1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 15 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 16 select ARCH_ENABLE_MEMORY_HOTPLUG 17 select ARCH_ENABLE_MEMORY_HOTREMOVE 18 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 19 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 20 select ARCH_HAS_CACHE_LINE_SIZE 21 select ARCH_HAS_DEBUG_VIRTUAL 22 select ARCH_HAS_DEBUG_VM_PGTABLE 23 select ARCH_HAS_DMA_PREP_COHERENT 24 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 25 select ARCH_HAS_FAST_MULTIPLIER 26 select ARCH_HAS_FORTIFY_SOURCE 27 select ARCH_HAS_GCOV_PROFILE_ALL 28 select ARCH_HAS_GIGANTIC_PAGE 29 select ARCH_HAS_KCOV 30 select ARCH_HAS_KEEPINITRD 31 select ARCH_HAS_MEMBARRIER_SYNC_CORE 32 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 33 select ARCH_HAS_PTE_DEVMAP 34 select ARCH_HAS_PTE_SPECIAL 35 select ARCH_HAS_SETUP_DMA_OPS 36 select ARCH_HAS_SET_DIRECT_MAP 37 select ARCH_HAS_SET_MEMORY 38 select ARCH_STACKWALK 39 select ARCH_HAS_STRICT_KERNEL_RWX 40 select ARCH_HAS_STRICT_MODULE_RWX 41 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 42 select ARCH_HAS_SYNC_DMA_FOR_CPU 43 select ARCH_HAS_SYSCALL_WRAPPER 44 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 45 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 46 select ARCH_HAS_ZONE_DMA_SET if EXPERT 47 select ARCH_HAVE_ELF_PROT 48 select ARCH_HAVE_NMI_SAFE_CMPXCHG 49 select ARCH_INLINE_READ_LOCK if !PREEMPTION 50 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 51 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 52 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 53 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 54 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 55 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 56 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 57 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 58 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 59 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 60 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 61 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 62 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 63 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 64 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 65 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 66 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 67 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 68 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 69 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 70 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 71 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 72 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 73 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 74 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 75 select ARCH_KEEP_MEMBLOCK 76 select ARCH_USE_CMPXCHG_LOCKREF 77 select ARCH_USE_GNU_PROPERTY 78 select ARCH_USE_MEMTEST 79 select ARCH_USE_QUEUED_RWLOCKS 80 select ARCH_USE_QUEUED_SPINLOCKS 81 select ARCH_USE_SYM_ANNOTATIONS 82 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 83 select ARCH_SUPPORTS_HUGETLBFS 84 select ARCH_SUPPORTS_MEMORY_FAILURE 85 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 86 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 87 select ARCH_SUPPORTS_LTO_CLANG_THIN 88 select ARCH_SUPPORTS_CFI_CLANG 89 select ARCH_SUPPORTS_ATOMIC_RMW 90 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 91 select ARCH_SUPPORTS_NUMA_BALANCING 92 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 93 select ARCH_WANT_DEFAULT_BPF_JIT 94 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 95 select ARCH_WANT_FRAME_POINTERS 96 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 97 select ARCH_WANT_LD_ORPHAN_WARN 98 select ARCH_WANTS_NO_INSTR 99 select ARCH_HAS_UBSAN_SANITIZE_ALL 100 select ARM_AMBA 101 select ARM_ARCH_TIMER 102 select ARM_GIC 103 select AUDIT_ARCH_COMPAT_GENERIC 104 select ARM_GIC_V2M if PCI 105 select ARM_GIC_V3 106 select ARM_GIC_V3_ITS if PCI 107 select ARM_PSCI_FW 108 select BUILDTIME_TABLE_SORT 109 select CLONE_BACKWARDS 110 select COMMON_CLK 111 select CPU_PM if (SUSPEND || CPU_IDLE) 112 select CRC32 113 select DCACHE_WORD_ACCESS 114 select DMA_DIRECT_REMAP 115 select EDAC_SUPPORT 116 select FRAME_POINTER 117 select GENERIC_ALLOCATOR 118 select GENERIC_ARCH_TOPOLOGY 119 select GENERIC_CLOCKEVENTS_BROADCAST 120 select GENERIC_CPU_AUTOPROBE 121 select GENERIC_CPU_VULNERABILITIES 122 select GENERIC_EARLY_IOREMAP 123 select GENERIC_FIND_FIRST_BIT 124 select GENERIC_IDLE_POLL_SETUP 125 select GENERIC_IRQ_IPI 126 select GENERIC_IRQ_PROBE 127 select GENERIC_IRQ_SHOW 128 select GENERIC_IRQ_SHOW_LEVEL 129 select GENERIC_LIB_DEVMEM_IS_ALLOWED 130 select GENERIC_PCI_IOMAP 131 select GENERIC_PTDUMP 132 select GENERIC_SCHED_CLOCK 133 select GENERIC_SMP_IDLE_THREAD 134 select GENERIC_TIME_VSYSCALL 135 select GENERIC_GETTIMEOFDAY 136 select GENERIC_VDSO_TIME_NS 137 select HARDIRQS_SW_RESEND 138 select HAVE_MOVE_PMD 139 select HAVE_MOVE_PUD 140 select HAVE_PCI 141 select HAVE_ACPI_APEI if (ACPI && EFI) 142 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 143 select HAVE_ARCH_AUDITSYSCALL 144 select HAVE_ARCH_BITREVERSE 145 select HAVE_ARCH_COMPILER_H 146 select HAVE_ARCH_HUGE_VMAP 147 select HAVE_ARCH_JUMP_LABEL 148 select HAVE_ARCH_JUMP_LABEL_RELATIVE 149 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 150 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 151 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 152 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 153 select HAVE_ARCH_KFENCE 154 select HAVE_ARCH_KGDB 155 select HAVE_ARCH_MMAP_RND_BITS 156 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 157 select HAVE_ARCH_PREL32_RELOCATIONS 158 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 159 select HAVE_ARCH_SECCOMP_FILTER 160 select HAVE_ARCH_STACKLEAK 161 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 162 select HAVE_ARCH_TRACEHOOK 163 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 164 select HAVE_ARCH_VMAP_STACK 165 select HAVE_ARM_SMCCC 166 select HAVE_ASM_MODVERSIONS 167 select HAVE_EBPF_JIT 168 select HAVE_C_RECORDMCOUNT 169 select HAVE_CMPXCHG_DOUBLE 170 select HAVE_CMPXCHG_LOCAL 171 select HAVE_CONTEXT_TRACKING 172 select HAVE_DEBUG_KMEMLEAK 173 select HAVE_DMA_CONTIGUOUS 174 select HAVE_DYNAMIC_FTRACE 175 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 176 if $(cc-option,-fpatchable-function-entry=2) 177 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 178 if DYNAMIC_FTRACE_WITH_REGS 179 select HAVE_EFFICIENT_UNALIGNED_ACCESS 180 select HAVE_FAST_GUP 181 select HAVE_FTRACE_MCOUNT_RECORD 182 select HAVE_FUNCTION_TRACER 183 select HAVE_FUNCTION_ERROR_INJECTION 184 select HAVE_FUNCTION_GRAPH_TRACER 185 select HAVE_GCC_PLUGINS 186 select HAVE_HW_BREAKPOINT if PERF_EVENTS 187 select HAVE_IRQ_TIME_ACCOUNTING 188 select HAVE_KVM 189 select HAVE_NMI 190 select HAVE_PATA_PLATFORM 191 select HAVE_PERF_EVENTS 192 select HAVE_PERF_REGS 193 select HAVE_PERF_USER_STACK_DUMP 194 select HAVE_REGS_AND_STACK_ACCESS_API 195 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 196 select HAVE_FUNCTION_ARG_ACCESS_API 197 select HAVE_FUTEX_CMPXCHG if FUTEX 198 select MMU_GATHER_RCU_TABLE_FREE 199 select HAVE_RSEQ 200 select HAVE_STACKPROTECTOR 201 select HAVE_SYSCALL_TRACEPOINTS 202 select HAVE_KPROBES 203 select HAVE_KRETPROBES 204 select HAVE_GENERIC_VDSO 205 select IOMMU_DMA if IOMMU_SUPPORT 206 select IRQ_DOMAIN 207 select IRQ_FORCED_THREADING 208 select KASAN_VMALLOC if KASAN_GENERIC 209 select MODULES_USE_ELF_RELA 210 select NEED_DMA_MAP_STATE 211 select NEED_SG_DMA_LENGTH 212 select OF 213 select OF_EARLY_FLATTREE 214 select PCI_DOMAINS_GENERIC if PCI 215 select PCI_ECAM if (ACPI && PCI) 216 select PCI_SYSCALL if PCI 217 select POWER_RESET 218 select POWER_SUPPLY 219 select SPARSE_IRQ 220 select SWIOTLB 221 select SYSCTL_EXCEPTION_TRACE 222 select THREAD_INFO_IN_TASK 223 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 224 select TRACE_IRQFLAGS_SUPPORT 225 help 226 ARM 64-bit (AArch64) Linux support. 