	def_bool y
1272	depends on ARM_PMU
1273
1274# Supported by clang >= 7.0 or GCC >= 12.0.0
1275config CC_HAVE_SHADOW_CALL_STACK
1276	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1277
1278config PARAVIRT
1279	bool "Enable paravirtualization code"
1280	help
1281	  This changes the kernel so it can modify itself when it is run
1282	  under a hypervisor, potentially improving performance significantly
1283	  over full virtualization.
1284
1285config PARAVIRT_TIME_ACCOUNTING
1286	bool "Paravirtual steal time accounting"
1287	select PARAVIRT
1288	help
1289	  Select this option to enable fine granularity task steal time
1290	  accounting. Time spent executing other tasks in parallel with
1291	  the current vCPU is discounted from the vCPU power. To account for
1292	  that, there can be a small performance impact.
1293
1294	  If in doubt, say N here.
1295
1296config KEXEC
1297	depends on PM_SLEEP_SMP
1298	select KEXEC_CORE
1299	bool "kexec system call"
1300	help
1301	  kexec is a system call that implements the ability to shutdown your
1302	  current kernel, and to start another kernel.  It is like a reboot
1303	  but it is independent of the system firmware.   And like a reboot
1304	  you can start any kernel with it, not just Linux.
1305
1306config KEXEC_FILE
1307	bool "kexec file based system call"
1308	select KEXEC_CORE
1309	select HAVE_IMA_KEXEC if IMA
1310	help
1311	  This is new version of kexec system call. This system call is
1312	  file based and takes file descriptors as system call argument
1313	  for kernel and initramfs as opposed to list of segments as
1314	  accepted by previous system call.
1315
1316config KEXEC_SIG
1317	bool "Verify kernel signature during kexec_file_load() syscall"
1318	depends on KEXEC_FILE
1319	help
1320	  Select this option to verify a signature with loaded kernel
1321	  image. If configured, any attempt of loading a image without
1322	  valid signature will fail.
1323
1324	  In addition to that option, you need to enable signature
1325	  verification for the corresponding kernel image type being
1326	  loaded in order for this to work.
1327
1328config KEXEC_IMAGE_VERIFY_SIG
1329	bool "Enable Image signature verification support"
1330	default y
1331	depends on KEXEC_SIG
1332	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1333	help
1334	  Enable Image signature verification support.
1335
1336comment "Support for PE file signature verification disabled"
1337	depends on KEXEC_SIG
1338	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1339
1340config CRASH_DUMP
1341	bool "Build kdump crash kernel"
1342	help
1343	  Generate crash dump after being started by kexec. This should
1344	  be normally only set in special crash dump kernels which are
1345	  loaded in the main kernel with kexec-tools into a specially
1346	  reserved region and then later executed after a crash by
1347	  kdump/kexec.
1348
1349	  For more details see Documentation/admin-guide/kdump/kdump.rst
1350
1351config TRANS_TABLE
1352	def_bool y
1353	depends on HIBERNATION || KEXEC_CORE
1354
1355config XEN_DOM0
1356	def_bool y
1357	depends on XEN
1358
1359config XEN
1360	bool "Xen guest support on ARM64"
1361	depends on ARM64 && OF
1362	select SWIOTLB_XEN
1363	select PARAVIRT
1364	help
1365	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1366
1367config FORCE_MAX_ZONEORDER
1368	int
1369	default "14" if ARM64_64K_PAGES
1370	default "12" if ARM64_16K_PAGES
1371	default "11"
1372	help
1373	  The kernel memory allocator divides physically contiguous memory
1374	  blocks into "zones", where each zone is a power of two number of
1375	  pages.  This option selects the largest power of two that the kernel
1376	  keeps in the memory allocator.  If you need to allocate very large
1377	  blocks of physically contiguous memory, then you may need to
1378	  increase this value.
1379
1380	  This config option is actually maximum order plus one. For example,
1381	  a value of 11 means that the largest free memory block is 2^10 pages.
1382
1383	  We make sure that we can allocate upto a HugePage size for each configuration.
1384	  Hence we have :
1385		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1386
1387	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1388	  4M allocations matching the default size used by generic code.
