xref: /openbmc/linux/arch/arm64/Kconfig (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_STATE
14	select ARCH_HAS_DEBUG_VIRTUAL
15	select ARCH_HAS_DEBUG_VM_PGTABLE
16	select ARCH_HAS_DEVMEM_IS_ALLOWED
17	select ARCH_HAS_DMA_PREP_COHERENT
18	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
19	select ARCH_HAS_FAST_MULTIPLIER
20	select ARCH_HAS_FORTIFY_SOURCE
21	select ARCH_HAS_GCOV_PROFILE_ALL
22	select ARCH_HAS_GIGANTIC_PAGE
23	select ARCH_HAS_KCOV
24	select ARCH_HAS_KEEPINITRD
25	select ARCH_HAS_MEMBARRIER_SYNC_CORE
26	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
27	select ARCH_HAS_PTE_DEVMAP
28	select ARCH_HAS_PTE_SPECIAL
29	select ARCH_HAS_SETUP_DMA_OPS
30	select ARCH_HAS_SET_DIRECT_MAP
31	select ARCH_HAS_SET_MEMORY
32	select ARCH_HAS_STRICT_KERNEL_RWX
33	select ARCH_HAS_STRICT_MODULE_RWX
34	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
35	select ARCH_HAS_SYNC_DMA_FOR_CPU
36	select ARCH_HAS_SYSCALL_WRAPPER
37	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
38	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
39	select ARCH_HAVE_ELF_PROT
40	select ARCH_HAVE_NMI_SAFE_CMPXCHG
41	select ARCH_INLINE_READ_LOCK if !PREEMPTION
42	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
43	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
44	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
45	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
46	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
47	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
48	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
49	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
50	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
51	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
52	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
53	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
54	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
55	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
56	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
57	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
58	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
59	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
60	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
61	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
62	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
63	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
64	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
65	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
67	select ARCH_KEEP_MEMBLOCK
68	select ARCH_USE_CMPXCHG_LOCKREF
69	select ARCH_USE_GNU_PROPERTY
70	select ARCH_USE_QUEUED_RWLOCKS
71	select ARCH_USE_QUEUED_SPINLOCKS
72	select ARCH_USE_SYM_ANNOTATIONS
73	select ARCH_SUPPORTS_MEMORY_FAILURE
74	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
75	select ARCH_SUPPORTS_ATOMIC_RMW
76	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
77	select ARCH_SUPPORTS_NUMA_BALANCING
78	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
79	select ARCH_WANT_DEFAULT_BPF_JIT
80	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
81	select ARCH_WANT_FRAME_POINTERS
82	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
83	select ARCH_HAS_UBSAN_SANITIZE_ALL
84	select ARM_AMBA
85	select ARM_ARCH_TIMER
86	select ARM_GIC
87	select AUDIT_ARCH_COMPAT_GENERIC
88	select ARM_GIC_V2M if PCI
89	select ARM_GIC_V3
90	select ARM_GIC_V3_ITS if PCI
91	select ARM_PSCI_FW
92	select BUILDTIME_TABLE_SORT
93	select CLONE_BACKWARDS
94	select COMMON_CLK
95	select CPU_PM if (SUSPEND || CPU_IDLE)
96	select CRC32
97	select DCACHE_WORD_ACCESS
98	select DMA_DIRECT_REMAP
99	select EDAC_SUPPORT
100	select FRAME_POINTER
101	select GENERIC_ALLOCATOR
102	select GENERIC_ARCH_TOPOLOGY
103	select GENERIC_CLOCKEVENTS
104	select GENERIC_CLOCKEVENTS_BROADCAST
105	select GENERIC_CPU_AUTOPROBE
106	select GENERIC_CPU_VULNERABILITIES
107	select GENERIC_EARLY_IOREMAP
108	select GENERIC_IDLE_POLL_SETUP
109	select GENERIC_IRQ_MULTI_HANDLER
110	select GENERIC_IRQ_PROBE
111	select GENERIC_IRQ_SHOW
112	select GENERIC_IRQ_SHOW_LEVEL
113	select GENERIC_PCI_IOMAP
114	select GENERIC_PTDUMP
115	select GENERIC_SCHED_CLOCK
116	select GENERIC_SMP_IDLE_THREAD
117	select GENERIC_STRNCPY_FROM_USER
118	select GENERIC_STRNLEN_USER
119	select GENERIC_TIME_VSYSCALL
120	select GENERIC_GETTIMEOFDAY
121	select HANDLE_DOMAIN_IRQ
122	select HARDIRQS_SW_RESEND
123	select HAVE_PCI
124	select HAVE_ACPI_APEI if (ACPI && EFI)
125	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
126	select HAVE_ARCH_AUDITSYSCALL
127	select HAVE_ARCH_BITREVERSE
128	select HAVE_ARCH_COMPILER_H
129	select HAVE_ARCH_HUGE_VMAP
130	select HAVE_ARCH_JUMP_LABEL
131	select HAVE_ARCH_JUMP_LABEL_RELATIVE
132	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
133	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
134	select HAVE_ARCH_KGDB
135	select HAVE_ARCH_MMAP_RND_BITS
136	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
137	select HAVE_ARCH_PREL32_RELOCATIONS
138	select HAVE_ARCH_SECCOMP_FILTER
139	select HAVE_ARCH_STACKLEAK
140	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
141	select HAVE_ARCH_TRACEHOOK
142	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
143	select HAVE_ARCH_VMAP_STACK
144	select HAVE_ARM_SMCCC
145	select HAVE_ASM_MODVERSIONS
146	select HAVE_EBPF_JIT
147	select HAVE_C_RECORDMCOUNT
148	select HAVE_CMPXCHG_DOUBLE
149	select HAVE_CMPXCHG_LOCAL
150	select HAVE_CONTEXT_TRACKING
151	select HAVE_COPY_THREAD_TLS
152	select HAVE_DEBUG_BUGVERBOSE
153	select HAVE_DEBUG_KMEMLEAK
154	select HAVE_DMA_CONTIGUOUS
155	select HAVE_DYNAMIC_FTRACE
156	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
157		if $(cc-option,-fpatchable-function-entry=2)
158	select HAVE_EFFICIENT_UNALIGNED_ACCESS
159	select HAVE_FAST_GUP
160	select HAVE_FTRACE_MCOUNT_RECORD
161	select HAVE_FUNCTION_TRACER
162	select HAVE_FUNCTION_ERROR_INJECTION
163	select HAVE_FUNCTION_GRAPH_TRACER
164	select HAVE_GCC_PLUGINS
165	select HAVE_HW_BREAKPOINT if PERF_EVENTS
166	select HAVE_IRQ_TIME_ACCOUNTING
167	select HAVE_NMI
168	select HAVE_PATA_PLATFORM
169	select HAVE_PERF_EVENTS
170	select HAVE_PERF_REGS
171	select HAVE_PERF_USER_STACK_DUMP
172	select HAVE_REGS_AND_STACK_ACCESS_API
173	select HAVE_FUNCTION_ARG_ACCESS_API
174	select HAVE_FUTEX_CMPXCHG if FUTEX
175	select MMU_GATHER_RCU_TABLE_FREE
176	select HAVE_RSEQ
177	select HAVE_STACKPROTECTOR
178	select HAVE_SYSCALL_TRACEPOINTS
179	select HAVE_KPROBES
180	select HAVE_KRETPROBES
181	select HAVE_GENERIC_VDSO
182	select IOMMU_DMA if IOMMU_SUPPORT
183	select IRQ_DOMAIN
184	select IRQ_FORCED_THREADING
185	select MODULES_USE_ELF_RELA
186	select NEED_DMA_MAP_STATE
187	select NEED_SG_DMA_LENGTH
188	select OF
189	select OF_EARLY_FLATTREE
190	select PCI_DOMAINS_GENERIC if PCI
191	select PCI_ECAM if (ACPI && PCI)