227 228config 64BIT 229 def_bool y 230 231config MMU 232 def_bool y 233 234config ARM64_PAGE_SHIFT 235 int 236 default 16 if ARM64_64K_PAGES 237 default 14 if ARM64_16K_PAGES 238 default 12 239 240config ARM64_CONT_PTE_SHIFT 241 int 242 default 5 if ARM64_64K_PAGES 243 default 7 if ARM64_16K_PAGES 244 default 4 245 246config ARM64_CONT_PMD_SHIFT 247 int 248 default 5 if ARM64_64K_PAGES 249 default 5 if ARM64_16K_PAGES 250 default 4 251 252config ARCH_MMAP_RND_BITS_MIN 253 default 14 if ARM64_64K_PAGES 254 default 16 if ARM64_16K_PAGES 255 default 18 256 257# max bits determined by the following formula: 258# VA_BITS - PAGE_SHIFT - 3 259config ARCH_MMAP_RND_BITS_MAX 260 default 19 if ARM64_VA_BITS=36 261 default 24 if ARM64_VA_BITS=39 262 default 27 if ARM64_VA_BITS=42 263 default 30 if ARM64_VA_BITS=47 264 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 265 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 266 default 33 if ARM64_VA_BITS=48 267 default 14 if ARM64_64K_PAGES 268 default 16 if ARM64_16K_PAGES 269 default 18 270 271config ARCH_MMAP_RND_COMPAT_BITS_MIN 272 default 7 if ARM64_64K_PAGES 273 default 9 if ARM64_16K_PAGES 274 default 11 275 276config ARCH_MMAP_RND_COMPAT_BITS_MAX 277 default 16 278 279config NO_IOPORT_MAP 280 def_bool y if !PCI 281 282config STACKTRACE_SUPPORT 283 def_bool y 284 285config ILLEGAL_POINTER_VALUE 286 hex 287 default 0xdead000000000000 288 289config LOCKDEP_SUPPORT 290 def_bool y 291 292config GENERIC_BUG 293 def_bool y 294 depends on BUG 295 296config GENERIC_BUG_RELATIVE_POINTERS 297 def_bool y 298 depends on GENERIC_BUG 299 300config GENERIC_HWEIGHT 301 def_bool y 302 303config GENERIC_CSUM 304 def_bool y 305 306config GENERIC_CALIBRATE_DELAY 307 def_bool y 308 309config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 310 def_bool y 311 312config SMP 313 def_bool y 314 315config KERNEL_MODE_NEON 316 def_bool y 317 318config FIX_EARLYCON_MEM 319 def_bool y 320 321config PGTABLE_LEVELS 322 int 323 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 324 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 325 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 326 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 327 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 328 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 329 330config ARCH_SUPPORTS_UPROBES 331 def_bool y 332 333config ARCH_PROC_KCORE_TEXT 334 def_bool y 335 336config BROKEN_GAS_INST 337 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 338 339config KASAN_SHADOW_OFFSET 340 hex 341 depends on KASAN_GENERIC || KASAN_SW_TAGS 342 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 343 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 344 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 345 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 346 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 347 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 348 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 349 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 350 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 351 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 352 default 0xffffffffffffffff 353 354source "arch/arm64/Kconfig.platforms" 355 356menu "Kernel Features" 357 358menu "ARM errata workarounds via the alternatives framework" 359 360config ARM64_WORKAROUND_CLEAN_CACHE 361 bool 362 363config ARM64_ERRATUM_826319 364 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 365 default y 366 select ARM64_WORKAROUND_CLEAN_CACHE 367 help 368 This option adds an alternative code sequence to work around ARM 369 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 370 AXI master interface and an L2 cache. 371 372 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 373 and is unable to accept a certain write via this interface, it will 374 not progress on read data presented on the read data channel and the 375 system can deadlock. 376 377 The workaround promotes data cache clean instructions to 378 data cache clean-and-invalidate. 379 Please note that this does not necessarily enable the workaround, 380 as it depends on the alternative framework, which will only patch 381 the kernel if an affected CPU is detected. 382 383 If unsure, say Y. 384 385config ARM64_ERRATUM_827319 386 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 387 default y 388 select ARM64_WORKAROUND_CLEAN_CACHE 389 help 390 This option adds an alternative code sequence to work around ARM 391 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 392 master interface and an L2 cache. 393 394 Under certain conditions this erratum can cause a clean line eviction 395 to occur at the same time as another transaction to the same address 396 on the AMBA 5 CHI interface, which can cause data corruption if the 397 interconnect reorders the two transactions. 398 399 The workaround promotes data cache clean instructions to 400 data cache clean-and-invalidate. 401 Please note that this does not necessarily enable the workaround, 402 as it depends on the alternative framework, which will only patch 403 the kernel if an affected CPU is detected. 404 405 If unsure, say Y. 406 407config ARM64_ERRATUM_824069 408 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 409 default y 410 select ARM64_WORKAROUND_CLEAN_CACHE 411 help 412 This option adds an alternative code sequence to work around ARM 413 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 414 to a coherent interconnect. 415 416 If a Cortex-A53 processor is executing a store or prefetch for 417 write instruction at the same time as a processor in another 418 cluster is executing a cache maintenance operation to the same 419 address, then this erratum might cause a clean cache line to be 420 incorrectly marked as dirty. 421 422 The workaround promotes data cache clean instructions to 423 data cache clean-and-invalidate. 424 Please note that this option does not necessarily enable the 425 workaround, as it depends on the alternative framework, which will 426 only patch the kernel if an affected CPU is detected. 427 428 If unsure, say Y. 429 430config ARM64_ERRATUM_819472 431 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 432 default y 433 select ARM64_WORKAROUND_CLEAN_CACHE 434 help 435 This option adds an alternative code sequence to work around ARM 436 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 437 present when it is connected to a coherent interconnect. 438 439 If the processor is executing a load and store exclusive sequence at 440 the same time as a processor in another cluster is executing a cache 441 maintenance operation to the same address, then this erratum might 442 cause data corruption. 443 444 The workaround promotes data cache clean instructions to 445 data cache clean-and-invalidate. 446 Please note that this does not necessarily enable the workaround, 447 as it depends on the alternative framework, which will only patch 448 the kernel if an affected CPU is detected. 449 450 If unsure, say Y. 451 452config ARM64_ERRATUM_832075 453 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 454 default y 455 help 456 This option adds an alternative code sequence to work around ARM 457 erratum 832075 on Cortex-A57 parts up to r1p2. 458 459 Affected Cortex-A57 parts might deadlock when exclusive load/store 460 instructions to Write-Back memory are mixed with Device loads. 461 462 The workaround is to promote device loads to use Load-Acquire 463 semantics. 464 Please note that this does not necessarily enable the workaround, 465 as it depends on the alternative framework, which will only patch 466 the kernel if an affected CPU is detected. 467 468 If unsure, say Y. 469 470config ARM64_ERRATUM_834220 471 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 472 depends on KVM 473 default y 474 help 475 This option adds an alternative code sequence to work around ARM 476 erratum 834220 on Cortex-A57 parts up to r1p2. 477 478 Affected Cortex-A57 parts might report a Stage 2 translation 479 fault as the result of a Stage 1 fault for load crossing a 480 page boundary when there is a permission or device memory 481 alignment fault at Stage 1 and a translation fault at Stage 2. 482 483 The workaround is to verify that the Stage 1 translation 484 doesn't generate a fault before handling the Stage 2 fault. 485 Please note that this does not necessarily enable the workaround, 486 as it depends on the alternative framework, which will only patch 487 the kernel if an affected CPU is detected. 488 489 If unsure, say Y. 490 491config ARM64_ERRATUM_845719 492 bool "Cortex-A53: 845719: a load might read incorrect data" 493 depends on COMPAT 494 default y 495 help 496 This option adds an alternative code sequence to work around ARM 497 erratum 845719 on Cortex-A53 parts up to r0p4. 498 499 When running a compat (AArch32) userspace on an affected Cortex-A53 500 part, a load at EL0 from a virtual address that matches the bottom 32 501 bits of the virtual address used by a recent load at (AArch64) EL1 502 might return incorrect data. 503 504 The workaround is to write the contextidr_el1 register on exception 505 return to a 32-bit task. 506 Please note that this does not necessarily enable the workaround, 507 as it depends on the alternative framework, which will only patch 508 the kernel if an affected CPU is detected. 509 510 If unsure, say Y. 511 512config ARM64_ERRATUM_843419 513 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 514 default y 515 select ARM64_MODULE_PLTS if MODULES 516 help 517 This option links the kernel with '--fix-cortex-a53-843419' and 518 enables PLT support to replace certain ADRP instructions, which can 519 cause subsequent memory accesses to use an incorrect address on 520 Cortex-A53 parts up to r0p4. 521 522 If unsure, say Y. 523 524config ARM64_LD_HAS_FIX_ERRATUM_843419 525 def_bool $(ld-option,--fix-cortex-a53-843419) 526 527config ARM64_ERRATUM_1024718 528 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 529 default y 530 help 531 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 532 533 Affected Cortex-A55 cores (all revisions) could cause incorrect 534 update of the hardware dirty bit when the DBM/AP bits are updated 535 without a break-before-make. The workaround is to disable the usage 536 of hardware DBM locally on the affected cores. CPUs not affected by 537 this erratum will continue to use the feature. 