xref: /openbmc/linux/arch/arm64/Kconfig (revision eb2842da)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_STATE
14	select ARCH_HAS_DEBUG_VIRTUAL
15	select ARCH_HAS_DEBUG_VM_PGTABLE
16	select ARCH_HAS_DEVMEM_IS_ALLOWED
17	select ARCH_HAS_DMA_PREP_COHERENT
18	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
19	select ARCH_HAS_FAST_MULTIPLIER
20	select ARCH_HAS_FORTIFY_SOURCE
21	select ARCH_HAS_GCOV_PROFILE_ALL
22	select ARCH_HAS_GIGANTIC_PAGE
23	select ARCH_HAS_KCOV
24	select ARCH_HAS_KEEPINITRD
25	select ARCH_HAS_MEMBARRIER_SYNC_CORE
26	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
27	select ARCH_HAS_PTE_DEVMAP
28	select ARCH_HAS_PTE_SPECIAL
29	select ARCH_HAS_SETUP_DMA_OPS
30	select ARCH_HAS_SET_DIRECT_MAP
31	select ARCH_HAS_SET_MEMORY
32	select ARCH_STACKWALK
33	select ARCH_HAS_STRICT_KERNEL_RWX
34	select ARCH_HAS_STRICT_MODULE_RWX
35	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
36	select ARCH_HAS_SYNC_DMA_FOR_CPU
37	select ARCH_HAS_SYSCALL_WRAPPER
38	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
39	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
40	select ARCH_HAVE_ELF_PROT
41	select ARCH_HAVE_NMI_SAFE_CMPXCHG
42	select ARCH_INLINE_READ_LOCK if !PREEMPTION
43	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
44	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
45	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
46	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
47	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
48	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
49	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
50	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
51	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
52	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
53	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
54	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
55	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
56	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
57	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
58	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
59	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
60	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
61	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
62	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
63	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
64	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
65	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
66	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
67	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
68	select ARCH_KEEP_MEMBLOCK
69	select ARCH_USE_CMPXCHG_LOCKREF
70	select ARCH_USE_GNU_PROPERTY
71	select ARCH_USE_QUEUED_RWLOCKS
72	select ARCH_USE_QUEUED_SPINLOCKS
73	select ARCH_USE_SYM_ANNOTATIONS
74	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
75	select ARCH_SUPPORTS_MEMORY_FAILURE
76	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
77	select ARCH_SUPPORTS_ATOMIC_RMW
78	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
79	select ARCH_SUPPORTS_NUMA_BALANCING
80	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
81	select ARCH_WANT_DEFAULT_BPF_JIT
82	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
83	select ARCH_WANT_FRAME_POINTERS
84	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
85	select ARCH_WANT_LD_ORPHAN_WARN
86	select ARCH_HAS_UBSAN_SANITIZE_ALL
87	select ARM_AMBA
88	select ARM_ARCH_TIMER
89	select ARM_GIC
90	select AUDIT_ARCH_COMPAT_GENERIC
91	select ARM_GIC_V2M if PCI
92	select ARM_GIC_V3
93	select ARM_GIC_V3_ITS if PCI