192	select PCI_SYSCALL if PCI
193	select POWER_RESET
194	select POWER_SUPPLY
195	select SPARSE_IRQ
196	select SWIOTLB
197	select SYSCTL_EXCEPTION_TRACE
198	select THREAD_INFO_IN_TASK
199	help
200	  ARM 64-bit (AArch64) Linux support.
201
202config 64BIT
203	def_bool y
204
205config MMU
206	def_bool y
207
208config ARM64_PAGE_SHIFT
209	int
210	default 16 if ARM64_64K_PAGES
211	default 14 if ARM64_16K_PAGES
212	default 12
213
214config ARM64_CONT_SHIFT
215	int
216	default 5 if ARM64_64K_PAGES
217	default 7 if ARM64_16K_PAGES
218	default 4
219
220config ARCH_MMAP_RND_BITS_MIN
221       default 14 if ARM64_64K_PAGES
222       default 16 if ARM64_16K_PAGES
223       default 18
224
225# max bits determined by the following formula:
226#  VA_BITS - PAGE_SHIFT - 3
227config ARCH_MMAP_RND_BITS_MAX
228       default 19 if ARM64_VA_BITS=36
229       default 24 if ARM64_VA_BITS=39
230       default 27 if ARM64_VA_BITS=42
231       default 30 if ARM64_VA_BITS=47
232       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
233       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
234       default 33 if ARM64_VA_BITS=48
235       default 14 if ARM64_64K_PAGES
236       default 16 if ARM64_16K_PAGES
237       default 18
238
239config ARCH_MMAP_RND_COMPAT_BITS_MIN
240       default 7 if ARM64_64K_PAGES
241       default 9 if ARM64_16K_PAGES
242       default 11
243
244config ARCH_MMAP_RND_COMPAT_BITS_MAX
245       default 16
246
247config NO_IOPORT_MAP
248	def_bool y if !PCI
249
250config STACKTRACE_SUPPORT
251	def_bool y
252
253config ILLEGAL_POINTER_VALUE
254	hex
255	default 0xdead000000000000
256
257config LOCKDEP_SUPPORT
258	def_bool y
259
260config TRACE_IRQFLAGS_SUPPORT
261	def_bool y
262
263config GENERIC_BUG
264	def_bool y
265	depends on BUG
266
267config GENERIC_BUG_RELATIVE_POINTERS
268	def_bool y
269	depends on GENERIC_BUG
270
271config GENERIC_HWEIGHT
272	def_bool y
273
274config GENERIC_CSUM
275        def_bool y
276
277config GENERIC_CALIBRATE_DELAY
278	def_bool y
279
280config ZONE_DMA
281	bool "Support DMA zone" if EXPERT
282	default y
283
284config ZONE_DMA32
285	bool "Support DMA32 zone" if EXPERT
286	default y
287
288config ARCH_ENABLE_MEMORY_HOTPLUG
289	def_bool y
290
291config ARCH_ENABLE_MEMORY_HOTREMOVE
292	def_bool y
293
294config SMP
295	def_bool y
296
297config KERNEL_MODE_NEON
298	def_bool y
299
300config FIX_EARLYCON_MEM
301	def_bool y
302
303config PGTABLE_LEVELS
304	int
305	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
306	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
307	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
308	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
309	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
310	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
311
312config ARCH_SUPPORTS_UPROBES
313	def_bool y
314
315config ARCH_PROC_KCORE_TEXT
316	def_bool y
317
318config BROKEN_GAS_INST
319	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
320
321config KASAN_SHADOW_OFFSET
322	hex
323	depends on KASAN
324	default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
325	default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
326	default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
327	default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
328	default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
329	default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
330	default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
331	default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
332	default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
333	default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
334	default 0xffffffffffffffff
335
336source "arch/arm64/Kconfig.platforms"
337
338menu "Kernel Features"
339
340menu "ARM errata workarounds via the alternatives framework"
341
342config ARM64_WORKAROUND_CLEAN_CACHE
343	bool
344
345config ARM64_ERRATUM_826319
346	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
347	default y
348	select ARM64_WORKAROUND_CLEAN_CACHE
349	help
350	  This option adds an alternative code sequence to work around ARM
351	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
352	  AXI master interface and an L2 cache.
353
354	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
355	  and is unable to accept a certain write via this interface, it will
356	  not progress on read data presented on the read data channel and the
357	  system can deadlock.
358
359	  The workaround promotes data cache clean instructions to
360	  data cache clean-and-invalidate.
361	  Please note that this does not necessarily enable the workaround,
362	  as it depends on the alternative framework, which will only patch
363	  the kernel if an affected CPU is detected.
364
365	  If unsure, say Y.
366
367config ARM64_ERRATUM_827319
368	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
369	default y
370	select ARM64_WORKAROUND_CLEAN_CACHE
371	help
372	  This option adds an alternative code sequence to work around ARM
373	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
374	  master interface and an L2 cache.
375
376	  Under certain conditions this erratum can cause a clean line eviction
377	  to occur at the same time as another transaction to the same address
378	  on the AMBA 5 CHI interface, which can cause data corruption if the
379	  interconnect reorders the two transactions.
380
381	  The workaround promotes data cache clean instructions to
382	  data cache clean-and-invalidate.
383	  Please note that this does not necessarily enable the workaround,
384	  as it depends on the alternative framework, which will only patch
385	  the kernel if an affected CPU is detected.
386
387	  If unsure, say Y.
388
389config ARM64_ERRATUM_824069
390	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
391	default y
392	select ARM64_WORKAROUND_CLEAN_CACHE
393	help
394	  This option adds an alternative code sequence to work around ARM
395	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
396	  to a coherent interconnect.
397
398	  If a Cortex-A53 processor is executing a store or prefetch for
399	  write instruction at the same time as a processor in another
400	  cluster is executing a cache maintenance operation to the same
401	  address, then this erratum might cause a clean cache line to be
402	  incorrectly marked as dirty.
403
404	  The workaround promotes data cache clean instructions to
405	  data cache clean-and-invalidate.
406	  Please note that this option does not necessarily enable the
407	  workaround, as it depends on the alternative framework, which will
408	  only patch the kernel if an affected CPU is detected.
409
410	  If unsure, say Y.
411
412config ARM64_ERRATUM_819472
413	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
414	default y
415	select ARM64_WORKAROUND_CLEAN_CACHE
416	help
417	  This option adds an alternative code sequence to work around ARM
418	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
419	  present when it is connected to a coherent interconnect.
420
421	  If the processor is executing a load and store exclusive sequence at
422	  the same time as a processor in another cluster is executing a cache
423	  maintenance operation to the same address, then this erratum might
424	  cause data corruption.
425
426	  The workaround promotes data cache clean instructions to
427	  data cache clean-and-invalidate.
428	  Please note that this does not necessarily enable the workaround,
429	  as it depends on the alternative framework, which will only patch
430	  the kernel if an affected CPU is detected.
431
432	  If unsure, say Y.
433
434config ARM64_ERRATUM_832075
435	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
436	default y
437	help
438	  This option adds an alternative code sequence to work around ARM
439	  erratum 832075 on Cortex-A57 parts up to r1p2.
440
441	  Affected Cortex-A57 parts might deadlock when exclusive load/store
442	  instructions to Write-Back memory are mixed with Device loads.
443
444	  The workaround is to promote device loads to use Load-Acquire
445	  semantics.
446	  Please note that this does not necessarily enable the workaround,
447	  as it depends on the alternative framework, which will only patch
448	  the kernel if an affected CPU is detected.
449
450	  If unsure, say Y.
451
452config ARM64_ERRATUM_834220
453	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
454	depends on KVM
455	default y
456	help
457	  This option adds an alternative code sequence to work around ARM
458	  erratum 834220 on Cortex-A57 parts up to r1p2.
459
460	  Affected Cortex-A57 parts might report a Stage 2 translation
461	  fault as the result of a Stage 1 fault for load crossing a
462	  page boundary when there is a permission or device memory
463	  alignment fault at Stage 1 and a translation fault at Stage 2.
464
465	  The workaround is to verify that the Stage 1 translation
466	  doesn't generate a fault before handling the Stage 2 fault.
467	  Please note that this does not necessarily enable the workaround,
468	  as it depends on the alternative framework, which will only patch
469	  the kernel if an affected CPU is detected.