538 539 If unsure, say Y. 540 541config ARM64_ERRATUM_1418040 542 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 543 default y 544 depends on COMPAT 545 help 546 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 547 errata 1188873 and 1418040. 548 549 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 550 cause register corruption when accessing the timer registers 551 from AArch32 userspace. 552 553 If unsure, say Y. 554 555config ARM64_WORKAROUND_SPECULATIVE_AT 556 bool 557 558config ARM64_ERRATUM_1165522 559 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 560 default y 561 select ARM64_WORKAROUND_SPECULATIVE_AT 562 help 563 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 564 565 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 566 corrupted TLBs by speculating an AT instruction during a guest 567 context switch. 568 569 If unsure, say Y. 570 571config ARM64_ERRATUM_1319367 572 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 573 default y 574 select ARM64_WORKAROUND_SPECULATIVE_AT 575 help 576 This option adds work arounds for ARM Cortex-A57 erratum 1319537 577 and A72 erratum 1319367 578 579 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 580 speculating an AT instruction during a guest context switch. 581 582 If unsure, say Y. 583 584config ARM64_ERRATUM_1530923 585 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 586 default y 587 select ARM64_WORKAROUND_SPECULATIVE_AT 588 help 589 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 590 591 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 592 corrupted TLBs by speculating an AT instruction during a guest 593 context switch. 594 595 If unsure, say Y. 596 597config ARM64_WORKAROUND_REPEAT_TLBI 598 bool 599 600config ARM64_ERRATUM_1286807 601 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 602 default y 603 select ARM64_WORKAROUND_REPEAT_TLBI 604 help 605 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 606 607 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 608 address for a cacheable mapping of a location is being 609 accessed by a core while another core is remapping the virtual 610 address to a new physical page using the recommended 611 break-before-make sequence, then under very rare circumstances 612 TLBI+DSB completes before a read using the translation being 613 invalidated has been observed by other observers. The 614 workaround repeats the TLBI+DSB operation. 615 616config ARM64_ERRATUM_1463225 617 bool "Cortex-A76: Software Step might prevent interrupt recognition" 618 default y 619 help 620 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 621 622 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 623 of a system call instruction (SVC) can prevent recognition of 624 subsequent interrupts when software stepping is disabled in the 625 exception handler of the system call and either kernel debugging 626 is enabled or VHE is in use. 627 628 Work around the erratum by triggering a dummy step exception 629 when handling a system call from a task that is being stepped 630 in a VHE configuration of the kernel. 631 632 If unsure, say Y. 633 634config ARM64_ERRATUM_1542419 635 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 636 default y 637 help 638 This option adds a workaround for ARM Neoverse-N1 erratum 639 1542419. 640 641 Affected Neoverse-N1 cores could execute a stale instruction when 642 modified by another CPU. The workaround depends on a firmware 643 counterpart. 644 645 Workaround the issue by hiding the DIC feature from EL0. This 646 forces user-space to perform cache maintenance. 647 648 If unsure, say Y. 649 650config ARM64_ERRATUM_1508412 651 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 652 default y 653 help 654 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 655 656 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 657 of a store-exclusive or read of PAR_EL1 and a load with device or 658 non-cacheable memory attributes. The workaround depends on a firmware 659 counterpart. 660 661 KVM guests must also have the workaround implemented or they can 662 deadlock the system. 663 664 Work around the issue by inserting DMB SY barriers around PAR_EL1 665 register reads and warning KVM users. The DMB barrier is sufficient 666 to prevent a speculative PAR_EL1 read. 667 668 If unsure, say Y. 669 670config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 671 bool 672 673config ARM64_ERRATUM_2119858 674 bool "Cortex-A710: 2119858: workaround TRBE overwriting trace data in FILL mode" 675 default y 676 depends on CORESIGHT_TRBE 677 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 678 help 679 This option adds the workaround for ARM Cortex-A710 erratum 2119858. 680 681 Affected Cortex-A710 cores could overwrite up to 3 cache lines of trace 682 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 683 the event of a WRAP event. 684 685 Work around the issue by always making sure we move the TRBPTR_EL1 by 686 256 bytes before enabling the buffer and filling the first 256 bytes of 687 the buffer with ETM ignore packets upon disabling. 688 689 If unsure, say Y. 690 691config ARM64_ERRATUM_2139208 692 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 693 default y 694 depends on CORESIGHT_TRBE 695 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 696 help 697 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 698 699 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 700 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 701 the event of a WRAP event. 702 703 Work around the issue by always making sure we move the TRBPTR_EL1 by 704 256 bytes before enabling the buffer and filling the first 256 bytes of 705 the buffer with ETM ignore packets upon disabling. 706 707 If unsure, say Y. 708 709config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 710 bool 711 712config ARM64_ERRATUM_2054223 713 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 714 default y 715 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 716 help 717 Enable workaround for ARM Cortex-A710 erratum 2054223 718 719 Affected cores may fail to flush the trace data on a TSB instruction, when 720 the PE is in trace prohibited state. This will cause losing a few bytes 721 of the trace cached. 722 723 Workaround is to issue two TSB consecutively on affected cores. 724 725 If unsure, say Y. 726 727config ARM64_ERRATUM_2067961 728 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 729 default y 730 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 731 help 732 Enable workaround for ARM Neoverse-N2 erratum 2067961 733 734 Affected cores may fail to flush the trace data on a TSB instruction, when 735 the PE is in trace prohibited state. This will cause losing a few bytes 736 of the trace cached. 737 738 Workaround is to issue two TSB consecutively on affected cores. 739 740 If unsure, say Y. 741 742config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 743 bool 744 745config ARM64_ERRATUM_2253138 746 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 747 depends on CORESIGHT_TRBE 748 default y 749 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 750 help 751 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 752 753 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 754 for TRBE. Under some conditions, the TRBE might generate a write to the next 755 virtually addressed page following the last page of the TRBE address space 756 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 757 758 Work around this in the driver by always making sure that there is a 759 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 760 761 If unsure, say Y. 762 763config ARM64_ERRATUM_2224489 764 bool "Cortex-A710: 2224489: workaround TRBE writing to address out-of-range" 765 depends on CORESIGHT_TRBE 766 default y 767 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 768 help 769 This option adds the workaround for ARM Cortex-A710 erratum 2224489. 770 771 Affected Cortex-A710 cores might write to an out-of-range address, not reserved 772 for TRBE. Under some conditions, the TRBE might generate a write to the next 773 virtually addressed page following the last page of the TRBE address space 774 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 775 776 Work around this in the driver by always making sure that there is a 777 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 778 779 If unsure, say Y. 780 781config CAVIUM_ERRATUM_22375 782 bool "Cavium erratum 22375, 24313" 783 default y 784 help 785 Enable workaround for errata 22375 and 24313. 786 787 This implements two gicv3-its errata workarounds for ThunderX. Both 788 with a small impact affecting only ITS table allocation. 789 790 erratum 22375: only alloc 8MB table size 791 erratum 24313: ignore memory access type 792 793 The fixes are in ITS initialization and basically ignore memory access 794 type and table size provided by the TYPER and BASER registers. 