1389
1390config UNMAP_KERNEL_AT_EL0
1391	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1392	default y
1393	help
1394	  Speculation attacks against some high-performance processors can
1395	  be used to bypass MMU permission checks and leak kernel data to
1396	  userspace. This can be defended against by unmapping the kernel
1397	  when running in userspace, mapping it back in on exception entry
1398	  via a trampoline page in the vector table.
1399
1400	  If unsure, say Y.
1401
1402config MITIGATE_SPECTRE_BRANCH_HISTORY
1403	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1404	default y
1405	help
1406	  Speculation attacks against some high-performance processors can
1407	  make use of branch history to influence future speculation.
1408	  When taking an exception from user-space, a sequence of branches
1409	  or a firmware call overwrites the branch history.
1410
1411config RODATA_FULL_DEFAULT_ENABLED
1412	bool "Apply r/o permissions of VM areas also to their linear aliases"
1413	default y
1414	help
1415	  Apply read-only attributes of VM areas to the linear alias of
1416	  the backing pages as well. This prevents code or read-only data
1417	  from being modified (inadvertently or intentionally) via another
1418	  mapping of the same memory page. This additional enhancement can
1419	  be turned off at runtime by passing rodata=[off|on] (and turned on
1420	  with rodata=full if this option is set to 'n')
1421
1422	  This requires the linear region to be mapped down to pages,
1423	  which may adversely affect performance in some cases.
1424
1425config ARM64_SW_TTBR0_PAN
1426	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1427	help
1428	  Enabling this option prevents the kernel from accessing
1429	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1430	  zeroed area and reserved ASID. The user access routines
1431	  restore the valid TTBR0_EL1 temporarily.
1432
1433config ARM64_TAGGED_ADDR_ABI
1434	bool "Enable the tagged user addresses syscall ABI"
1435	default y
1436	help
1437	  When this option is enabled, user applications can opt in to a
1438	  relaxed ABI via prctl() allowing tagged addresses to be passed
1439	  to system calls as pointer arguments. For details, see
1440	  Documentation/arm64/tagged-address-abi.rst.
1441
1442menuconfig COMPAT
1443	bool "Kernel support for 32-bit EL0"
1444	depends on ARM64_4K_PAGES || EXPERT
1445	select HAVE_UID16
1446	select OLD_SIGSUSPEND3
1447	select COMPAT_OLD_SIGACTION
1448	help
1449	  This option enables support for a 32-bit EL0 running under a 64-bit
1450	  kernel at EL1. AArch32-specific components such as system calls,
1451	  the user helper functions, VFP support and the ptrace interface are
1452	  handled appropriately by the kernel.
1453
1454	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1455	  that you will only be able to execute AArch32 binaries that were compiled
1456	  with page size aligned segments.
1457
1458	  If you want to execute 32-bit userspace applications, say Y.
1459
1460if COMPAT
1461
1462config KUSER_HELPERS
1463	bool "Enable kuser helpers page for 32-bit applications"
1464	default y
1465	help
1466	  Warning: disabling this option may break 32-bit user programs.
1467
1468	  Provide kuser helpers to compat tasks. The kernel provides
1469	  helper code to userspace in read only form at a fixed location
1470	  to allow userspace to be independent of the CPU type fitted to
1471	  the system. This permits binaries to be run on ARMv4 through
1472	  to ARMv8 without modification.
1473
1474	  See Documentation/arm/kernel_user_helpers.rst for details.
1475
1476	  However, the fixed address nature of these helpers can be used
1477	  by ROP (return orientated programming) authors when creating
1478	  exploits.
1479
1480	  If all of the binaries and libraries which run on your platform
1481	  are built specifically for your platform, and make no use of
1482	  these helpers, then you can turn this option off to hinder
1483	  such exploits. However, in that case, if a binary or library
1484	  relying on those helpers is run, it will not function correctly.
1485
1486	  Say N here only if you are absolutely certain that you do not
1487	  need these helpers; otherwise, the safe option is to say Y.
1488
1489config COMPAT_VDSO
1490	bool "Enable vDSO for 32-bit applications"
1491	depends on !CPU_BIG_ENDIAN
1492	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1493	select GENERIC_COMPAT_VDSO
1494	default y
1495	help
1496	  Place in the process address space of 32-bit applications an
1497	  ELF shared object providing fast implementations of gettimeofday
1498	  and clock_gettime.