470
471	  If unsure, say Y.
472
473config ARM64_ERRATUM_845719
474	bool "Cortex-A53: 845719: a load might read incorrect data"
475	depends on COMPAT
476	default y
477	help
478	  This option adds an alternative code sequence to work around ARM
479	  erratum 845719 on Cortex-A53 parts up to r0p4.
480
481	  When running a compat (AArch32) userspace on an affected Cortex-A53
482	  part, a load at EL0 from a virtual address that matches the bottom 32
483	  bits of the virtual address used by a recent load at (AArch64) EL1
484	  might return incorrect data.
485
486	  The workaround is to write the contextidr_el1 register on exception
487	  return to a 32-bit task.
488	  Please note that this does not necessarily enable the workaround,
489	  as it depends on the alternative framework, which will only patch
490	  the kernel if an affected CPU is detected.
491
492	  If unsure, say Y.
493
494config ARM64_ERRATUM_843419
495	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
496	default y
497	select ARM64_MODULE_PLTS if MODULES
498	help
499	  This option links the kernel with '--fix-cortex-a53-843419' and
500	  enables PLT support to replace certain ADRP instructions, which can
501	  cause subsequent memory accesses to use an incorrect address on
502	  Cortex-A53 parts up to r0p4.
503
504	  If unsure, say Y.
505
506config ARM64_ERRATUM_1024718
507	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
508	default y
509	help
510	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
511
512	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
513	  update of the hardware dirty bit when the DBM/AP bits are updated
514	  without a break-before-make. The workaround is to disable the usage
515	  of hardware DBM locally on the affected cores. CPUs not affected by
516	  this erratum will continue to use the feature.
517
518	  If unsure, say Y.
519
520config ARM64_ERRATUM_1418040
521	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
522	default y
523	depends on COMPAT
524	help
525	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
526	  errata 1188873 and 1418040.
527
528	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
529	  cause register corruption when accessing the timer registers
530	  from AArch32 userspace.
531
532	  If unsure, say Y.
533
534config ARM64_WORKAROUND_SPECULATIVE_AT
535	bool
536
537config ARM64_ERRATUM_1165522
538	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
539	default y
540	select ARM64_WORKAROUND_SPECULATIVE_AT
541	help
542	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
543
544	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
545	  corrupted TLBs by speculating an AT instruction during a guest
546	  context switch.
547
548	  If unsure, say Y.
549
550config ARM64_ERRATUM_1319367
551	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
552	default y
553	select ARM64_WORKAROUND_SPECULATIVE_AT
554	help
555	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
556	  and A72 erratum 1319367
557
558	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
559	  speculating an AT instruction during a guest context switch.
560
561	  If unsure, say Y.
562
563config ARM64_ERRATUM_1530923
564	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
565	default y
566	select ARM64_WORKAROUND_SPECULATIVE_AT
567	help
568	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
569
570	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
571	  corrupted TLBs by speculating an AT instruction during a guest
572	  context switch.
573
574	  If unsure, say Y.
575
576config ARM64_WORKAROUND_REPEAT_TLBI
577	bool
578
579config ARM64_ERRATUM_1286807
580	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
581	default y
582	select ARM64_WORKAROUND_REPEAT_TLBI
583	help
584	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
585
586	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
587	  address for a cacheable mapping of a location is being
588	  accessed by a core while another core is remapping the virtual
589	  address to a new physical page using the recommended
590	  break-before-make sequence, then under very rare circumstances
591	  TLBI+DSB completes before a read using the translation being
592	  invalidated has been observed by other observers. The
593	  workaround repeats the TLBI+DSB operation.
594
595config ARM64_ERRATUM_1463225
596	bool "Cortex-A76: Software Step might prevent interrupt recognition"
597	default y
598	help
599	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
600
601	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
602	  of a system call instruction (SVC) can prevent recognition of
603	  subsequent interrupts when software stepping is disabled in the
604	  exception handler of the system call and either kernel debugging
605	  is enabled or VHE is in use.
606
607	  Work around the erratum by triggering a dummy step exception
608	  when handling a system call from a task that is being stepped
609	  in a VHE configuration of the kernel.
610
611	  If unsure, say Y.
612
613config ARM64_ERRATUM_1542419
614	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
615	default y
616	help
617	  This option adds a workaround for ARM Neoverse-N1 erratum
618	  1542419.
619
620	  Affected Neoverse-N1 cores could execute a stale instruction when
621	  modified by another CPU. The workaround depends on a firmware
622	  counterpart.
623
624	  Workaround the issue by hiding the DIC feature from EL0. This
625	  forces user-space to perform cache maintenance.
626
627	  If unsure, say Y.
628
629config CAVIUM_ERRATUM_22375
630	bool "Cavium erratum 22375, 24313"
631	default y
632	help
633	  Enable workaround for errata 22375 and 24313.
634
635	  This implements two gicv3-its errata workarounds for ThunderX. Both
636	  with a small impact affecting only ITS table allocation.
637
638	    erratum 22375: only alloc 8MB table size
639	    erratum 24313: ignore memory access type
640
641	  The fixes are in ITS initialization and basically ignore memory access
642	  type and table size provided by the TYPER and BASER registers.
643
644	  If unsure, say Y.
645
646config CAVIUM_ERRATUM_23144
647	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
648	depends on NUMA
649	default y
650	help
651	  ITS SYNC command hang for cross node io and collections/cpu mapping.
652
653	  If unsure, say Y.
654
655config CAVIUM_ERRATUM_23154
656	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
657	default y
658	help
659	  The gicv3 of ThunderX requires a modified version for
660	  reading the IAR status to ensure data synchronization
661	  (access to icc_iar1_el1 is not sync'ed before and after).
662
663	  If unsure, say Y.
664
665config CAVIUM_ERRATUM_27456
666	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
667	default y
668	help
669	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
670	  instructions may cause the icache to become corrupted if it
671	  contains data for a non-current ASID.  The fix is to
672	  invalidate the icache when changing the mm context.
673
674	  If unsure, say Y.
675
676config CAVIUM_ERRATUM_30115
677	bool "Cavium erratum 30115: Guest may disable interrupts in host"
678	default y
679	help
680	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
681	  1.2, and T83 Pass 1.0, KVM guest execution may disable
682	  interrupts in host. Trapping both GICv3 group-0 and group-1
683	  accesses sidesteps the issue.
684
685	  If unsure, say Y.
686
687config CAVIUM_TX2_ERRATUM_219
688	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
689	default y
690	help
691	  On Cavium ThunderX2, a load, store or prefetch instruction between a
692	  TTBR update and the corresponding context synchronizing operation can
693	  cause a spurious Data Abort to be delivered to any hardware thread in
694	  the CPU core.
695
696	  Work around the issue by avoiding the problematic code sequence and
697	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
698	  trap handler performs the corresponding register access, skips the
699	  instruction and ensures context synchronization by virtue of the
700	  exception return.
701
702	  If unsure, say Y.
703
704config FUJITSU_ERRATUM_010001
705	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
706	default y
707	help
708	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
709	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
710	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
711	  This fault occurs under a specific hardware condition when a
712	  load/store instruction performs an address translation using:
713	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
714	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
715	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
716	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
717
718	  The workaround is to ensure these bits are clear in TCR_ELx.
719	  The workaround only affects the Fujitsu-A64FX.
720
721	  If unsure, say Y.
722
723config HISILICON_ERRATUM_161600802
724	bool "Hip07 161600802: Erroneous redistributor VLPI base"
725	default y
726	help
727	  The HiSilicon Hip07 SoC uses the wrong redistributor base
728	  when issued ITS commands such as VMOVP and VMAPP, and requires
729	  a 128kB offset to be applied to the target address in this commands.
730
731	  If unsure, say Y.
732
733config QCOM_FALKOR_ERRATUM_1003
734	bool "Falkor E1003: Incorrect translation due to ASID change"
735	default y
736	help
737	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
738	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
739	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
740	  then only for entries in the walk cache, since the leaf translation
741	  is unchanged. Work around the erratum by invalidating the walk cache
742	  entries for the trampoline before entering the kernel proper.
743
744config QCOM_FALKOR_ERRATUM_1009
745	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
746	default y
747	select ARM64_WORKAROUND_REPEAT_TLBI
748	help
749	  On Falkor v1, the CPU may prematurely complete a DSB following a
750	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
751	  one more time to fix the issue.