795 796 If unsure, say Y. 797 798config CAVIUM_ERRATUM_23144 799 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 800 depends on NUMA 801 default y 802 help 803 ITS SYNC command hang for cross node io and collections/cpu mapping. 804 805 If unsure, say Y. 806 807config CAVIUM_ERRATUM_23154 808 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 809 default y 810 help 811 The gicv3 of ThunderX requires a modified version for 812 reading the IAR status to ensure data synchronization 813 (access to icc_iar1_el1 is not sync'ed before and after). 814 815 If unsure, say Y. 816 817config CAVIUM_ERRATUM_27456 818 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 819 default y 820 help 821 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 822 instructions may cause the icache to become corrupted if it 823 contains data for a non-current ASID. The fix is to 824 invalidate the icache when changing the mm context. 825 826 If unsure, say Y. 827 828config CAVIUM_ERRATUM_30115 829 bool "Cavium erratum 30115: Guest may disable interrupts in host" 830 default y 831 help 832 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 833 1.2, and T83 Pass 1.0, KVM guest execution may disable 834 interrupts in host. Trapping both GICv3 group-0 and group-1 835 accesses sidesteps the issue. 836 837 If unsure, say Y. 838 839config CAVIUM_TX2_ERRATUM_219 840 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 841 default y 842 help 843 On Cavium ThunderX2, a load, store or prefetch instruction between a 844 TTBR update and the corresponding context synchronizing operation can 845 cause a spurious Data Abort to be delivered to any hardware thread in 846 the CPU core. 847 848 Work around the issue by avoiding the problematic code sequence and 849 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 850 trap handler performs the corresponding register access, skips the 851 instruction and ensures context synchronization by virtue of the 852 exception return. 853 854 If unsure, say Y. 855 856config FUJITSU_ERRATUM_010001 857 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 858 default y 859 help 860 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 861 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 862 accesses may cause undefined fault (Data abort, DFSC=0b111111). 863 This fault occurs under a specific hardware condition when a 864 load/store instruction performs an address translation using: 865 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 866 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 867 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 868 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 869 870 The workaround is to ensure these bits are clear in TCR_ELx. 871 The workaround only affects the Fujitsu-A64FX. 872 873 If unsure, say Y. 874 875config HISILICON_ERRATUM_161600802 876 bool "Hip07 161600802: Erroneous redistributor VLPI base" 877 default y 878 help 879 The HiSilicon Hip07 SoC uses the wrong redistributor base 880 when issued ITS commands such as VMOVP and VMAPP, and requires 881 a 128kB offset to be applied to the target address in this commands. 882 883 If unsure, say Y. 884 885config QCOM_FALKOR_ERRATUM_1003 886 bool "Falkor E1003: Incorrect translation due to ASID change" 887 default y 888 help 889 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 890 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 891 in TTBR1_EL1, this situation only occurs in the entry trampoline and 892 then only for entries in the walk cache, since the leaf translation 893 is unchanged. Work around the erratum by invalidating the walk cache 894 entries for the trampoline before entering the kernel proper. 895 896config QCOM_FALKOR_ERRATUM_1009 897 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 898 default y 899 select ARM64_WORKAROUND_REPEAT_TLBI 900 help 901 On Falkor v1, the CPU may prematurely complete a DSB following a 902 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 903 one more time to fix the issue. 904 905 If unsure, say Y. 906 907config QCOM_QDF2400_ERRATUM_0065 908 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 909 default y 910 help 911 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 912 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 913 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 914 915 If unsure, say Y. 916 917config QCOM_FALKOR_ERRATUM_E1041 918 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 919 default y 920 help 921 Falkor CPU may speculatively fetch instructions from an improper 922 memory location when MMU translation is changed from SCTLR_ELn[M]=1 923 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 924 925 If unsure, say Y. 926 927config NVIDIA_CARMEL_CNP_ERRATUM 928 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 929 default y 930 help 931 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 932 invalidate shared TLB entries installed by a different core, as it would 933 on standard ARM cores. 934 935 If unsure, say Y. 936 937config SOCIONEXT_SYNQUACER_PREITS 938 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 939 default y 940 help 941 Socionext Synquacer SoCs implement a separate h/w block to generate 942 MSI doorbell writes with non-zero values for the device ID. 943 944 If unsure, say Y. 945 946endmenu 947 948 949choice 950 prompt "Page size" 951 default ARM64_4K_PAGES 952 help 953 Page size (translation granule) configuration. 954 955config ARM64_4K_PAGES 956 bool "4KB" 957 help 958 This feature enables 4KB pages support. 959 960config ARM64_16K_PAGES 961 bool "16KB" 962 help 963 The system will use 16KB pages support. AArch32 emulation 964 requires applications compiled with 16K (or a multiple of 16K) 965 aligned segments. 966 967config ARM64_64K_PAGES 968 bool "64KB" 969 help 970 This feature enables 64KB pages support (4KB by default) 971 allowing only two levels of page tables and faster TLB 972 look-up. AArch32 emulation requires applications compiled 973 with 64K aligned segments. 974 975endchoice 976 977choice 978 prompt "Virtual address space size" 979 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 980 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 981 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 982 help 983 Allows choosing one of multiple possible virtual address 984 space sizes. The level of translation table is determined by 985 a combination of page size and virtual address space size. 986 987config ARM64_VA_BITS_36 988 bool "36-bit" if EXPERT 989 depends on ARM64_16K_PAGES 990 991config ARM64_VA_BITS_39 992 bool "39-bit" 993 depends on ARM64_4K_PAGES 994 995config ARM64_VA_BITS_42 996 bool "42-bit" 997 depends on ARM64_64K_PAGES 998 999config ARM64_VA_BITS_47 1000 bool "47-bit" 1001 depends on ARM64_16K_PAGES 1002 1003config ARM64_VA_BITS_48 1004 bool "48-bit" 1005 1006config ARM64_VA_BITS_52 1007 bool "52-bit" 1008 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 1009 help 1010 Enable 52-bit virtual addressing for userspace when explicitly 1011 requested via a hint to mmap(). The kernel will also use 52-bit 1012 virtual addresses for its own mappings (provided HW support for 1013 this feature is available, otherwise it reverts to 48-bit). 1014 1015 NOTE: Enabling 52-bit virtual addressing in conjunction with 1016 ARMv8.3 Pointer Authentication will result in the PAC being 1017 reduced from 7 bits to 3 bits, which may have a significant 1018 impact on its susceptibility to brute-force attacks. 1019 1020 If unsure, select 48-bit virtual addressing instead. 1021 1022endchoice 1023 1024config ARM64_FORCE_52BIT 1025 bool "Force 52-bit virtual addresses for userspace" 1026 depends on ARM64_VA_BITS_52 && EXPERT 1027 help 1028 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1029 to maintain compatibility with older software by providing 48-bit VAs 1030 unless a hint is supplied to mmap. 1031 1032 This configuration option disables the 48-bit compatibility logic, and 1033 forces all userspace addresses to be 52-bit on HW that supports it. One 1034 should only enable this configuration option for stress testing userspace 1035 memory management code. If unsure say N here. 1036 1037config ARM64_VA_BITS 1038 int 1039 default 36 if ARM64_VA_BITS_36 1040 default 39 if ARM64_VA_BITS_39 1041 default 42 if ARM64_VA_BITS_42 1042 default 47 if ARM64_VA_BITS_47 1043 default 48 if ARM64_VA_BITS_48 1044 default 52 if ARM64_VA_BITS_52 1045 1046choice 1047 prompt "Physical address space size" 1048 default ARM64_PA_BITS_48 1049 help 1050 Choose the maximum physical address range that the kernel will 1051 support. 1052 1053config ARM64_PA_BITS_48 1054 bool "48-bit" 1055 1056config ARM64_PA_BITS_52 1057 bool "52-bit (ARMv8.2)" 1058 depends on ARM64_64K_PAGES 1059 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1060 help 1061 Enable support for a 52-bit physical address space, introduced as 1062 part of the ARMv8.2-LPA extension. 1063 1064 With this enabled, the kernel will also continue to work on CPUs that 1065 do not support ARMv8.2-LPA, but with some added memory overhead (and 1066 minor performance overhead). 