1499
1500	  You must have a 32-bit build of glibc 2.22 or later for programs
1501	  to seamlessly take advantage of this.
1502
1503config THUMB2_COMPAT_VDSO
1504	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1505	depends on COMPAT_VDSO
1506	default y
1507	help
1508	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1509	  otherwise with '-marm'.
1510
1511menuconfig ARMV8_DEPRECATED
1512	bool "Emulate deprecated/obsolete ARMv8 instructions"
1513	depends on SYSCTL
1514	help
1515	  Legacy software support may require certain instructions
1516	  that have been deprecated or obsoleted in the architecture.
1517
1518	  Enable this config to enable selective emulation of these
1519	  features.
1520
1521	  If unsure, say Y
1522
1523if ARMV8_DEPRECATED
1524
1525config SWP_EMULATION
1526	bool "Emulate SWP/SWPB instructions"
1527	help
1528	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1529	  they are always undefined. Say Y here to enable software
1530	  emulation of these instructions for userspace using LDXR/STXR.
1531	  This feature can be controlled at runtime with the abi.swp
1532	  sysctl which is disabled by default.
1533
1534	  In some older versions of glibc [<=2.8] SWP is used during futex
1535	  trylock() operations with the assumption that the code will not
1536	  be preempted. This invalid assumption may be more likely to fail
1537	  with SWP emulation enabled, leading to deadlock of the user
1538	  application.
1539
1540	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1541	  on an external transaction monitoring block called a global
1542	  monitor to maintain update atomicity. If your system does not
1543	  implement a global monitor, this option can cause programs that
1544	  perform SWP operations to uncached memory to deadlock.
1545
1546	  If unsure, say Y
1547
1548config CP15_BARRIER_EMULATION
1549	bool "Emulate CP15 Barrier instructions"
1550	help
1551	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1552	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1553	  strongly recommended to use the ISB, DSB, and DMB
1554	  instructions instead.
1555
1556	  Say Y here to enable software emulation of these
1557	  instructions for AArch32 userspace code. When this option is
1558	  enabled, CP15 barrier usage is traced which can help
1559	  identify software that needs updating. This feature can be
1560	  controlled at runtime with the abi.cp15_barrier sysctl.
1561
1562	  If unsure, say Y
1563
1564config SETEND_EMULATION
1565	bool "Emulate SETEND instruction"
1566	help
1567	  The SETEND instruction alters the data-endianness of the
1568	  AArch32 EL0, and is deprecated in ARMv8.
1569
1570	  Say Y here to enable software emulation of the instruction
1571	  for AArch32 userspace code. This feature can be controlled
1572	  at runtime with the abi.setend sysctl.
1573
1574	  Note: All the cpus on the system must have mixed endian support at EL0
1575	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1576	  endian - is hotplugged in after this feature has been enabled, there could
1577	  be unexpected results in the applications.
1578
1579	  If unsure, say Y
1580endif # ARMV8_DEPRECATED
1581
1582endif # COMPAT
1583
1584menu "ARMv8.1 architectural features"
1585
1586config ARM64_HW_AFDBM
1587	bool "Support for hardware updates of the Access and Dirty page flags"
1588	default y
1589	help
1590	  The ARMv8.1 architecture extensions introduce support for
1591	  hardware updates of the access and dirty information in page
1592	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1593	  capable processors, accesses to pages with PTE_AF cleared will
1594	  set this bit instead of raising an access flag fault.
1595	  Similarly, writes to read-only pages with the DBM bit set will
1596	  clear the read-only bit (AP[2]) instead of raising a
1597	  permission fault.
1598
1599	  Kernels built with this configuration option enabled continue
1600	  to work on pre-ARMv8.1 hardware and the performance impact is
1601	  minimal. If unsure, say Y.
1602
1603config ARM64_PAN
1604	bool "Enable support for Privileged Access Never (PAN)"
1605	default y
1606	help
1607	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1608	  prevents the kernel or hypervisor from accessing user-space (EL0)
1609	  memory directly.
1610
1611	  Choosing this option will cause any unprotected (not using
1612	  copy_to_user et al) memory access to fail with a permission fault.