752
753	  If unsure, say Y.
754
755config QCOM_QDF2400_ERRATUM_0065
756	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
757	default y
758	help
759	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
760	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
761	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
762
763	  If unsure, say Y.
764
765config QCOM_FALKOR_ERRATUM_E1041
766	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
767	default y
768	help
769	  Falkor CPU may speculatively fetch instructions from an improper
770	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
771	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
772
773	  If unsure, say Y.
774
775config SOCIONEXT_SYNQUACER_PREITS
776	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
777	default y
778	help
779	  Socionext Synquacer SoCs implement a separate h/w block to generate
780	  MSI doorbell writes with non-zero values for the device ID.
781
782	  If unsure, say Y.
783
784endmenu
785
786
787choice
788	prompt "Page size"
789	default ARM64_4K_PAGES
790	help
791	  Page size (translation granule) configuration.
792
793config ARM64_4K_PAGES
794	bool "4KB"
795	help
796	  This feature enables 4KB pages support.
797
798config ARM64_16K_PAGES
799	bool "16KB"
800	help
801	  The system will use 16KB pages support. AArch32 emulation
802	  requires applications compiled with 16K (or a multiple of 16K)
803	  aligned segments.
804
805config ARM64_64K_PAGES
806	bool "64KB"
807	help
808	  This feature enables 64KB pages support (4KB by default)
809	  allowing only two levels of page tables and faster TLB
810	  look-up. AArch32 emulation requires applications compiled
811	  with 64K aligned segments.
812
813endchoice
814
815choice
816	prompt "Virtual address space size"
817	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
818	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
819	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
820	help
821	  Allows choosing one of multiple possible virtual address
822	  space sizes. The level of translation table is determined by
823	  a combination of page size and virtual address space size.
824
825config ARM64_VA_BITS_36
826	bool "36-bit" if EXPERT
827	depends on ARM64_16K_PAGES
828
829config ARM64_VA_BITS_39
830	bool "39-bit"
831	depends on ARM64_4K_PAGES
832
833config ARM64_VA_BITS_42
834	bool "42-bit"
835	depends on ARM64_64K_PAGES
836
837config ARM64_VA_BITS_47
838	bool "47-bit"
839	depends on ARM64_16K_PAGES
840
841config ARM64_VA_BITS_48
842	bool "48-bit"
843
844config ARM64_VA_BITS_52
845	bool "52-bit"
846	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
847	help
848	  Enable 52-bit virtual addressing for userspace when explicitly
849	  requested via a hint to mmap(). The kernel will also use 52-bit
850	  virtual addresses for its own mappings (provided HW support for
851	  this feature is available, otherwise it reverts to 48-bit).
852
853	  NOTE: Enabling 52-bit virtual addressing in conjunction with
854	  ARMv8.3 Pointer Authentication will result in the PAC being
855	  reduced from 7 bits to 3 bits, which may have a significant
856	  impact on its susceptibility to brute-force attacks.
857
858	  If unsure, select 48-bit virtual addressing instead.
859
860endchoice
861
862config ARM64_FORCE_52BIT
863	bool "Force 52-bit virtual addresses for userspace"
864	depends on ARM64_VA_BITS_52 && EXPERT
865	help
866	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
867	  to maintain compatibility with older software by providing 48-bit VAs
868	  unless a hint is supplied to mmap.
869
870	  This configuration option disables the 48-bit compatibility logic, and
871	  forces all userspace addresses to be 52-bit on HW that supports it. One
872	  should only enable this configuration option for stress testing userspace
873	  memory management code. If unsure say N here.
874
875config ARM64_VA_BITS
876	int
877	default 36 if ARM64_VA_BITS_36
878	default 39 if ARM64_VA_BITS_39
879	default 42 if ARM64_VA_BITS_42
880	default 47 if ARM64_VA_BITS_47
881	default 48 if ARM64_VA_BITS_48
882	default 52 if ARM64_VA_BITS_52
883
884choice
885	prompt "Physical address space size"
886	default ARM64_PA_BITS_48
887	help
888	  Choose the maximum physical address range that the kernel will
889	  support.
890
891config ARM64_PA_BITS_48
892	bool "48-bit"
893
894config ARM64_PA_BITS_52
895	bool "52-bit (ARMv8.2)"
896	depends on ARM64_64K_PAGES
897	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
898	help
899	  Enable support for a 52-bit physical address space, introduced as
900	  part of the ARMv8.2-LPA extension.
901
902	  With this enabled, the kernel will also continue to work on CPUs that
903	  do not support ARMv8.2-LPA, but with some added memory overhead (and
904	  minor performance overhead).
905
906endchoice
907
908config ARM64_PA_BITS
909	int
910	default 48 if ARM64_PA_BITS_48
911	default 52 if ARM64_PA_BITS_52
912
913choice
914	prompt "Endianness"
915	default CPU_LITTLE_ENDIAN
916	help
917	  Select the endianness of data accesses performed by the CPU. Userspace
918	  applications will need to be compiled and linked for the endianness
919	  that is selected here.
920
921config CPU_BIG_ENDIAN
922       bool "Build big-endian kernel"
923       help
924	  Say Y if you plan on running a kernel with a big-endian userspace.
925
926config CPU_LITTLE_ENDIAN
927	bool "Build little-endian kernel"
928	help
929	  Say Y if you plan on running a kernel with a little-endian userspace.
930	  This is usually the case for distributions targeting arm64.
931
932endchoice
933
934config SCHED_MC
935	bool "Multi-core scheduler support"
936	help
937	  Multi-core scheduler support improves the CPU scheduler's decision
938	  making when dealing with multi-core CPU chips at a cost of slightly
939	  increased overhead in some places. If unsure say N here.
940
941config SCHED_SMT
942	bool "SMT scheduler support"
943	help
944	  Improves the CPU scheduler's decision making when dealing with
945	  MultiThreading at a cost of slightly increased overhead in some
946	  places. If unsure say N here.
947
948config NR_CPUS
949	int "Maximum number of CPUs (2-4096)"
950	range 2 4096
951	default "256"
952
953config HOTPLUG_CPU
954	bool "Support for hot-pluggable CPUs"
955	select GENERIC_IRQ_MIGRATION
956	help
957	  Say Y here to experiment with turning CPUs off and on.  CPUs
958	  can be controlled through /sys/devices/system/cpu.
959
960# Common NUMA Features
961config NUMA
962	bool "NUMA Memory Allocation and Scheduler Support"
963	select ACPI_NUMA if ACPI
964	select OF_NUMA
965	help
966	  Enable NUMA (Non-Uniform Memory Access) support.
967
968	  The kernel will try to allocate memory used by a CPU on the
969	  local memory of the CPU and add some more
970	  NUMA awareness to the kernel.
971
972config NODES_SHIFT
973	int "Maximum NUMA Nodes (as a power of 2)"
974	range 1 10
975	default "2"
976	depends on NEED_MULTIPLE_NODES
977	help
978	  Specify the maximum number of NUMA Nodes available on the target
979	  system.  Increases memory reserved to accommodate various tables.