1067 1068endchoice 1069 1070config ARM64_PA_BITS 1071 int 1072 default 48 if ARM64_PA_BITS_48 1073 default 52 if ARM64_PA_BITS_52 1074 1075choice 1076 prompt "Endianness" 1077 default CPU_LITTLE_ENDIAN 1078 help 1079 Select the endianness of data accesses performed by the CPU. Userspace 1080 applications will need to be compiled and linked for the endianness 1081 that is selected here. 1082 1083config CPU_BIG_ENDIAN 1084 bool "Build big-endian kernel" 1085 depends on !LD_IS_LLD || LLD_VERSION >= 130000 1086 help 1087 Say Y if you plan on running a kernel with a big-endian userspace. 1088 1089config CPU_LITTLE_ENDIAN 1090 bool "Build little-endian kernel" 1091 help 1092 Say Y if you plan on running a kernel with a little-endian userspace. 1093 This is usually the case for distributions targeting arm64. 1094 1095endchoice 1096 1097config SCHED_MC 1098 bool "Multi-core scheduler support" 1099 help 1100 Multi-core scheduler support improves the CPU scheduler's decision 1101 making when dealing with multi-core CPU chips at a cost of slightly 1102 increased overhead in some places. If unsure say N here. 1103 1104config SCHED_CLUSTER 1105 bool "Cluster scheduler support" 1106 help 1107 Cluster scheduler support improves the CPU scheduler's decision 1108 making when dealing with machines that have clusters of CPUs. 1109 Cluster usually means a couple of CPUs which are placed closely 1110 by sharing mid-level caches, last-level cache tags or internal 1111 busses. 1112 1113config SCHED_SMT 1114 bool "SMT scheduler support" 1115 help 1116 Improves the CPU scheduler's decision making when dealing with 1117 MultiThreading at a cost of slightly increased overhead in some 1118 places. If unsure say N here. 1119 1120config NR_CPUS 1121 int "Maximum number of CPUs (2-4096)" 1122 range 2 4096 1123 default "256" 1124 1125config HOTPLUG_CPU 1126 bool "Support for hot-pluggable CPUs" 1127 select GENERIC_IRQ_MIGRATION 1128 help 1129 Say Y here to experiment with turning CPUs off and on. CPUs 1130 can be controlled through /sys/devices/system/cpu. 1131 1132# Common NUMA Features 1133config NUMA 1134 bool "NUMA Memory Allocation and Scheduler Support" 1135 select GENERIC_ARCH_NUMA 1136 select ACPI_NUMA if ACPI 1137 select OF_NUMA 1138 help 1139 Enable NUMA (Non-Uniform Memory Access) support. 1140 1141 The kernel will try to allocate memory used by a CPU on the 1142 local memory of the CPU and add some more 1143 NUMA awareness to the kernel. 1144 1145config NODES_SHIFT 1146 int "Maximum NUMA Nodes (as a power of 2)" 1147 range 1 10 1148 default "4" 1149 depends on NUMA 1150 help 1151 Specify the maximum number of NUMA Nodes available on the target 1152 system. Increases memory reserved to accommodate various tables. 1153 1154config USE_PERCPU_NUMA_NODE_ID 1155 def_bool y 1156 depends on NUMA 1157 1158config HAVE_SETUP_PER_CPU_AREA 1159 def_bool y 1160 depends on NUMA 1161 1162config NEED_PER_CPU_EMBED_FIRST_CHUNK 1163 def_bool y 1164 depends on NUMA 1165 1166config NEED_PER_CPU_PAGE_FIRST_CHUNK 1167 def_bool y 1168 depends on NUMA 1169 1170source "kernel/Kconfig.hz" 1171 1172config ARCH_SPARSEMEM_ENABLE 1173 def_bool y 1174 select SPARSEMEM_VMEMMAP_ENABLE 1175 select SPARSEMEM_VMEMMAP 1176 1177config HW_PERF_EVENTS 1178 def_bool y 1179 depends on ARM_PMU 1180 1181config ARCH_HAS_FILTER_PGPROT 1182 def_bool y 1183 1184# Supported by clang >= 7.0 1185config CC_HAVE_SHADOW_CALL_STACK 1186 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1187 1188config PARAVIRT 1189 bool "Enable paravirtualization code" 1190 help 1191 This changes the kernel so it can modify itself when it is run 1192 under a hypervisor, potentially improving performance significantly 1193 over full virtualization. 1194 1195config PARAVIRT_TIME_ACCOUNTING 1196 bool "Paravirtual steal time accounting" 1197 select PARAVIRT 1198 help 1199 Select this option to enable fine granularity task steal time 1200 accounting. Time spent executing other tasks in parallel with 1201 the current vCPU is discounted from the vCPU power. To account for 1202 that, there can be a small performance impact. 1203 1204 If in doubt, say N here. 1205 1206config KEXEC 1207 depends on PM_SLEEP_SMP 1208 select KEXEC_CORE 1209 bool "kexec system call" 1210 help 1211 kexec is a system call that implements the ability to shutdown your 1212 current kernel, and to start another kernel. It is like a reboot 1213 but it is independent of the system firmware. And like a reboot 1214 you can start any kernel with it, not just Linux. 1215 1216config KEXEC_FILE 1217 bool "kexec file based system call" 1218 select KEXEC_CORE 1219 select HAVE_IMA_KEXEC if IMA 1220 help 1221 This is new version of kexec system call. This system call is 1222 file based and takes file descriptors as system call argument 1223 for kernel and initramfs as opposed to list of segments as 1224 accepted by previous system call. 1225 1226config KEXEC_SIG 1227 bool "Verify kernel signature during kexec_file_load() syscall" 1228 depends on KEXEC_FILE 1229 help 1230 Select this option to verify a signature with loaded kernel 1231 image. If configured, any attempt of loading a image without 1232 valid signature will fail. 1233 1234 In addition to that option, you need to enable signature 1235 verification for the corresponding kernel image type being 1236 loaded in order for this to work. 1237 1238config KEXEC_IMAGE_VERIFY_SIG 1239 bool "Enable Image signature verification support" 1240 default y 1241 depends on KEXEC_SIG 1242 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1243 help 1244 Enable Image signature verification support. 1245 1246comment "Support for PE file signature verification disabled" 1247 depends on KEXEC_SIG 1248 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1249 1250config CRASH_DUMP 1251 bool "Build kdump crash kernel" 1252 help 1253 Generate crash dump after being started by kexec. This should 1254 be normally only set in special crash dump kernels which are 1255 loaded in the main kernel with kexec-tools into a specially 1256 reserved region and then later executed after a crash by 1257 kdump/kexec. 1258 1259 For more details see Documentation/admin-guide/kdump/kdump.rst 1260 1261config TRANS_TABLE 1262 def_bool y 1263 depends on HIBERNATION || KEXEC_CORE 1264 1265config XEN_DOM0 1266 def_bool y 1267 depends on XEN 1268 1269config XEN 1270 bool "Xen guest support on ARM64" 1271 depends on ARM64 && OF 1272 select SWIOTLB_XEN 1273 select PARAVIRT 1274 help 1275 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1276 1277config FORCE_MAX_ZONEORDER 1278 int 1279 default "14" if ARM64_64K_PAGES 1280 default "12" if ARM64_16K_PAGES 1281 default "11" 1282 help 1283 The kernel memory allocator divides physically contiguous memory 1284 blocks into "zones", where each zone is a power of two number of 1285 pages. This option selects the largest power of two that the kernel 1286 keeps in the memory allocator. If you need to allocate very large 1287 blocks of physically contiguous memory, then you may need to 1288 increase this value. 1289 1290 This config option is actually maximum order plus one. For example, 1291 a value of 11 means that the largest free memory block is 2^10 pages. 1292 1293 We make sure that we can allocate upto a HugePage size for each configuration. 1294 Hence we have : 1295 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1296 1297 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1298 4M allocations matching the default size used by generic code. 1299 1300config UNMAP_KERNEL_AT_EL0 1301 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1302 default y 1303 help 1304 Speculation attacks against some high-performance processors can 1305 be used to bypass MMU permission checks and leak kernel data to 1306 userspace. This can be defended against by unmapping the kernel 1307 when running in userspace, mapping it back in on exception entry 1308 via a trampoline page in the vector table. 1309 1310 If unsure, say Y. 1311 1312config RODATA_FULL_DEFAULT_ENABLED 1313 bool "Apply r/o permissions of VM areas also to their linear aliases" 1314 default y 1315 help 1316 Apply read-only attributes of VM areas to the linear alias of 1317 the backing pages as well. This prevents code or read-only data 1318 from being modified (inadvertently or intentionally) via another 1319 mapping of the same memory page. This additional enhancement can 1320 be turned off at runtime by passing rodata=[off|on] (and turned on 1321 with rodata=full if this option is set to 'n') 1322 1323 This requires the linear region to be mapped down to pages, 1324 which may adversely affect performance in some cases. 1325 1326config ARM64_SW_TTBR0_PAN 1327 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1328 help 1329 Enabling this option prevents the kernel from accessing 1330 user-space memory directly by pointing TTBR0_EL1 to a reserved 1331 zeroed area and reserved ASID. The user access routines 1332 restore the valid TTBR0_EL1 temporarily. 