1613
1614	  The feature is detected at runtime, and will remain as a 'nop'
1615	  instruction if the cpu does not implement the feature.
1616
1617config AS_HAS_LDAPR
1618	def_bool $(as-instr,.arch_extension rcpc)
1619
1620config AS_HAS_LSE_ATOMICS
1621	def_bool $(as-instr,.arch_extension lse)
1622
1623config ARM64_LSE_ATOMICS
1624	bool
1625	default ARM64_USE_LSE_ATOMICS
1626	depends on AS_HAS_LSE_ATOMICS
1627
1628config ARM64_USE_LSE_ATOMICS
1629	bool "Atomic instructions"
1630	depends on JUMP_LABEL
1631	default y
1632	help
1633	  As part of the Large System Extensions, ARMv8.1 introduces new
1634	  atomic instructions that are designed specifically to scale in
1635	  very large systems.
1636
1637	  Say Y here to make use of these instructions for the in-kernel
1638	  atomic routines. This incurs a small overhead on CPUs that do
1639	  not support these instructions and requires the kernel to be
1640	  built with binutils >= 2.25 in order for the new instructions
1641	  to be used.
1642
1643endmenu # "ARMv8.1 architectural features"
1644
1645menu "ARMv8.2 architectural features"
1646
1647config AS_HAS_ARMV8_2
1648	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1649
1650config AS_HAS_SHA3
1651	def_bool $(as-instr,.arch armv8.2-a+sha3)
1652
1653config ARM64_PMEM
1654	bool "Enable support for persistent memory"
1655	select ARCH_HAS_PMEM_API
1656	select ARCH_HAS_UACCESS_FLUSHCACHE
1657	help
1658	  Say Y to enable support for the persistent memory API based on the
1659	  ARMv8.2 DCPoP feature.
1660
1661	  The feature is detected at runtime, and the kernel will use DC CVAC
1662	  operations if DC CVAP is not supported (following the behaviour of
1663	  DC CVAP itself if the system does not define a point of persistence).
1664
1665config ARM64_RAS_EXTN
1666	bool "Enable support for RAS CPU Extensions"
1667	default y
1668	help
1669	  CPUs that support the Reliability, Availability and Serviceability
1670	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1671	  errors, classify them and report them to software.
1672
1673	  On CPUs with these extensions system software can use additional
1674	  barriers to determine if faults are pending and read the
1675	  classification from a new set of registers.
1676
1677	  Selecting this feature will allow the kernel to use these barriers
1678	  and access the new registers if the system supports the extension.
1679	  Platform RAS features may additionally depend on firmware support.
1680
1681config ARM64_CNP
1682	bool "Enable support for Common Not Private (CNP) translations"
1683	default y
1684	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1685	help
1686	  Common Not Private (CNP) allows translation table entries to
1687	  be shared between different PEs in the same inner shareable
1688	  domain, so the hardware can use this fact to optimise the
1689	  caching of such entries in the TLB.
1690
1691	  Selecting this option allows the CNP feature to be detected
1692	  at runtime, and does not affect PEs that do not implement
1693	  this feature.
1694
1695endmenu # "ARMv8.2 architectural features"
1696
1697menu "ARMv8.3 architectural features"
1698
1699config ARM64_PTR_AUTH
1700	bool "Enable support for pointer authentication"
1701	default y
1702	help
1703	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1704	  instructions for signing and authenticating pointers against secret
1705	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1706	  and other attacks.
1707
1708	  This option enables these instructions at EL0 (i.e. for userspace).
1709	  Choosing this option will cause the kernel to initialise secret keys
1710	  for each process at exec() time, with these keys being
1711	  context-switched along with the process.
1712
1713	  The feature is detected at runtime. If the feature is not present in
1714	  hardware it will not be advertised to userspace/KVM guest nor will it
1715	  be enabled.
1716
1717	  If the feature is present on the boot CPU but not on a late CPU, then
1718	  the late CPU will be parked. Also, if the boot CPU does not have
1719	  address auth and the late CPU has then the late CPU will still boot
1720	  but with the feature disabled. On such a system, this option should
1721	  not be selected.
1722
1723config ARM64_PTR_AUTH_KERNEL
1724	bool "Use pointer authentication for kernel"
1725	default y
1726	depends on ARM64_PTR_AUTH
1727	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1728	# Modern compilers insert a .note.gnu.property section note for PAC
1729	# which is only understood by binutils starting with version 2.33.1.