980
981config USE_PERCPU_NUMA_NODE_ID
982	def_bool y
983	depends on NUMA
984
985config HAVE_SETUP_PER_CPU_AREA
986	def_bool y
987	depends on NUMA
988
989config NEED_PER_CPU_EMBED_FIRST_CHUNK
990	def_bool y
991	depends on NUMA
992
993config HOLES_IN_ZONE
994	def_bool y
995
996source "kernel/Kconfig.hz"
997
998config ARCH_SUPPORTS_DEBUG_PAGEALLOC
999	def_bool y
1000
1001config ARCH_SPARSEMEM_ENABLE
1002	def_bool y
1003	select SPARSEMEM_VMEMMAP_ENABLE
1004
1005config ARCH_SPARSEMEM_DEFAULT
1006	def_bool ARCH_SPARSEMEM_ENABLE
1007
1008config ARCH_SELECT_MEMORY_MODEL
1009	def_bool ARCH_SPARSEMEM_ENABLE
1010
1011config ARCH_FLATMEM_ENABLE
1012	def_bool !NUMA
1013
1014config HAVE_ARCH_PFN_VALID
1015	def_bool y
1016
1017config HW_PERF_EVENTS
1018	def_bool y
1019	depends on ARM_PMU
1020
1021config SYS_SUPPORTS_HUGETLBFS
1022	def_bool y
1023
1024config ARCH_WANT_HUGE_PMD_SHARE
1025
1026config ARCH_HAS_CACHE_LINE_SIZE
1027	def_bool y
1028
1029config ARCH_ENABLE_SPLIT_PMD_PTLOCK
1030	def_bool y if PGTABLE_LEVELS > 2
1031
1032# Supported by clang >= 7.0
1033config CC_HAVE_SHADOW_CALL_STACK
1034	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1035
1036config SECCOMP
1037	bool "Enable seccomp to safely compute untrusted bytecode"
1038	help
1039	  This kernel feature is useful for number crunching applications
1040	  that may need to compute untrusted bytecode during their
1041	  execution. By using pipes or other transports made available to
1042	  the process as file descriptors supporting the read/write
1043	  syscalls, it's possible to isolate those applications in
1044	  their own address space using seccomp. Once seccomp is
1045	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1046	  and the task is only allowed to execute a few safe syscalls
1047	  defined by each seccomp mode.
1048
1049config PARAVIRT
1050	bool "Enable paravirtualization code"
1051	help
1052	  This changes the kernel so it can modify itself when it is run
1053	  under a hypervisor, potentially improving performance significantly
1054	  over full virtualization.
1055
1056config PARAVIRT_TIME_ACCOUNTING
1057	bool "Paravirtual steal time accounting"
1058	select PARAVIRT
1059	help
1060	  Select this option to enable fine granularity task steal time
1061	  accounting. Time spent executing other tasks in parallel with
1062	  the current vCPU is discounted from the vCPU power. To account for
1063	  that, there can be a small performance impact.
1064
1065	  If in doubt, say N here.
1066
1067config KEXEC
1068	depends on PM_SLEEP_SMP
1069	select KEXEC_CORE
1070	bool "kexec system call"
1071	help
1072	  kexec is a system call that implements the ability to shutdown your
1073	  current kernel, and to start another kernel.  It is like a reboot
1074	  but it is independent of the system firmware.   And like a reboot
1075	  you can start any kernel with it, not just Linux.
1076
1077config KEXEC_FILE
1078	bool "kexec file based system call"
1079	select KEXEC_CORE
1080	help
1081	  This is new version of kexec system call. This system call is
1082	  file based and takes file descriptors as system call argument
1083	  for kernel and initramfs as opposed to list of segments as
1084	  accepted by previous system call.
1085
1086config KEXEC_SIG
1087	bool "Verify kernel signature during kexec_file_load() syscall"
1088	depends on KEXEC_FILE
1089	help
1090	  Select this option to verify a signature with loaded kernel
1091	  image. If configured, any attempt of loading a image without
1092	  valid signature will fail.
1093
1094	  In addition to that option, you need to enable signature
1095	  verification for the corresponding kernel image type being
1096	  loaded in order for this to work.
1097
1098config KEXEC_IMAGE_VERIFY_SIG
1099	bool "Enable Image signature verification support"
1100	default y
1101	depends on KEXEC_SIG
1102	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1103	help
1104	  Enable Image signature verification support.
1105
1106comment "Support for PE file signature verification disabled"
1107	depends on KEXEC_SIG
1108	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1109
1110config CRASH_DUMP
1111	bool "Build kdump crash kernel"
1112	help
1113	  Generate crash dump after being started by kexec. This should
1114	  be normally only set in special crash dump kernels which are
1115	  loaded in the main kernel with kexec-tools into a specially
1116	  reserved region and then later executed after a crash by
1117	  kdump/kexec.
1118
1119	  For more details see Documentation/admin-guide/kdump/kdump.rst
1120
1121config XEN_DOM0
1122	def_bool y
1123	depends on XEN
1124
1125config XEN
1126	bool "Xen guest support on ARM64"
1127	depends on ARM64 && OF
1128	select SWIOTLB_XEN
1129	select PARAVIRT
1130	help
1131	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1132
1133config FORCE_MAX_ZONEORDER
1134	int
1135	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1136	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1137	default "11"
1138	help
1139	  The kernel memory allocator divides physically contiguous memory
1140	  blocks into "zones", where each zone is a power of two number of
1141	  pages.  This option selects the largest power of two that the kernel
1142	  keeps in the memory allocator.  If you need to allocate very large
1143	  blocks of physically contiguous memory, then you may need to
1144	  increase this value.
1145
1146	  This config option is actually maximum order plus one. For example,
1147	  a value of 11 means that the largest free memory block is 2^10 pages.
1148
1149	  We make sure that we can allocate upto a HugePage size for each configuration.
1150	  Hence we have :
1151		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1152
1153	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1154	  4M allocations matching the default size used by generic code.
1155
1156config UNMAP_KERNEL_AT_EL0
1157	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1158	default y
1159	help
1160	  Speculation attacks against some high-performance processors can
1161	  be used to bypass MMU permission checks and leak kernel data to
1162	  userspace. This can be defended against by unmapping the kernel
1163	  when running in userspace, mapping it back in on exception entry
1164	  via a trampoline page in the vector table.
1165
1166	  If unsure, say Y.
1167
1168config HARDEN_BRANCH_PREDICTOR
1169	bool "Harden the branch predictor against aliasing attacks" if EXPERT
1170	default y
1171	help
1172	  Speculation attacks against some high-performance processors rely on
1173	  being able to manipulate the branch predictor for a victim context by
1174	  executing aliasing branches in the attacker context.  Such attacks
1175	  can be partially mitigated against by clearing internal branch
1176	  predictor state and limiting the prediction logic in some situations.
1177
1178	  This config option will take CPU-specific actions to harden the
1179	  branch predictor against aliasing attacks and may rely on specific
1180	  instruction sequences or control bits being set by the system
1181	  firmware.
1182
1183	  If unsure, say Y.
1184
1185config HARDEN_EL2_VECTORS
1186	bool "Harden EL2 vector mapping against system register leak" if EXPERT
1187	default y
1188	help
1189	  Speculation attacks against some high-performance processors can
1190	  be used to leak privileged information such as the vector base
1191	  register, resulting in a potential defeat of the EL2 layout
1192	  randomization.
1193
1194	  This config option will map the vectors to a fixed location,
1195	  independent of the EL2 code mapping, so that revealing VBAR_EL2
1196	  to an attacker does not give away any extra information. This
1197	  only gets enabled on affected CPUs.
1198
1199	  If unsure, say Y.
1200
1201config ARM64_SSBD
1202	bool "Speculative Store Bypass Disable" if EXPERT
1203	default y
1204	help
1205	  This enables mitigation of the bypassing of previous stores
1206	  by speculative loads.
1207
1208	  If unsure, say Y.
1209
1210config RODATA_FULL_DEFAULT_ENABLED
1211	bool "Apply r/o permissions of VM areas also to their linear aliases"
1212	default y
1213	help
1214	  Apply read-only attributes of VM areas to the linear alias of
1215	  the backing pages as well. This prevents code or read-only data
1216	  from being modified (inadvertently or intentionally) via another
1217	  mapping of the same memory page. This additional enhancement can
1218	  be turned off at runtime by passing rodata=[off|on] (and turned on
1219	  with rodata=full if this option is set to 'n')
1220
1221	  This requires the linear region to be mapped down to pages,
1222	  which may adversely affect performance in some cases.
1223
1224config ARM64_SW_TTBR0_PAN
1225	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1226	help
1227	  Enabling this option prevents the kernel from accessing
1228	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1229	  zeroed area and reserved ASID. The user access routines
1230	  restore the valid TTBR0_EL1 temporarily.