94	select ARM_PSCI_FW
95	select BUILDTIME_TABLE_SORT
96	select CLONE_BACKWARDS
97	select COMMON_CLK
98	select CPU_PM if (SUSPEND || CPU_IDLE)
99	select CRC32
100	select DCACHE_WORD_ACCESS
101	select DMA_DIRECT_REMAP
102	select EDAC_SUPPORT
103	select FRAME_POINTER
104	select GENERIC_ALLOCATOR
105	select GENERIC_ARCH_TOPOLOGY
106	select GENERIC_CLOCKEVENTS_BROADCAST
107	select GENERIC_CPU_AUTOPROBE
108	select GENERIC_CPU_VULNERABILITIES
109	select GENERIC_EARLY_IOREMAP
110	select GENERIC_IDLE_POLL_SETUP
111	select GENERIC_IRQ_IPI
112	select GENERIC_IRQ_MULTI_HANDLER
113	select GENERIC_IRQ_PROBE
114	select GENERIC_IRQ_SHOW
115	select GENERIC_IRQ_SHOW_LEVEL
116	select GENERIC_PCI_IOMAP
117	select GENERIC_PTDUMP
118	select GENERIC_SCHED_CLOCK
119	select GENERIC_SMP_IDLE_THREAD
120	select GENERIC_STRNCPY_FROM_USER
121	select GENERIC_STRNLEN_USER
122	select GENERIC_TIME_VSYSCALL
123	select GENERIC_GETTIMEOFDAY
124	select GENERIC_VDSO_TIME_NS
125	select HANDLE_DOMAIN_IRQ
126	select HARDIRQS_SW_RESEND
127	select HAVE_MOVE_PMD
128	select HAVE_MOVE_PUD
129	select HAVE_PCI
130	select HAVE_ACPI_APEI if (ACPI && EFI)
131	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
132	select HAVE_ARCH_AUDITSYSCALL
133	select HAVE_ARCH_BITREVERSE
134	select HAVE_ARCH_COMPILER_H
135	select HAVE_ARCH_HUGE_VMAP
136	select HAVE_ARCH_JUMP_LABEL
137	select HAVE_ARCH_JUMP_LABEL_RELATIVE
138	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
139	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
140	select HAVE_ARCH_KGDB
141	select HAVE_ARCH_MMAP_RND_BITS
142	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
143	select HAVE_ARCH_PFN_VALID
144	select HAVE_ARCH_PREL32_RELOCATIONS
145	select HAVE_ARCH_SECCOMP_FILTER
146	select HAVE_ARCH_STACKLEAK
147	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
148	select HAVE_ARCH_TRACEHOOK
149	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
150	select HAVE_ARCH_VMAP_STACK
151	select HAVE_ARM_SMCCC
152	select HAVE_ASM_MODVERSIONS
153	select HAVE_EBPF_JIT
154	select HAVE_C_RECORDMCOUNT
155	select HAVE_CMPXCHG_DOUBLE
156	select HAVE_CMPXCHG_LOCAL
157	select HAVE_CONTEXT_TRACKING
158	select HAVE_DEBUG_BUGVERBOSE
159	select HAVE_DEBUG_KMEMLEAK
160	select HAVE_DMA_CONTIGUOUS
161	select HAVE_DYNAMIC_FTRACE
162	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
163		if $(cc-option,-fpatchable-function-entry=2)
164	select HAVE_EFFICIENT_UNALIGNED_ACCESS
165	select HAVE_FAST_GUP
166	select HAVE_FTRACE_MCOUNT_RECORD
167	select HAVE_FUNCTION_TRACER
168	select HAVE_FUNCTION_ERROR_INJECTION
169	select HAVE_FUNCTION_GRAPH_TRACER
170	select HAVE_GCC_PLUGINS
171	select HAVE_HW_BREAKPOINT if PERF_EVENTS
172	select HAVE_IRQ_TIME_ACCOUNTING
173	select HAVE_NMI
174	select HAVE_PATA_PLATFORM
175	select HAVE_PERF_EVENTS
176	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI && HW_PERF_EVENTS
177	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && HAVE_PERF_EVENTS_NMI
178	select HAVE_PERF_REGS
179	select HAVE_PERF_USER_STACK_DUMP
180	select HAVE_REGS_AND_STACK_ACCESS_API
181	select HAVE_FUNCTION_ARG_ACCESS_API
182	select HAVE_FUTEX_CMPXCHG if FUTEX
183	select MMU_GATHER_RCU_TABLE_FREE
184	select HAVE_RSEQ
185	select HAVE_STACKPROTECTOR
186	select HAVE_SYSCALL_TRACEPOINTS
187	select HAVE_KPROBES
188	select HAVE_KRETPROBES
189	select HAVE_GENERIC_VDSO
190	select IOMMU_DMA if IOMMU_SUPPORT
191	select IRQ_DOMAIN
192	select IRQ_FORCED_THREADING
193	select MODULES_USE_ELF_RELA
194	select NEED_DMA_MAP_STATE
195	select NEED_SG_DMA_LENGTH
196	select OF
197	select OF_EARLY_FLATTREE
198	select PCI_DOMAINS_GENERIC if PCI
199	select PCI_ECAM if (ACPI && PCI)