1730	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1731	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1732	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1733	help
1734	  If the compiler supports the -mbranch-protection or
1735	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1736	  will cause the kernel itself to be compiled with return address
1737	  protection. In this case, and if the target hardware is known to
1738	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1739	  disabled with minimal loss of protection.
1740
1741	  This feature works with FUNCTION_GRAPH_TRACER option only if
1742	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1743
1744config CC_HAS_BRANCH_PROT_PAC_RET
1745	# GCC 9 or later, clang 8 or later
1746	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1747
1748config CC_HAS_SIGN_RETURN_ADDRESS
1749	# GCC 7, 8
1750	def_bool $(cc-option,-msign-return-address=all)
1751
1752config AS_HAS_PAC
1753	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1754
1755config AS_HAS_CFI_NEGATE_RA_STATE
1756	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1757
1758endmenu # "ARMv8.3 architectural features"
1759
1760menu "ARMv8.4 architectural features"
1761
1762config ARM64_AMU_EXTN
1763	bool "Enable support for the Activity Monitors Unit CPU extension"
1764	default y
1765	help
1766	  The activity monitors extension is an optional extension introduced
1767	  by the ARMv8.4 CPU architecture. This enables support for version 1
1768	  of the activity monitors architecture, AMUv1.
1769
1770	  To enable the use of this extension on CPUs that implement it, say Y.
1771
1772	  Note that for architectural reasons, firmware _must_ implement AMU
1773	  support when running on CPUs that present the activity monitors
1774	  extension. The required support is present in:
1775	    * Version 1.5 and later of the ARM Trusted Firmware
1776
1777	  For kernels that have this configuration enabled but boot with broken
1778	  firmware, you may need to say N here until the firmware is fixed.
1779	  Otherwise you may experience firmware panics or lockups when
1780	  accessing the counter registers. Even if you are not observing these
1781	  symptoms, the values returned by the register reads might not
1782	  correctly reflect reality. Most commonly, the value read will be 0,
1783	  indicating that the counter is not enabled.
1784
1785config AS_HAS_ARMV8_4
1786	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1787
1788config ARM64_TLB_RANGE
1789	bool "Enable support for tlbi range feature"
1790	default y
1791	depends on AS_HAS_ARMV8_4
1792	help
1793	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1794	  range of input addresses.
1795
1796	  The feature introduces new assembly instructions, and they were
1797	  support when binutils >= 2.30.
1798
1799endmenu # "ARMv8.4 architectural features"
1800
1801menu "ARMv8.5 architectural features"
1802
1803config AS_HAS_ARMV8_5
1804	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1805
1806config ARM64_BTI
1807	bool "Branch Target Identification support"
1808	default y
1809	help
1810	  Branch Target Identification (part of the ARMv8.5 Extensions)
1811	  provides a mechanism to limit the set of locations to which computed
1812	  branch instructions such as BR or BLR can jump.
1813
1814	  To make use of BTI on CPUs that support it, say Y.
1815
1816	  BTI is intended to provide complementary protection to other control
1817	  flow integrity protection mechanisms, such as the Pointer
1818	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1819	  For this reason, it does not make sense to enable this option without
1820	  also enabling support for pointer authentication.  Thus, when
1821	  enabling this option you should also select ARM64_PTR_AUTH=y.
1822
1823	  Userspace binaries must also be specifically compiled to make use of
1824	  this mechanism.  If you say N here or the hardware does not support
1825	  BTI, such binaries can still run, but you get no additional
1826	  enforcement of branch destinations.
1827
1828config ARM64_BTI_KERNEL
1829	bool "Use Branch Target Identification for kernel"
1830	default y
1831	depends on ARM64_BTI
1832	depends on ARM64_PTR_AUTH_KERNEL
1833	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1834	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1835	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1836	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1837	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1838	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1839	help
1840	  Build the kernel with Branch Target Identification annotations
1841	  and enable enforcement of this for kernel code. When this option
1842	  is enabled and the system supports BTI all kernel code including
1843	  modular code must have BTI enabled.