1231
1232config ARM64_TAGGED_ADDR_ABI
1233	bool "Enable the tagged user addresses syscall ABI"
1234	default y
1235	help
1236	  When this option is enabled, user applications can opt in to a
1237	  relaxed ABI via prctl() allowing tagged addresses to be passed
1238	  to system calls as pointer arguments. For details, see
1239	  Documentation/arm64/tagged-address-abi.rst.
1240
1241menuconfig COMPAT
1242	bool "Kernel support for 32-bit EL0"
1243	depends on ARM64_4K_PAGES || EXPERT
1244	select COMPAT_BINFMT_ELF if BINFMT_ELF
1245	select HAVE_UID16
1246	select OLD_SIGSUSPEND3
1247	select COMPAT_OLD_SIGACTION
1248	help
1249	  This option enables support for a 32-bit EL0 running under a 64-bit
1250	  kernel at EL1. AArch32-specific components such as system calls,
1251	  the user helper functions, VFP support and the ptrace interface are
1252	  handled appropriately by the kernel.
1253
1254	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1255	  that you will only be able to execute AArch32 binaries that were compiled
1256	  with page size aligned segments.
1257
1258	  If you want to execute 32-bit userspace applications, say Y.
1259
1260if COMPAT
1261
1262config KUSER_HELPERS
1263	bool "Enable kuser helpers page for 32-bit applications"
1264	default y
1265	help
1266	  Warning: disabling this option may break 32-bit user programs.
1267
1268	  Provide kuser helpers to compat tasks. The kernel provides
1269	  helper code to userspace in read only form at a fixed location
1270	  to allow userspace to be independent of the CPU type fitted to
1271	  the system. This permits binaries to be run on ARMv4 through
1272	  to ARMv8 without modification.
1273
1274	  See Documentation/arm/kernel_user_helpers.rst for details.
1275
1276	  However, the fixed address nature of these helpers can be used
1277	  by ROP (return orientated programming) authors when creating
1278	  exploits.
1279
1280	  If all of the binaries and libraries which run on your platform
1281	  are built specifically for your platform, and make no use of
1282	  these helpers, then you can turn this option off to hinder
1283	  such exploits. However, in that case, if a binary or library
1284	  relying on those helpers is run, it will not function correctly.
1285
1286	  Say N here only if you are absolutely certain that you do not
1287	  need these helpers; otherwise, the safe option is to say Y.
1288
1289config COMPAT_VDSO
1290	bool "Enable vDSO for 32-bit applications"
1291	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1292	select GENERIC_COMPAT_VDSO
1293	default y
1294	help
1295	  Place in the process address space of 32-bit applications an
1296	  ELF shared object providing fast implementations of gettimeofday
1297	  and clock_gettime.
1298
1299	  You must have a 32-bit build of glibc 2.22 or later for programs
1300	  to seamlessly take advantage of this.
1301
1302config THUMB2_COMPAT_VDSO
1303	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1304	depends on COMPAT_VDSO
1305	default y
1306	help
1307	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1308	  otherwise with '-marm'.
1309
1310menuconfig ARMV8_DEPRECATED
1311	bool "Emulate deprecated/obsolete ARMv8 instructions"
1312	depends on SYSCTL
1313	help
1314	  Legacy software support may require certain instructions
1315	  that have been deprecated or obsoleted in the architecture.
1316
1317	  Enable this config to enable selective emulation of these
1318	  features.
1319
1320	  If unsure, say Y
1321
1322if ARMV8_DEPRECATED
1323
1324config SWP_EMULATION
1325	bool "Emulate SWP/SWPB instructions"
1326	help
1327	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1328	  they are always undefined. Say Y here to enable software
1329	  emulation of these instructions for userspace using LDXR/STXR.
1330
1331	  In some older versions of glibc [<=2.8] SWP is used during futex
1332	  trylock() operations with the assumption that the code will not
1333	  be preempted. This invalid assumption may be more likely to fail
1334	  with SWP emulation enabled, leading to deadlock of the user
1335	  application.
1336
1337	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1338	  on an external transaction monitoring block called a global
1339	  monitor to maintain update atomicity. If your system does not
1340	  implement a global monitor, this option can cause programs that
1341	  perform SWP operations to uncached memory to deadlock.
1342
1343	  If unsure, say Y
1344
1345config CP15_BARRIER_EMULATION
1346	bool "Emulate CP15 Barrier instructions"
1347	help
1348	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1349	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1350	  strongly recommended to use the ISB, DSB, and DMB
1351	  instructions instead.
1352
1353	  Say Y here to enable software emulation of these
1354	  instructions for AArch32 userspace code. When this option is
1355	  enabled, CP15 barrier usage is traced which can help
1356	  identify software that needs updating.
1357
1358	  If unsure, say Y
1359
1360config SETEND_EMULATION
1361	bool "Emulate SETEND instruction"
1362	help
1363	  The SETEND instruction alters the data-endianness of the
1364	  AArch32 EL0, and is deprecated in ARMv8.
1365
1366	  Say Y here to enable software emulation of the instruction
1367	  for AArch32 userspace code.
1368
1369	  Note: All the cpus on the system must have mixed endian support at EL0
1370	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1371	  endian - is hotplugged in after this feature has been enabled, there could
1372	  be unexpected results in the applications.
1373
1374	  If unsure, say Y
1375endif
1376
1377endif
1378
1379menu "ARMv8.1 architectural features"
1380
1381config ARM64_HW_AFDBM
1382	bool "Support for hardware updates of the Access and Dirty page flags"
1383	default y
1384	help
1385	  The ARMv8.1 architecture extensions introduce support for
1386	  hardware updates of the access and dirty information in page
1387	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1388	  capable processors, accesses to pages with PTE_AF cleared will
1389	  set this bit instead of raising an access flag fault.
1390	  Similarly, writes to read-only pages with the DBM bit set will
1391	  clear the read-only bit (AP[2]) instead of raising a
1392	  permission fault.
1393
1394	  Kernels built with this configuration option enabled continue
1395	  to work on pre-ARMv8.1 hardware and the performance impact is
1396	  minimal. If unsure, say Y.
1397
1398config ARM64_PAN
1399	bool "Enable support for Privileged Access Never (PAN)"
1400	default y
1401	help
1402	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1403	 prevents the kernel or hypervisor from accessing user-space (EL0)
1404	 memory directly.
1405
1406	 Choosing this option will cause any unprotected (not using
1407	 copy_to_user et al) memory access to fail with a permission fault.
1408
1409	 The feature is detected at runtime, and will remain as a 'nop'
1410	 instruction if the cpu does not implement the feature.
1411
1412config ARM64_LSE_ATOMICS
1413	bool
1414	default ARM64_USE_LSE_ATOMICS
1415	depends on $(as-instr,.arch_extension lse)
1416
1417config ARM64_USE_LSE_ATOMICS
1418	bool "Atomic instructions"
1419	depends on JUMP_LABEL
1420	default y
1421	help
1422	  As part of the Large System Extensions, ARMv8.1 introduces new
1423	  atomic instructions that are designed specifically to scale in
1424	  very large systems.
1425
1426	  Say Y here to make use of these instructions for the in-kernel
1427	  atomic routines. This incurs a small overhead on CPUs that do
1428	  not support these instructions and requires the kernel to be
1429	  built with binutils >= 2.25 in order for the new instructions
1430	  to be used.
1431
1432config ARM64_VHE
1433	bool "Enable support for Virtualization Host Extensions (VHE)"
1434	default y
1435	help
1436	  Virtualization Host Extensions (VHE) allow the kernel to run
1437	  directly at EL2 (instead of EL1) on processors that support
1438	  it. This leads to better performance for KVM, as they reduce
1439	  the cost of the world switch.
1440
1441	  Selecting this option allows the VHE feature to be detected
1442	  at runtime, and does not affect processors that do not
1443	  implement this feature.
1444
1445endmenu
1446
1447menu "ARMv8.2 architectural features"
1448
1449config ARM64_UAO
1450	bool "Enable support for User Access Override (UAO)"
1451	default y
1452	help
1453	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1454	  causes the 'unprivileged' variant of the load/store instructions to
1455	  be overridden to be privileged.
1456
1457	  This option changes get_user() and friends to use the 'unprivileged'
1458	  variant of the load/store instructions. This ensures that user-space
1459	  really did have access to the supplied memory. When addr_limit is
1460	  set to kernel memory the UAO bit will be set, allowing privileged
1461	  access to kernel memory.
1462
1463	  Choosing this option will cause copy_to_user() et al to use user-space
1464	  memory permissions.