200	select PCI_SYSCALL if PCI
201	select POWER_RESET
202	select POWER_SUPPLY
203	select SPARSE_IRQ
204	select SWIOTLB
205	select SYSCTL_EXCEPTION_TRACE
206	select THREAD_INFO_IN_TASK
207	help
208	  ARM 64-bit (AArch64) Linux support.
209
210config 64BIT
211	def_bool y
212
213config MMU
214	def_bool y
215
216config ARM64_PAGE_SHIFT
217	int
218	default 16 if ARM64_64K_PAGES
219	default 14 if ARM64_16K_PAGES
220	default 12
221
222config ARM64_CONT_PTE_SHIFT
223	int
224	default 5 if ARM64_64K_PAGES
225	default 7 if ARM64_16K_PAGES
226	default 4
227
228config ARM64_CONT_PMD_SHIFT
229	int
230	default 5 if ARM64_64K_PAGES
231	default 5 if ARM64_16K_PAGES
232	default 4
233
234config ARCH_MMAP_RND_BITS_MIN
235       default 14 if ARM64_64K_PAGES
236       default 16 if ARM64_16K_PAGES
237       default 18
238
239# max bits determined by the following formula:
240#  VA_BITS - PAGE_SHIFT - 3
241config ARCH_MMAP_RND_BITS_MAX
242       default 19 if ARM64_VA_BITS=36
243       default 24 if ARM64_VA_BITS=39
244       default 27 if ARM64_VA_BITS=42
245       default 30 if ARM64_VA_BITS=47
246       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
247       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
248       default 33 if ARM64_VA_BITS=48
249       default 14 if ARM64_64K_PAGES
250       default 16 if ARM64_16K_PAGES
251       default 18
252
253config ARCH_MMAP_RND_COMPAT_BITS_MIN
254       default 7 if ARM64_64K_PAGES
255       default 9 if ARM64_16K_PAGES
256       default 11
257
258config ARCH_MMAP_RND_COMPAT_BITS_MAX
259       default 16
260
261config NO_IOPORT_MAP
262	def_bool y if !PCI
263
264config STACKTRACE_SUPPORT
265	def_bool y
266
267config ILLEGAL_POINTER_VALUE
268	hex
269	default 0xdead000000000000
270
271config LOCKDEP_SUPPORT
272	def_bool y
273
274config TRACE_IRQFLAGS_SUPPORT
275	def_bool y
276
277config GENERIC_BUG
278	def_bool y
279	depends on BUG
280
281config GENERIC_BUG_RELATIVE_POINTERS
282	def_bool y
283	depends on GENERIC_BUG
284
285config GENERIC_HWEIGHT
286	def_bool y
287
288config GENERIC_CSUM
289        def_bool y
290
291config GENERIC_CALIBRATE_DELAY
292	def_bool y
293
294config ZONE_DMA
295	bool "Support DMA zone" if EXPERT
296	default y
297
298config ZONE_DMA32
299	bool "Support DMA32 zone" if EXPERT
300	default y
301
302config ARCH_ENABLE_MEMORY_HOTPLUG
303	def_bool y
304
305config ARCH_ENABLE_MEMORY_HOTREMOVE
306	def_bool y
307
308config SMP
309	def_bool y
310
311config KERNEL_MODE_NEON
312	def_bool y
313
314config FIX_EARLYCON_MEM
315	def_bool y
316
317config PGTABLE_LEVELS
318	int
319	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
320	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
321	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
322	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
323	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
324	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
325
326config ARCH_SUPPORTS_UPROBES
327	def_bool y
328
329config ARCH_PROC_KCORE_TEXT
330	def_bool y
331
332config BROKEN_GAS_INST
333	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
334
335config KASAN_SHADOW_OFFSET
336	hex
337	depends on KASAN
338	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
339	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
340	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
341	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
342	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
343	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
344	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
345	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
346	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
347	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
348	default 0xffffffffffffffff
349
350source "arch/arm64/Kconfig.platforms"
351
352menu "Kernel Features"
353
354menu "ARM errata workarounds via the alternatives framework"