1333 1334config ARM64_TAGGED_ADDR_ABI 1335 bool "Enable the tagged user addresses syscall ABI" 1336 default y 1337 help 1338 When this option is enabled, user applications can opt in to a 1339 relaxed ABI via prctl() allowing tagged addresses to be passed 1340 to system calls as pointer arguments. For details, see 1341 Documentation/arm64/tagged-address-abi.rst. 1342 1343menuconfig COMPAT 1344 bool "Kernel support for 32-bit EL0" 1345 depends on ARM64_4K_PAGES || EXPERT 1346 select HAVE_UID16 1347 select OLD_SIGSUSPEND3 1348 select COMPAT_OLD_SIGACTION 1349 help 1350 This option enables support for a 32-bit EL0 running under a 64-bit 1351 kernel at EL1. AArch32-specific components such as system calls, 1352 the user helper functions, VFP support and the ptrace interface are 1353 handled appropriately by the kernel. 1354 1355 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1356 that you will only be able to execute AArch32 binaries that were compiled 1357 with page size aligned segments. 1358 1359 If you want to execute 32-bit userspace applications, say Y. 1360 1361if COMPAT 1362 1363config KUSER_HELPERS 1364 bool "Enable kuser helpers page for 32-bit applications" 1365 default y 1366 help 1367 Warning: disabling this option may break 32-bit user programs. 1368 1369 Provide kuser helpers to compat tasks. The kernel provides 1370 helper code to userspace in read only form at a fixed location 1371 to allow userspace to be independent of the CPU type fitted to 1372 the system. This permits binaries to be run on ARMv4 through 1373 to ARMv8 without modification. 1374 1375 See Documentation/arm/kernel_user_helpers.rst for details. 1376 1377 However, the fixed address nature of these helpers can be used 1378 by ROP (return orientated programming) authors when creating 1379 exploits. 1380 1381 If all of the binaries and libraries which run on your platform 1382 are built specifically for your platform, and make no use of 1383 these helpers, then you can turn this option off to hinder 1384 such exploits. However, in that case, if a binary or library 1385 relying on those helpers is run, it will not function correctly. 1386 1387 Say N here only if you are absolutely certain that you do not 1388 need these helpers; otherwise, the safe option is to say Y. 1389 1390config COMPAT_VDSO 1391 bool "Enable vDSO for 32-bit applications" 1392 depends on !CPU_BIG_ENDIAN 1393 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1394 select GENERIC_COMPAT_VDSO 1395 default y 1396 help 1397 Place in the process address space of 32-bit applications an 1398 ELF shared object providing fast implementations of gettimeofday 1399 and clock_gettime. 1400 1401 You must have a 32-bit build of glibc 2.22 or later for programs 1402 to seamlessly take advantage of this. 1403 1404config THUMB2_COMPAT_VDSO 1405 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1406 depends on COMPAT_VDSO 1407 default y 1408 help 1409 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1410 otherwise with '-marm'. 1411 1412menuconfig ARMV8_DEPRECATED 1413 bool "Emulate deprecated/obsolete ARMv8 instructions" 1414 depends on SYSCTL 1415 help 1416 Legacy software support may require certain instructions 1417 that have been deprecated or obsoleted in the architecture. 1418 1419 Enable this config to enable selective emulation of these 1420 features. 1421 1422 If unsure, say Y 1423 1424if ARMV8_DEPRECATED 1425 1426config SWP_EMULATION 1427 bool "Emulate SWP/SWPB instructions" 1428 help 1429 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1430 they are always undefined. Say Y here to enable software 1431 emulation of these instructions for userspace using LDXR/STXR. 1432 This feature can be controlled at runtime with the abi.swp 1433 sysctl which is disabled by default. 1434 1435 In some older versions of glibc [<=2.8] SWP is used during futex 1436 trylock() operations with the assumption that the code will not 1437 be preempted. This invalid assumption may be more likely to fail 1438 with SWP emulation enabled, leading to deadlock of the user 1439 application. 1440 1441 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1442 on an external transaction monitoring block called a global 1443 monitor to maintain update atomicity. If your system does not 1444 implement a global monitor, this option can cause programs that 1445 perform SWP operations to uncached memory to deadlock. 1446 1447 If unsure, say Y 1448 1449config CP15_BARRIER_EMULATION 1450 bool "Emulate CP15 Barrier instructions" 1451 help 1452 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1453 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1454 strongly recommended to use the ISB, DSB, and DMB 1455 instructions instead. 1456 1457 Say Y here to enable software emulation of these 1458 instructions for AArch32 userspace code. When this option is 1459 enabled, CP15 barrier usage is traced which can help 1460 identify software that needs updating. This feature can be 1461 controlled at runtime with the abi.cp15_barrier sysctl. 1462 1463 If unsure, say Y 1464 1465config SETEND_EMULATION 1466 bool "Emulate SETEND instruction" 1467 help 1468 The SETEND instruction alters the data-endianness of the 1469 AArch32 EL0, and is deprecated in ARMv8. 1470 1471 Say Y here to enable software emulation of the instruction 1472 for AArch32 userspace code. This feature can be controlled 1473 at runtime with the abi.setend sysctl. 1474 1475 Note: All the cpus on the system must have mixed endian support at EL0 1476 for this feature to be enabled. If a new CPU - which doesn't support mixed 1477 endian - is hotplugged in after this feature has been enabled, there could 1478 be unexpected results in the applications. 1479 1480 If unsure, say Y 1481endif 1482 1483endif 1484 1485menu "ARMv8.1 architectural features" 1486 1487config ARM64_HW_AFDBM 1488 bool "Support for hardware updates of the Access and Dirty page flags" 1489 default y 1490 help 1491 The ARMv8.1 architecture extensions introduce support for 1492 hardware updates of the access and dirty information in page 1493 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1494 capable processors, accesses to pages with PTE_AF cleared will 1495 set this bit instead of raising an access flag fault. 1496 Similarly, writes to read-only pages with the DBM bit set will 1497 clear the read-only bit (AP[2]) instead of raising a 1498 permission fault. 1499 1500 Kernels built with this configuration option enabled continue 1501 to work on pre-ARMv8.1 hardware and the performance impact is 1502 minimal. If unsure, say Y. 1503 1504config ARM64_PAN 1505 bool "Enable support for Privileged Access Never (PAN)" 1506 default y 1507 help 1508 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1509 prevents the kernel or hypervisor from accessing user-space (EL0) 1510 memory directly. 1511 1512 Choosing this option will cause any unprotected (not using 1513 copy_to_user et al) memory access to fail with a permission fault. 1514 1515 The feature is detected at runtime, and will remain as a 'nop' 1516 instruction if the cpu does not implement the feature. 1517 1518config AS_HAS_LDAPR 1519 def_bool $(as-instr,.arch_extension rcpc) 1520 1521config AS_HAS_LSE_ATOMICS 1522 def_bool $(as-instr,.arch_extension lse) 1523 1524config ARM64_LSE_ATOMICS 1525 bool 1526 default ARM64_USE_LSE_ATOMICS 1527 depends on AS_HAS_LSE_ATOMICS 1528 1529config ARM64_USE_LSE_ATOMICS 1530 bool "Atomic instructions" 1531 depends on JUMP_LABEL 1532 default y 1533 help 1534 As part of the Large System Extensions, ARMv8.1 introduces new 1535 atomic instructions that are designed specifically to scale in 1536 very large systems. 1537 1538 Say Y here to make use of these instructions for the in-kernel 1539 atomic routines. This incurs a small overhead on CPUs that do 1540 not support these instructions and requires the kernel to be 1541 built with binutils >= 2.25 in order for the new instructions 1542 to be used. 1543 1544endmenu 1545 1546menu "ARMv8.2 architectural features" 1547 1548config ARM64_PMEM 1549 bool "Enable support for persistent memory" 1550 select ARCH_HAS_PMEM_API 1551 select ARCH_HAS_UACCESS_FLUSHCACHE 1552 help 1553 Say Y to enable support for the persistent memory API based on the 1554 ARMv8.2 DCPoP feature. 1555 1556 The feature is detected at runtime, and the kernel will use DC CVAC 1557 operations if DC CVAP is not supported (following the behaviour of 1558 DC CVAP itself if the system does not define a point of persistence). 1559 1560config ARM64_RAS_EXTN 1561 bool "Enable support for RAS CPU Extensions" 1562 default y 1563 help 1564 CPUs that support the Reliability, Availability and Serviceability 1565 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1566 errors, classify them and report them to software. 1567 1568 On CPUs with these extensions system software can use additional 1569 barriers to determine if faults are pending and read the 1570 classification from a new set of registers. 1571 1572 Selecting this feature will allow the kernel to use these barriers 1573 and access the new registers if the system supports the extension. 1574 Platform RAS features may additionally depend on firmware support. 