1465
1466	  The feature is detected at runtime, the kernel will use the
1467	  regular load/store instructions if the cpu does not implement the
1468	  feature.
1469
1470config ARM64_PMEM
1471	bool "Enable support for persistent memory"
1472	select ARCH_HAS_PMEM_API
1473	select ARCH_HAS_UACCESS_FLUSHCACHE
1474	help
1475	  Say Y to enable support for the persistent memory API based on the
1476	  ARMv8.2 DCPoP feature.
1477
1478	  The feature is detected at runtime, and the kernel will use DC CVAC
1479	  operations if DC CVAP is not supported (following the behaviour of
1480	  DC CVAP itself if the system does not define a point of persistence).
1481
1482config ARM64_RAS_EXTN
1483	bool "Enable support for RAS CPU Extensions"
1484	default y
1485	help
1486	  CPUs that support the Reliability, Availability and Serviceability
1487	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1488	  errors, classify them and report them to software.
1489
1490	  On CPUs with these extensions system software can use additional
1491	  barriers to determine if faults are pending and read the
1492	  classification from a new set of registers.
1493
1494	  Selecting this feature will allow the kernel to use these barriers
1495	  and access the new registers if the system supports the extension.
1496	  Platform RAS features may additionally depend on firmware support.
1497
1498config ARM64_CNP
1499	bool "Enable support for Common Not Private (CNP) translations"
1500	default y
1501	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1502	help
1503	  Common Not Private (CNP) allows translation table entries to
1504	  be shared between different PEs in the same inner shareable
1505	  domain, so the hardware can use this fact to optimise the
1506	  caching of such entries in the TLB.
1507
1508	  Selecting this option allows the CNP feature to be detected
1509	  at runtime, and does not affect PEs that do not implement
1510	  this feature.
1511
1512endmenu
1513
1514menu "ARMv8.3 architectural features"
1515
1516config ARM64_PTR_AUTH
1517	bool "Enable support for pointer authentication"
1518	default y
1519	depends on !KVM || ARM64_VHE
1520	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1521	# GCC 9.1 and later inserts a .note.gnu.property section note for PAC
1522	# which is only understood by binutils starting with version 2.33.1.
1523	depends on !CC_IS_GCC || GCC_VERSION < 90100 || LD_VERSION >= 233010000
1524	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1525	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1526	help
1527	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1528	  instructions for signing and authenticating pointers against secret
1529	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1530	  and other attacks.
1531
1532	  This option enables these instructions at EL0 (i.e. for userspace).
1533	  Choosing this option will cause the kernel to initialise secret keys
1534	  for each process at exec() time, with these keys being
1535	  context-switched along with the process.
1536
1537	  If the compiler supports the -mbranch-protection or
1538	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1539	  will also cause the kernel itself to be compiled with return address
1540	  protection. In this case, and if the target hardware is known to
1541	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1542	  disabled with minimal loss of protection.
1543
1544	  The feature is detected at runtime. If the feature is not present in
1545	  hardware it will not be advertised to userspace/KVM guest nor will it
1546	  be enabled. However, KVM guest also require VHE mode and hence
1547	  CONFIG_ARM64_VHE=y option to use this feature.
1548
1549	  If the feature is present on the boot CPU but not on a late CPU, then
1550	  the late CPU will be parked. Also, if the boot CPU does not have
1551	  address auth and the late CPU has then the late CPU will still boot
1552	  but with the feature disabled. On such a system, this option should
1553	  not be selected.
1554
1555	  This feature works with FUNCTION_GRAPH_TRACER option only if
1556	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1557
1558config CC_HAS_BRANCH_PROT_PAC_RET
1559	# GCC 9 or later, clang 8 or later
1560	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1561
1562config CC_HAS_SIGN_RETURN_ADDRESS
1563	# GCC 7, 8
1564	def_bool $(cc-option,-msign-return-address=all)
1565
1566config AS_HAS_PAC
1567	def_bool $(as-option,-Wa$(comma)-march=armv8.3-a)
1568
1569config AS_HAS_CFI_NEGATE_RA_STATE
1570	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1571
1572endmenu
1573
1574menu "ARMv8.4 architectural features"
1575
1576config ARM64_AMU_EXTN
1577	bool "Enable support for the Activity Monitors Unit CPU extension"
1578	default y
1579	help
1580	  The activity monitors extension is an optional extension introduced
1581	  by the ARMv8.4 CPU architecture. This enables support for version 1
1582	  of the activity monitors architecture, AMUv1.
1583
1584	  To enable the use of this extension on CPUs that implement it, say Y.
1585
1586	  Note that for architectural reasons, firmware _must_ implement AMU
1587	  support when running on CPUs that present the activity monitors
1588	  extension. The required support is present in:
1589	    * Version 1.5 and later of the ARM Trusted Firmware
1590
1591	  For kernels that have this configuration enabled but boot with broken
1592	  firmware, you may need to say N here until the firmware is fixed.
1593	  Otherwise you may experience firmware panics or lockups when
1594	  accessing the counter registers. Even if you are not observing these
1595	  symptoms, the values returned by the register reads might not
1596	  correctly reflect reality. Most commonly, the value read will be 0,
1597	  indicating that the counter is not enabled.
1598
1599endmenu
1600
1601menu "ARMv8.5 architectural features"
1602
1603config ARM64_BTI
1604	bool "Branch Target Identification support"
1605	default y
1606	help
1607	  Branch Target Identification (part of the ARMv8.5 Extensions)
1608	  provides a mechanism to limit the set of locations to which computed
1609	  branch instructions such as BR or BLR can jump.
1610
1611	  To make use of BTI on CPUs that support it, say Y.
1612
1613	  BTI is intended to provide complementary protection to other control
1614	  flow integrity protection mechanisms, such as the Pointer
1615	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1616	  For this reason, it does not make sense to enable this option without
1617	  also enabling support for pointer authentication.  Thus, when
1618	  enabling this option you should also select ARM64_PTR_AUTH=y.
1619
1620	  Userspace binaries must also be specifically compiled to make use of
1621	  this mechanism.  If you say N here or the hardware does not support
1622	  BTI, such binaries can still run, but you get no additional
1623	  enforcement of branch destinations.
1624
1625config ARM64_BTI_KERNEL
1626	bool "Use Branch Target Identification for kernel"
1627	default y
1628	depends on ARM64_BTI
1629	depends on ARM64_PTR_AUTH
1630	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1631	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1632	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1633	depends on !(CC_IS_CLANG && GCOV_KERNEL)
1634	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1635	help
1636	  Build the kernel with Branch Target Identification annotations
1637	  and enable enforcement of this for kernel code. When this option
1638	  is enabled and the system supports BTI all kernel code including
1639	  modular code must have BTI enabled.
1640
1641config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1642	# GCC 9 or later, clang 8 or later
1643	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1644
1645config ARM64_E0PD
1646	bool "Enable support for E0PD"
1647	default y
1648	help
1649	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1650	  that EL0 accesses made via TTBR1 always fault in constant time,
1651	  providing similar benefits to KASLR as those provided by KPTI, but
1652	  with lower overhead and without disrupting legitimate access to
1653	  kernel memory such as SPE.
1654
1655	  This option enables E0PD for TTBR1 where available.
1656
1657config ARCH_RANDOM
1658	bool "Enable support for random number generation"
1659	default y
1660	help
1661	  Random number generation (part of the ARMv8.5 Extensions)
1662	  provides a high bandwidth, cryptographically secure
1663	  hardware random number generator.
1664
1665endmenu
1666
1667config ARM64_SVE
1668	bool "ARM Scalable Vector Extension support"
1669	default y
1670	depends on !KVM || ARM64_VHE
1671	help
1672	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1673	  execution state which complements and extends the SIMD functionality
1674	  of the base architecture to support much larger vectors and to enable
1675	  additional vectorisation opportunities.
1676
1677	  To enable use of this extension on CPUs that implement it, say Y.
1678
1679	  On CPUs that support the SVE2 extensions, this option will enable
1680	  those too.
1681
1682	  Note that for architectural reasons, firmware _must_ implement SVE
1683	  support when running on SVE capable hardware.  The required support
1684	  is present in:
1685
1686	    * version 1.5 and later of the ARM Trusted Firmware
1687	    * the AArch64 boot wrapper since commit 5e1261e08abf
1688	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1689
1690	  For other firmware implementations, consult the firmware documentation
1691	  or vendor.