355
356config ARM64_WORKAROUND_CLEAN_CACHE
357	bool
358
359config ARM64_ERRATUM_826319
360	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
361	default y
362	select ARM64_WORKAROUND_CLEAN_CACHE
363	help
364	  This option adds an alternative code sequence to work around ARM
365	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
366	  AXI master interface and an L2 cache.
367
368	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
369	  and is unable to accept a certain write via this interface, it will
370	  not progress on read data presented on the read data channel and the
371	  system can deadlock.
372
373	  The workaround promotes data cache clean instructions to
374	  data cache clean-and-invalidate.
375	  Please note that this does not necessarily enable the workaround,
376	  as it depends on the alternative framework, which will only patch
377	  the kernel if an affected CPU is detected.
378
379	  If unsure, say Y.
380
381config ARM64_ERRATUM_827319
382	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
383	default y
384	select ARM64_WORKAROUND_CLEAN_CACHE
385	help
386	  This option adds an alternative code sequence to work around ARM
387	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
388	  master interface and an L2 cache.
389
390	  Under certain conditions this erratum can cause a clean line eviction
391	  to occur at the same time as another transaction to the same address
392	  on the AMBA 5 CHI interface, which can cause data corruption if the
393	  interconnect reorders the two transactions.
394
395	  The workaround promotes data cache clean instructions to
396	  data cache clean-and-invalidate.
397	  Please note that this does not necessarily enable the workaround,
398	  as it depends on the alternative framework, which will only patch
399	  the kernel if an affected CPU is detected.
400
401	  If unsure, say Y.
402
403config ARM64_ERRATUM_824069
404	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
405	default y
406	select ARM64_WORKAROUND_CLEAN_CACHE
407	help
408	  This option adds an alternative code sequence to work around ARM
409	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
410	  to a coherent interconnect.
411
412	  If a Cortex-A53 processor is executing a store or prefetch for
413	  write instruction at the same time as a processor in another
414	  cluster is executing a cache maintenance operation to the same
415	  address, then this erratum might cause a clean cache line to be
416	  incorrectly marked as dirty.
417
418	  The workaround promotes data cache clean instructions to
419	  data cache clean-and-invalidate.
420	  Please note that this option does not necessarily enable the
421	  workaround, as it depends on the alternative framework, which will
422	  only patch the kernel if an affected CPU is detected.
423
424	  If unsure, say Y.
425
426config ARM64_ERRATUM_819472
427	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
428	default y
429	select ARM64_WORKAROUND_CLEAN_CACHE
430	help
431	  This option adds an alternative code sequence to work around ARM
432	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
433	  present when it is connected to a coherent interconnect.
434
435	  If the processor is executing a load and store exclusive sequence at
436	  the same time as a processor in another cluster is executing a cache
437	  maintenance operation to the same address, then this erratum might
438	  cause data corruption.
439
440	  The workaround promotes data cache clean instructions to
441	  data cache clean-and-invalidate.
442	  Please note that this does not necessarily enable the workaround,
443	  as it depends on the alternative framework, which will only patch
444	  the kernel if an affected CPU is detected.
445
446	  If unsure, say Y.
447
448config ARM64_ERRATUM_832075
449	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
450	default y
451	help
452	  This option adds an alternative code sequence to work around ARM
453	  erratum 832075 on Cortex-A57 parts up to r1p2.
454
455	  Affected Cortex-A57 parts might deadlock when exclusive load/store
456	  instructions to Write-Back memory are mixed with Device loads.
457
458	  The workaround is to promote device loads to use Load-Acquire
459	  semantics.
460	  Please note that this does not necessarily enable the workaround,
461	  as it depends on the alternative framework, which will only patch
462	  the kernel if an affected CPU is detected.