1575 1576config ARM64_CNP 1577 bool "Enable support for Common Not Private (CNP) translations" 1578 default y 1579 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1580 help 1581 Common Not Private (CNP) allows translation table entries to 1582 be shared between different PEs in the same inner shareable 1583 domain, so the hardware can use this fact to optimise the 1584 caching of such entries in the TLB. 1585 1586 Selecting this option allows the CNP feature to be detected 1587 at runtime, and does not affect PEs that do not implement 1588 this feature. 1589 1590endmenu 1591 1592menu "ARMv8.3 architectural features" 1593 1594config ARM64_PTR_AUTH 1595 bool "Enable support for pointer authentication" 1596 default y 1597 help 1598 Pointer authentication (part of the ARMv8.3 Extensions) provides 1599 instructions for signing and authenticating pointers against secret 1600 keys, which can be used to mitigate Return Oriented Programming (ROP) 1601 and other attacks. 1602 1603 This option enables these instructions at EL0 (i.e. for userspace). 1604 Choosing this option will cause the kernel to initialise secret keys 1605 for each process at exec() time, with these keys being 1606 context-switched along with the process. 1607 1608 The feature is detected at runtime. If the feature is not present in 1609 hardware it will not be advertised to userspace/KVM guest nor will it 1610 be enabled. 1611 1612 If the feature is present on the boot CPU but not on a late CPU, then 1613 the late CPU will be parked. Also, if the boot CPU does not have 1614 address auth and the late CPU has then the late CPU will still boot 1615 but with the feature disabled. On such a system, this option should 1616 not be selected. 1617 1618config ARM64_PTR_AUTH_KERNEL 1619 bool "Use pointer authentication for kernel" 1620 default y 1621 depends on ARM64_PTR_AUTH 1622 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1623 # Modern compilers insert a .note.gnu.property section note for PAC 1624 # which is only understood by binutils starting with version 2.33.1. 1625 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1626 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1627 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1628 help 1629 If the compiler supports the -mbranch-protection or 1630 -msign-return-address flag (e.g. GCC 7 or later), then this option 1631 will cause the kernel itself to be compiled with return address 1632 protection. In this case, and if the target hardware is known to 1633 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1634 disabled with minimal loss of protection. 1635 1636 This feature works with FUNCTION_GRAPH_TRACER option only if 1637 DYNAMIC_FTRACE_WITH_REGS is enabled. 1638 1639config CC_HAS_BRANCH_PROT_PAC_RET 1640 # GCC 9 or later, clang 8 or later 1641 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1642 1643config CC_HAS_SIGN_RETURN_ADDRESS 1644 # GCC 7, 8 1645 def_bool $(cc-option,-msign-return-address=all) 1646 1647config AS_HAS_PAC 1648 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1649 1650config AS_HAS_CFI_NEGATE_RA_STATE 1651 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1652 1653endmenu 1654 1655menu "ARMv8.4 architectural features" 1656 1657config ARM64_AMU_EXTN 1658 bool "Enable support for the Activity Monitors Unit CPU extension" 1659 default y 1660 help 1661 The activity monitors extension is an optional extension introduced 1662 by the ARMv8.4 CPU architecture. This enables support for version 1 1663 of the activity monitors architecture, AMUv1. 1664 1665 To enable the use of this extension on CPUs that implement it, say Y. 1666 1667 Note that for architectural reasons, firmware _must_ implement AMU 1668 support when running on CPUs that present the activity monitors 1669 extension. The required support is present in: 1670 * Version 1.5 and later of the ARM Trusted Firmware 1671 1672 For kernels that have this configuration enabled but boot with broken 1673 firmware, you may need to say N here until the firmware is fixed. 1674 Otherwise you may experience firmware panics or lockups when 1675 accessing the counter registers. Even if you are not observing these 1676 symptoms, the values returned by the register reads might not 1677 correctly reflect reality. Most commonly, the value read will be 0, 1678 indicating that the counter is not enabled. 1679 1680config AS_HAS_ARMV8_4 1681 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1682 1683config ARM64_TLB_RANGE 1684 bool "Enable support for tlbi range feature" 1685 default y 1686 depends on AS_HAS_ARMV8_4 1687 help 1688 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1689 range of input addresses. 1690 1691 The feature introduces new assembly instructions, and they were 1692 support when binutils >= 2.30. 1693 1694endmenu 1695 1696menu "ARMv8.5 architectural features" 1697 1698config AS_HAS_ARMV8_5 1699 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1700 1701config ARM64_BTI 1702 bool "Branch Target Identification support" 1703 default y 1704 help 1705 Branch Target Identification (part of the ARMv8.5 Extensions) 1706 provides a mechanism to limit the set of locations to which computed 1707 branch instructions such as BR or BLR can jump. 1708 1709 To make use of BTI on CPUs that support it, say Y. 1710 1711 BTI is intended to provide complementary protection to other control 1712 flow integrity protection mechanisms, such as the Pointer 1713 authentication mechanism provided as part of the ARMv8.3 Extensions. 1714 For this reason, it does not make sense to enable this option without 1715 also enabling support for pointer authentication. Thus, when 1716 enabling this option you should also select ARM64_PTR_AUTH=y. 1717 1718 Userspace binaries must also be specifically compiled to make use of 1719 this mechanism. If you say N here or the hardware does not support 1720 BTI, such binaries can still run, but you get no additional 1721 enforcement of branch destinations. 1722 1723config ARM64_BTI_KERNEL 1724 bool "Use Branch Target Identification for kernel" 1725 default y 1726 depends on ARM64_BTI 1727 depends on ARM64_PTR_AUTH_KERNEL 1728 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1729 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1730 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1731 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9 1732 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000 1733 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1734 help 1735 Build the kernel with Branch Target Identification annotations 1736 and enable enforcement of this for kernel code. When this option 1737 is enabled and the system supports BTI all kernel code including 1738 modular code must have BTI enabled. 1739 1740config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1741 # GCC 9 or later, clang 8 or later 1742 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1743 1744config ARM64_E0PD 1745 bool "Enable support for E0PD" 1746 default y 1747 help 1748 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1749 that EL0 accesses made via TTBR1 always fault in constant time, 1750 providing similar benefits to KASLR as those provided by KPTI, but 1751 with lower overhead and without disrupting legitimate access to 1752 kernel memory such as SPE. 1753 1754 This option enables E0PD for TTBR1 where available. 1755 1756config ARCH_RANDOM 1757 bool "Enable support for random number generation" 1758 default y 1759 help 1760 Random number generation (part of the ARMv8.5 Extensions) 1761 provides a high bandwidth, cryptographically secure 1762 hardware random number generator. 1763 1764config ARM64_AS_HAS_MTE 1765 # Initial support for MTE went in binutils 2.32.0, checked with 1766 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1767 # as a late addition to the final architecture spec (LDGM/STGM) 1768 # is only supported in the newer 2.32.x and 2.33 binutils 1769 # versions, hence the extra "stgm" instruction check below. 1770 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1771 1772config ARM64_MTE 1773 bool "Memory Tagging Extension support" 1774 default y 1775 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1776 depends on AS_HAS_ARMV8_5 1777 depends on AS_HAS_LSE_ATOMICS 1778 # Required for tag checking in the uaccess routines 1779 depends on ARM64_PAN 1780 select ARCH_USES_HIGH_VMA_FLAGS 1781 help 1782 Memory Tagging (part of the ARMv8.5 Extensions) provides 1783 architectural support for run-time, always-on detection of 1784 various classes of memory error to aid with software debugging 1785 to eliminate vulnerabilities arising from memory-unsafe 1786 languages. 1787 1788 This option enables the support for the Memory Tagging 1789 Extension at EL0 (i.e. for userspace). 1790 1791 Selecting this option allows the feature to be detected at 1792 runtime. Any secondary CPU not implementing this feature will 1793 not be allowed a late bring-up. 1794 1795 Userspace binaries that want to use this feature must 1796 explicitly opt in. The mechanism for the userspace is 1797 described in: 1798 1799 Documentation/arm64/memory-tagging-extension.rst. 1800 1801endmenu 1802 1803menu "ARMv8.7 architectural features" 1804 1805config ARM64_EPAN 1806 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 1807 default y 1808 depends on ARM64_PAN 1809 help 1810 Enhanced Privileged Access Never (EPAN) allows Privileged 1811 Access Never to be used with Execute-only mappings. 