1844
1845config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1846	# GCC 9 or later, clang 8 or later
1847	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1848
1849config ARM64_E0PD
1850	bool "Enable support for E0PD"
1851	default y
1852	help
1853	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1854	  that EL0 accesses made via TTBR1 always fault in constant time,
1855	  providing similar benefits to KASLR as those provided by KPTI, but
1856	  with lower overhead and without disrupting legitimate access to
1857	  kernel memory such as SPE.
1858
1859	  This option enables E0PD for TTBR1 where available.
1860
1861config ARCH_RANDOM
1862	bool "Enable support for random number generation"
1863	default y
1864	help
1865	  Random number generation (part of the ARMv8.5 Extensions)
1866	  provides a high bandwidth, cryptographically secure
1867	  hardware random number generator.
1868
1869config ARM64_AS_HAS_MTE
1870	# Initial support for MTE went in binutils 2.32.0, checked with
1871	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1872	# as a late addition to the final architecture spec (LDGM/STGM)
1873	# is only supported in the newer 2.32.x and 2.33 binutils
1874	# versions, hence the extra "stgm" instruction check below.
1875	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1876
1877config ARM64_MTE
1878	bool "Memory Tagging Extension support"
1879	default y
1880	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1881	depends on AS_HAS_ARMV8_5
1882	depends on AS_HAS_LSE_ATOMICS
1883	# Required for tag checking in the uaccess routines
1884	depends on ARM64_PAN
1885	select ARCH_HAS_SUBPAGE_FAULTS
1886	select ARCH_USES_HIGH_VMA_FLAGS
1887	help
1888	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1889	  architectural support for run-time, always-on detection of
1890	  various classes of memory error to aid with software debugging
1891	  to eliminate vulnerabilities arising from memory-unsafe
1892	  languages.
1893
1894	  This option enables the support for the Memory Tagging
1895	  Extension at EL0 (i.e. for userspace).
1896
1897	  Selecting this option allows the feature to be detected at
1898	  runtime. Any secondary CPU not implementing this feature will
1899	  not be allowed a late bring-up.
1900
1901	  Userspace binaries that want to use this feature must
1902	  explicitly opt in. The mechanism for the userspace is
1903	  described in:
1904
1905	  Documentation/arm64/memory-tagging-extension.rst.
1906
1907endmenu # "ARMv8.5 architectural features"
1908
1909menu "ARMv8.7 architectural features"
1910
1911config ARM64_EPAN
1912	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1913	default y
1914	depends on ARM64_PAN
1915	help
1916	  Enhanced Privileged Access Never (EPAN) allows Privileged
1917	  Access Never to be used with Execute-only mappings.
1918
1919	  The feature is detected at runtime, and will remain disabled
1920	  if the cpu does not implement the feature.
1921endmenu # "ARMv8.7 architectural features"
1922
1923config ARM64_SVE
1924	bool "ARM Scalable Vector Extension support"
1925	default y
1926	help
1927	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1928	  execution state which complements and extends the SIMD functionality
1929	  of the base architecture to support much larger vectors and to enable
1930	  additional vectorisation opportunities.
1931
1932	  To enable use of this extension on CPUs that implement it, say Y.
1933
1934	  On CPUs that support the SVE2 extensions, this option will enable
1935	  those too.
1936
1937	  Note that for architectural reasons, firmware _must_ implement SVE
1938	  support when running on SVE capable hardware.  The required support
1939	  is present in:
1940
1941	    * version 1.5 and later of the ARM Trusted Firmware
1942	    * the AArch64 boot wrapper since commit 5e1261e08abf
1943	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1944
1945	  For other firmware implementations, consult the firmware documentation
1946	  or vendor.
1947
1948	  If you need the kernel to boot on SVE-capable hardware with broken
1949	  firmware, you may need to say N here until you get your firmware
1950	  fixed.  Otherwise, you may experience firmware panics or lockups when
1951	  booting the kernel.  If unsure and you are not observing these
1952	  symptoms, you should assume that it is safe to say Y.
1953
1954config ARM64_SME
1955	bool "ARM Scalable Matrix Extension support"
1956	default y
1957	depends on ARM64_SVE
1958	help
1959	  The Scalable Matrix Extension (SME) is an extension to the AArch64
1960	  execution state which utilises a substantial subset of the SVE
1961	  instruction set, together with the addition of new architectural
1962	  register state capable of holding two dimensional matrix tiles to
1963	  enable various matrix operations.