1692
1693	  If you need the kernel to boot on SVE-capable hardware with broken
1694	  firmware, you may need to say N here until you get your firmware
1695	  fixed.  Otherwise, you may experience firmware panics or lockups when
1696	  booting the kernel.  If unsure and you are not observing these
1697	  symptoms, you should assume that it is safe to say Y.
1698
1699	  CPUs that support SVE are architecturally required to support the
1700	  Virtualization Host Extensions (VHE), so the kernel makes no
1701	  provision for supporting SVE alongside KVM without VHE enabled.
1702	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1703	  KVM in the same kernel image.
1704
1705config ARM64_MODULE_PLTS
1706	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1707	depends on MODULES
1708	select HAVE_MOD_ARCH_SPECIFIC
1709	help
1710	  Allocate PLTs when loading modules so that jumps and calls whose
1711	  targets are too far away for their relative offsets to be encoded
1712	  in the instructions themselves can be bounced via veneers in the
1713	  module's PLT. This allows modules to be allocated in the generic
1714	  vmalloc area after the dedicated module memory area has been
1715	  exhausted.
1716
1717	  When running with address space randomization (KASLR), the module
1718	  region itself may be too far away for ordinary relative jumps and
1719	  calls, and so in that case, module PLTs are required and cannot be
1720	  disabled.
1721
1722	  Specific errata workaround(s) might also force module PLTs to be
1723	  enabled (ARM64_ERRATUM_843419).
1724
1725config ARM64_PSEUDO_NMI
1726	bool "Support for NMI-like interrupts"
1727	select ARM_GIC_V3
1728	help
1729	  Adds support for mimicking Non-Maskable Interrupts through the use of
1730	  GIC interrupt priority. This support requires version 3 or later of
1731	  ARM GIC.
1732
1733	  This high priority configuration for interrupts needs to be
1734	  explicitly enabled by setting the kernel parameter
1735	  "irqchip.gicv3_pseudo_nmi" to 1.
1736
1737	  If unsure, say N
1738
1739if ARM64_PSEUDO_NMI
1740config ARM64_DEBUG_PRIORITY_MASKING
1741	bool "Debug interrupt priority masking"
1742	help
1743	  This adds runtime checks to functions enabling/disabling
1744	  interrupts when using priority masking. The additional checks verify
1745	  the validity of ICC_PMR_EL1 when calling concerned functions.
1746
1747	  If unsure, say N
1748endif
1749
1750config RELOCATABLE
1751	bool "Build a relocatable kernel image" if EXPERT
1752	select ARCH_HAS_RELR
1753	default y
1754	help
1755	  This builds the kernel as a Position Independent Executable (PIE),
1756	  which retains all relocation metadata required to relocate the
1757	  kernel binary at runtime to a different virtual address than the
1758	  address it was linked at.
1759	  Since AArch64 uses the RELA relocation format, this requires a
1760	  relocation pass at runtime even if the kernel is loaded at the
1761	  same address it was linked at.
1762
1763config RANDOMIZE_BASE
1764	bool "Randomize the address of the kernel image"
1765	select ARM64_MODULE_PLTS if MODULES
1766	select RELOCATABLE
1767	help
1768	  Randomizes the virtual address at which the kernel image is
1769	  loaded, as a security feature that deters exploit attempts
1770	  relying on knowledge of the location of kernel internals.
1771
1772	  It is the bootloader's job to provide entropy, by passing a
1773	  random u64 value in /chosen/kaslr-seed at kernel entry.
1774
1775	  When booting via the UEFI stub, it will invoke the firmware's
1776	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1777	  to the kernel proper. In addition, it will randomise the physical
1778	  location of the kernel Image as well.
1779
1780	  If unsure, say N.
1781
1782config RANDOMIZE_MODULE_REGION_FULL
1783	bool "Randomize the module region over a 4 GB range"
1784	depends on RANDOMIZE_BASE
1785	default y
1786	help
1787	  Randomizes the location of the module region inside a 4 GB window
1788	  covering the core kernel. This way, it is less likely for modules
1789	  to leak information about the location of core kernel data structures
1790	  but it does imply that function calls between modules and the core
1791	  kernel will need to be resolved via veneers in the module PLT.
1792
1793	  When this option is not set, the module region will be randomized over
1794	  a limited range that contains the [_stext, _etext] interval of the
1795	  core kernel, so branch relocations are always in range.
1796
1797config CC_HAVE_STACKPROTECTOR_SYSREG
1798	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1799
1800config STACKPROTECTOR_PER_TASK
1801	def_bool y
1802	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1803
1804endmenu
1805
1806menu "Boot options"
1807
1808config ARM64_ACPI_PARKING_PROTOCOL
1809	bool "Enable support for the ARM64 ACPI parking protocol"
1810	depends on ACPI
1811	help
1812	  Enable support for the ARM64 ACPI parking protocol. If disabled
1813	  the kernel will not allow booting through the ARM64 ACPI parking
1814	  protocol even if the corresponding data is present in the ACPI
1815	  MADT table.
1816
1817config CMDLINE
1818	string "Default kernel command string"
1819	default ""
1820	help
1821	  Provide a set of default command-line options at build time by
1822	  entering them here. As a minimum, you should specify the the
1823	  root device (e.g. root=/dev/nfs).
1824
1825config CMDLINE_FORCE
1826	bool "Always use the default kernel command string"
1827	depends on CMDLINE != ""
1828	help
1829	  Always use the default kernel command string, even if the boot
1830	  loader passes other arguments to the kernel.
1831	  This is useful if you cannot or don't want to change the
1832	  command-line options your boot loader passes to the kernel.
1833
1834config EFI_STUB
1835	bool
1836
1837config EFI
1838	bool "UEFI runtime support"
1839	depends on OF && !CPU_BIG_ENDIAN
1840	depends on KERNEL_MODE_NEON
1841	select ARCH_SUPPORTS_ACPI
1842	select LIBFDT
1843	select UCS2_STRING
1844	select EFI_PARAMS_FROM_FDT
1845	select EFI_RUNTIME_WRAPPERS
1846	select EFI_STUB
1847	select EFI_GENERIC_STUB
1848	default y
1849	help
1850	  This option provides support for runtime services provided
1851	  by UEFI firmware (such as non-volatile variables, realtime
1852          clock, and platform reset). A UEFI stub is also provided to
1853	  allow the kernel to be booted as an EFI application. This
1854	  is only useful on systems that have UEFI firmware.
1855
1856config DMI
1857	bool "Enable support for SMBIOS (DMI) tables"
1858	depends on EFI
1859	default y
1860	help
1861	  This enables SMBIOS/DMI feature for systems.
1862
1863	  This option is only useful on systems that have UEFI firmware.
1864	  However, even with this option, the resultant kernel should
1865	  continue to boot on existing non-UEFI platforms.
1866
1867endmenu
1868
1869config SYSVIPC_COMPAT
1870	def_bool y
1871	depends on COMPAT && SYSVIPC
1872
1873config ARCH_ENABLE_HUGEPAGE_MIGRATION
1874	def_bool y
1875	depends on HUGETLB_PAGE && MIGRATION
1876
1877menu "Power management options"
1878
1879source "kernel/power/Kconfig"
1880
1881config ARCH_HIBERNATION_POSSIBLE
1882	def_bool y
1883	depends on CPU_PM
1884
1885config ARCH_HIBERNATION_HEADER
1886	def_bool y
1887	depends on HIBERNATION
1888
1889config ARCH_SUSPEND_POSSIBLE
1890	def_bool y
1891
1892endmenu
1893
1894menu "CPU Power Management"
1895
1896source "drivers/cpuidle/Kconfig"
1897
1898source "drivers/cpufreq/Kconfig"
1899
1900endmenu
1901
1902source "drivers/firmware/Kconfig"
1903
1904source "drivers/acpi/Kconfig"
1905
1906source "arch/arm64/kvm/Kconfig"
1907
1908if CRYPTO
1909source "arch/arm64/crypto/Kconfig"
1910endif
1911