1812 1813 The feature is detected at runtime, and will remain disabled 1814 if the cpu does not implement the feature. 1815endmenu 1816 1817config ARM64_SVE 1818 bool "ARM Scalable Vector Extension support" 1819 default y 1820 help 1821 The Scalable Vector Extension (SVE) is an extension to the AArch64 1822 execution state which complements and extends the SIMD functionality 1823 of the base architecture to support much larger vectors and to enable 1824 additional vectorisation opportunities. 1825 1826 To enable use of this extension on CPUs that implement it, say Y. 1827 1828 On CPUs that support the SVE2 extensions, this option will enable 1829 those too. 1830 1831 Note that for architectural reasons, firmware _must_ implement SVE 1832 support when running on SVE capable hardware. The required support 1833 is present in: 1834 1835 * version 1.5 and later of the ARM Trusted Firmware 1836 * the AArch64 boot wrapper since commit 5e1261e08abf 1837 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1838 1839 For other firmware implementations, consult the firmware documentation 1840 or vendor. 1841 1842 If you need the kernel to boot on SVE-capable hardware with broken 1843 firmware, you may need to say N here until you get your firmware 1844 fixed. Otherwise, you may experience firmware panics or lockups when 1845 booting the kernel. If unsure and you are not observing these 1846 symptoms, you should assume that it is safe to say Y. 1847 1848config ARM64_MODULE_PLTS 1849 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1850 depends on MODULES 1851 select HAVE_MOD_ARCH_SPECIFIC 1852 help 1853 Allocate PLTs when loading modules so that jumps and calls whose 1854 targets are too far away for their relative offsets to be encoded 1855 in the instructions themselves can be bounced via veneers in the 1856 module's PLT. This allows modules to be allocated in the generic 1857 vmalloc area after the dedicated module memory area has been 1858 exhausted. 1859 1860 When running with address space randomization (KASLR), the module 1861 region itself may be too far away for ordinary relative jumps and 1862 calls, and so in that case, module PLTs are required and cannot be 1863 disabled. 1864 1865 Specific errata workaround(s) might also force module PLTs to be 1866 enabled (ARM64_ERRATUM_843419). 1867 1868config ARM64_PSEUDO_NMI 1869 bool "Support for NMI-like interrupts" 1870 select ARM_GIC_V3 1871 help 1872 Adds support for mimicking Non-Maskable Interrupts through the use of 1873 GIC interrupt priority. This support requires version 3 or later of 1874 ARM GIC. 1875 1876 This high priority configuration for interrupts needs to be 1877 explicitly enabled by setting the kernel parameter 1878 "irqchip.gicv3_pseudo_nmi" to 1. 1879 1880 If unsure, say N 1881 1882if ARM64_PSEUDO_NMI 1883config ARM64_DEBUG_PRIORITY_MASKING 1884 bool "Debug interrupt priority masking" 1885 help 1886 This adds runtime checks to functions enabling/disabling 1887 interrupts when using priority masking. The additional checks verify 1888 the validity of ICC_PMR_EL1 when calling concerned functions. 1889 1890 If unsure, say N 1891endif 1892 1893config RELOCATABLE 1894 bool "Build a relocatable kernel image" if EXPERT 1895 select ARCH_HAS_RELR 1896 default y 1897 help 1898 This builds the kernel as a Position Independent Executable (PIE), 1899 which retains all relocation metadata required to relocate the 1900 kernel binary at runtime to a different virtual address than the 1901 address it was linked at. 1902 Since AArch64 uses the RELA relocation format, this requires a 1903 relocation pass at runtime even if the kernel is loaded at the 1904 same address it was linked at. 1905 1906config RANDOMIZE_BASE 1907 bool "Randomize the address of the kernel image" 1908 select ARM64_MODULE_PLTS if MODULES 1909 select RELOCATABLE 1910 help 1911 Randomizes the virtual address at which the kernel image is 1912 loaded, as a security feature that deters exploit attempts 1913 relying on knowledge of the location of kernel internals. 1914 1915 It is the bootloader's job to provide entropy, by passing a 1916 random u64 value in /chosen/kaslr-seed at kernel entry. 1917 1918 When booting via the UEFI stub, it will invoke the firmware's 1919 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1920 to the kernel proper. In addition, it will randomise the physical 1921 location of the kernel Image as well. 1922 1923 If unsure, say N. 1924 1925config RANDOMIZE_MODULE_REGION_FULL 1926 bool "Randomize the module region over a 2 GB range" 1927 depends on RANDOMIZE_BASE 1928 default y 1929 help 1930 Randomizes the location of the module region inside a 2 GB window 1931 covering the core kernel. This way, it is less likely for modules 1932 to leak information about the location of core kernel data structures 1933 but it does imply that function calls between modules and the core 1934 kernel will need to be resolved via veneers in the module PLT. 1935 1936 When this option is not set, the module region will be randomized over 1937 a limited range that contains the [_stext, _etext] interval of the 1938 core kernel, so branch relocations are almost always in range unless 1939 ARM64_MODULE_PLTS is enabled and the region is exhausted. In this 1940 particular case of region exhaustion, modules might be able to fall 1941 back to a larger 2GB area. 1942 1943config CC_HAVE_STACKPROTECTOR_SYSREG 1944 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1945 1946config STACKPROTECTOR_PER_TASK 1947 def_bool y 1948 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1949 1950endmenu 1951 1952menu "Boot options" 1953 1954config ARM64_ACPI_PARKING_PROTOCOL 1955 bool "Enable support for the ARM64 ACPI parking protocol" 1956 depends on ACPI 1957 help 1958 Enable support for the ARM64 ACPI parking protocol. If disabled 1959 the kernel will not allow booting through the ARM64 ACPI parking 1960 protocol even if the corresponding data is present in the ACPI 1961 MADT table. 1962 1963config CMDLINE 1964 string "Default kernel command string" 1965 default "" 1966 help 1967 Provide a set of default command-line options at build time by 1968 entering them here. As a minimum, you should specify the the 1969 root device (e.g. root=/dev/nfs). 1970 1971choice 1972 prompt "Kernel command line type" if CMDLINE != "" 1973 default CMDLINE_FROM_BOOTLOADER 1974 help 1975 Choose how the kernel will handle the provided default kernel 1976 command line string. 1977 1978config CMDLINE_FROM_BOOTLOADER 1979 bool "Use bootloader kernel arguments if available" 1980 help 1981 Uses the command-line options passed by the boot loader. If 1982 the boot loader doesn't provide any, the default kernel command 1983 string provided in CMDLINE will be used. 1984 1985config CMDLINE_FORCE 1986 bool "Always use the default kernel command string" 1987 help 1988 Always use the default kernel command string, even if the boot 1989 loader passes other arguments to the kernel. 1990 This is useful if you cannot or don't want to change the 1991 command-line options your boot loader passes to the kernel. 1992 1993endchoice 1994 1995config EFI_STUB 1996 bool 1997 1998config EFI 1999 bool "UEFI runtime support" 2000 depends on OF && !CPU_BIG_ENDIAN 2001 depends on KERNEL_MODE_NEON 2002 select ARCH_SUPPORTS_ACPI 2003 select LIBFDT 2004 select UCS2_STRING 2005 select EFI_PARAMS_FROM_FDT 2006 select EFI_RUNTIME_WRAPPERS 2007 select EFI_STUB 2008 select EFI_GENERIC_STUB 2009 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2010 default y 2011 help 2012 This option provides support for runtime services provided 2013 by UEFI firmware (such as non-volatile variables, realtime 2014 clock, and platform reset). A UEFI stub is also provided to 2015 allow the kernel to be booted as an EFI application. This 2016 is only useful on systems that have UEFI firmware. 2017 2018config DMI 2019 bool "Enable support for SMBIOS (DMI) tables" 2020 depends on EFI 2021 default y 2022 help 2023 This enables SMBIOS/DMI feature for systems. 2024 2025 This option is only useful on systems that have UEFI firmware. 2026 However, even with this option, the resultant kernel should 2027 continue to boot on existing non-UEFI platforms. 2028 2029endmenu 2030 2031config SYSVIPC_COMPAT 2032 def_bool y 2033 depends on COMPAT && SYSVIPC 2034 2035menu "Power management options" 2036 2037source "kernel/power/Kconfig" 2038 2039config ARCH_HIBERNATION_POSSIBLE 2040 def_bool y 2041 depends on CPU_PM 2042 2043config ARCH_HIBERNATION_HEADER 2044 def_bool y 2045 depends on HIBERNATION 2046 2047config ARCH_SUSPEND_POSSIBLE 2048 def_bool y 2049 2050endmenu 2051 2052menu "CPU Power Management" 2053 2054source "drivers/cpuidle/Kconfig" 2055 2056source "drivers/cpufreq/Kconfig" 2057 2058endmenu 2059 2060source "drivers/acpi/Kconfig" 2061 2062source "arch/arm64/kvm/Kconfig" 2063 2064if CRYPTO 2065source "arch/arm64/crypto/Kconfig" 2066endif 2067