1964
1965config ARM64_MODULE_PLTS
1966	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1967	depends on MODULES
1968	select HAVE_MOD_ARCH_SPECIFIC
1969	help
1970	  Allocate PLTs when loading modules so that jumps and calls whose
1971	  targets are too far away for their relative offsets to be encoded
1972	  in the instructions themselves can be bounced via veneers in the
1973	  module's PLT. This allows modules to be allocated in the generic
1974	  vmalloc area after the dedicated module memory area has been
1975	  exhausted.
1976
1977	  When running with address space randomization (KASLR), the module
1978	  region itself may be too far away for ordinary relative jumps and
1979	  calls, and so in that case, module PLTs are required and cannot be
1980	  disabled.
1981
1982	  Specific errata workaround(s) might also force module PLTs to be
1983	  enabled (ARM64_ERRATUM_843419).
1984
1985config ARM64_PSEUDO_NMI
1986	bool "Support for NMI-like interrupts"
1987	select ARM_GIC_V3
1988	help
1989	  Adds support for mimicking Non-Maskable Interrupts through the use of
1990	  GIC interrupt priority. This support requires version 3 or later of
1991	  ARM GIC.
1992
1993	  This high priority configuration for interrupts needs to be
1994	  explicitly enabled by setting the kernel parameter
1995	  "irqchip.gicv3_pseudo_nmi" to 1.
1996
1997	  If unsure, say N
1998
1999if ARM64_PSEUDO_NMI
2000config ARM64_DEBUG_PRIORITY_MASKING
2001	bool "Debug interrupt priority masking"
2002	help
2003	  This adds runtime checks to functions enabling/disabling
2004	  interrupts when using priority masking. The additional checks verify
2005	  the validity of ICC_PMR_EL1 when calling concerned functions.
2006
2007	  If unsure, say N
2008endif # ARM64_PSEUDO_NMI
2009
2010config RELOCATABLE
2011	bool "Build a relocatable kernel image" if EXPERT
2012	select ARCH_HAS_RELR
2013	default y
2014	help
2015	  This builds the kernel as a Position Independent Executable (PIE),
2016	  which retains all relocation metadata required to relocate the
2017	  kernel binary at runtime to a different virtual address than the
2018	  address it was linked at.
2019	  Since AArch64 uses the RELA relocation format, this requires a
2020	  relocation pass at runtime even if the kernel is loaded at the
2021	  same address it was linked at.
2022
2023config RANDOMIZE_BASE
2024	bool "Randomize the address of the kernel image"
2025	select ARM64_MODULE_PLTS if MODULES
2026	select RELOCATABLE
2027	help
2028	  Randomizes the virtual address at which the kernel image is
2029	  loaded, as a security feature that deters exploit attempts
2030	  relying on knowledge of the location of kernel internals.
2031
2032	  It is the bootloader's job to provide entropy, by passing a
2033	  random u64 value in /chosen/kaslr-seed at kernel entry.
2034
2035	  When booting via the UEFI stub, it will invoke the firmware's
2036	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2037	  to the kernel proper. In addition, it will randomise the physical
2038	  location of the kernel Image as well.
2039
2040	  If unsure, say N.
2041
2042config RANDOMIZE_MODULE_REGION_FULL
2043	bool "Randomize the module region over a 2 GB range"
2044	depends on RANDOMIZE_BASE
2045	default y
2046	help
2047	  Randomizes the location of the module region inside a 2 GB window
2048	  covering the core kernel. This way, it is less likely for modules
2049	  to leak information about the location of core kernel data structures
2050	  but it does imply that function calls between modules and the core
2051	  kernel will need to be resolved via veneers in the module PLT.
2052
2053	  When this option is not set, the module region will be randomized over
2054	  a limited range that contains the [_stext, _etext] interval of the
2055	  core kernel, so branch relocations are almost always in range unless
2056	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2057	  particular case of region exhaustion, modules might be able to fall
2058	  back to a larger 2GB area.
2059
2060config CC_HAVE_STACKPROTECTOR_SYSREG
2061	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2062
2063config STACKPROTECTOR_PER_TASK
2064	def_bool y
2065	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2066
2067# The GPIO number here must be sorted by descending number. In case of
2068# a multiplatform kernel, we just want the highest value required by the
2069# selected platforms.
2070config ARCH_NR_GPIO
2071        int
2072        default 2048 if ARCH_APPLE
2073        default 0
2074        help
2075          Maximum number of GPIOs in the system.
2076
2077          If unsure, leave the default value.
2078
2079endmenu # "Kernel Features"
2080
2081menu "Boot options"
2082
2083config ARM64_ACPI_PARKING_PROTOCOL
2084	bool "Enable support for the ARM64 ACPI parking protocol"
2085	depends on ACPI
2086	help
2087	  Enable support for the ARM64 ACPI parking protocol. If disabled
2088	  the kernel will not allow booting through the ARM64 ACPI parking
2089	  protocol even if the corresponding data is present in the ACPI
2090	  MADT table.
2091
2092config CMDLINE
2093	string "Default kernel command string"
2094	default ""
2095	help
2096	  Provide a set of default command-line options at build time by
2097	  entering them here. As a minimum, you should specify the the
2098	  root device (e.g. root=/dev/nfs).
2099
2100choice
2101	prompt "Kernel command line type" if CMDLINE != ""
2102	default CMDLINE_FROM_BOOTLOADER
2103	help
2104	  Choose how the kernel will handle the provided default kernel
2105	  command line string.
2106
2107config CMDLINE_FROM_BOOTLOADER
2108	bool "Use bootloader kernel arguments if available"
2109	help
2110	  Uses the command-line options passed by the boot loader. If
2111	  the boot loader doesn't provide any, the default kernel command
2112	  string provided in CMDLINE will be used.
2113
2114config CMDLINE_FORCE
2115	bool "Always use the default kernel command string"
2116	help
2117	  Always use the default kernel command string, even if the boot
2118	  loader passes other arguments to the kernel.
2119	  This is useful if you cannot or don't want to change the
2120	  command-line options your boot loader passes to the kernel.
2121
2122endchoice
2123
2124config EFI_STUB
2125	bool
2126
2127config EFI
2128	bool "UEFI runtime support"
2129	depends on OF && !CPU_BIG_ENDIAN
2130	depends on KERNEL_MODE_NEON
2131	select ARCH_SUPPORTS_ACPI
2132	select LIBFDT
2133	select UCS2_STRING
2134	select EFI_PARAMS_FROM_FDT
2135	select EFI_RUNTIME_WRAPPERS
2136	select EFI_STUB
2137	select EFI_GENERIC_STUB
2138	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2139	default y
2140	help
2141	  This option provides support for runtime services provided
2142	  by UEFI firmware (such as non-volatile variables, realtime
2143	  clock, and platform reset). A UEFI stub is also provided to
2144	  allow the kernel to be booted as an EFI application. This
2145	  is only useful on systems that have UEFI firmware.
2146
2147config DMI
2148	bool "Enable support for SMBIOS (DMI) tables"
2149	depends on EFI
2150	default y
2151	help
2152	  This enables SMBIOS/DMI feature for systems.
2153
2154	  This option is only useful on systems that have UEFI firmware.
2155	  However, even with this option, the resultant kernel should
2156	  continue to boot on existing non-UEFI platforms.
2157
2158endmenu # "Boot options"
2159
2160menu "Power management options"
2161
2162source "kernel/power/Kconfig"
2163
2164config ARCH_HIBERNATION_POSSIBLE
2165	def_bool y
2166	depends on CPU_PM
2167
2168config ARCH_HIBERNATION_HEADER
2169	def_bool y
2170	depends on HIBERNATION
2171
2172config ARCH_SUSPEND_POSSIBLE
2173	def_bool y
2174
2175endmenu # "Power management options"
2176
2177menu "CPU Power Management"
2178
2179source "drivers/cpuidle/Kconfig"
2180
2181source "drivers/cpufreq/Kconfig"
2182
2183endmenu # "CPU Power Management"
2184
2185source "drivers/acpi/Kconfig"
2186
2187source "arch/arm64/kvm/Kconfig"
2188
2189if CRYPTO
2190source "arch/arm64/crypto/Kconfig"
2191endif # CRYPTO
2192