463
464	  If unsure, say Y.
465
466config ARM64_ERRATUM_834220
467	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
468	depends on KVM
469	default y
470	help
471	  This option adds an alternative code sequence to work around ARM
472	  erratum 834220 on Cortex-A57 parts up to r1p2.
473
474	  Affected Cortex-A57 parts might report a Stage 2 translation
475	  fault as the result of a Stage 1 fault for load crossing a
476	  page boundary when there is a permission or device memory
477	  alignment fault at Stage 1 and a translation fault at Stage 2.
478
479	  The workaround is to verify that the Stage 1 translation
480	  doesn't generate a fault before handling the Stage 2 fault.
481	  Please note that this does not necessarily enable the workaround,
482	  as it depends on the alternative framework, which will only patch
483	  the kernel if an affected CPU is detected.
484
485	  If unsure, say Y.
486
487config ARM64_ERRATUM_845719
488	bool "Cortex-A53: 845719: a load might read incorrect data"
489	depends on COMPAT
490	default y
491	help
492	  This option adds an alternative code sequence to work around ARM
493	  erratum 845719 on Cortex-A53 parts up to r0p4.
494
495	  When running a compat (AArch32) userspace on an affected Cortex-A53
496	  part, a load at EL0 from a virtual address that matches the bottom 32
497	  bits of the virtual address used by a recent load at (AArch64) EL1
498	  might return incorrect data.
499
500	  The workaround is to write the contextidr_el1 register on exception
501	  return to a 32-bit task.
502	  Please note that this does not necessarily enable the workaround,
503	  as it depends on the alternative framework, which will only patch
504	  the kernel if an affected CPU is detected.
505
506	  If unsure, say Y.
507
508config ARM64_ERRATUM_843419
509	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
510	default y
511	select ARM64_MODULE_PLTS if MODULES
512	help
513	  This option links the kernel with '--fix-cortex-a53-843419' and
514	  enables PLT support to replace certain ADRP instructions, which can
515	  cause subsequent memory accesses to use an incorrect address on
516	  Cortex-A53 parts up to r0p4.
517
518	  If unsure, say Y.
519
520config ARM64_ERRATUM_1024718
521	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
522	default y
523	help
524	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
525
526	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
527	  update of the hardware dirty bit when the DBM/AP bits are updated
528	  without a break-before-make. The workaround is to disable the usage
529	  of hardware DBM locally on the affected cores. CPUs not affected by
530	  this erratum will continue to use the feature.
531
532	  If unsure, say Y.
533
534config ARM64_ERRATUM_1418040
535	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
536	default y
537	depends on COMPAT
538	help
539	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
540	  errata 1188873 and 1418040.
541
542	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
543	  cause register corruption when accessing the timer registers
544	  from AArch32 userspace.
545
546	  If unsure, say Y.
547
548config ARM64_WORKAROUND_SPECULATIVE_AT
549	bool
550
551config ARM64_ERRATUM_1165522
552	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
553	default y
554	select ARM64_WORKAROUND_SPECULATIVE_AT
555	help
556	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
557
558	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
559	  corrupted TLBs by speculating an AT instruction during a guest
560	  context switch.
561
562	  If unsure, say Y.
563
564config ARM64_ERRATUM_1319367
565	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
566	default y
567	select ARM64_WORKAROUND_SPECULATIVE_AT
568	help
569	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
570	  and A72 erratum 1319367
571
572	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
573	  speculating an AT instruction during a guest context switch.
574
575	  If unsure, say Y.
576
577config ARM64_ERRATUM_1530923
578	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
579	default y
580	select ARM64_WORKAROUND_SPECULATIVE_AT
581	help
582	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
583
584	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
585	  corrupted TLBs by speculating an AT instruction during a guest
586	  context switch.
587
588	  If unsure, say Y.
589
590config ARM64_WORKAROUND_REPEAT_TLBI
591	bool
592
593config ARM64_ERRATUM_1286807
594	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
595	default y
596	select ARM64_WORKAROUND_REPEAT_TLBI
597	help
598	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
599
600	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
601	  address for a cacheable mapping of a location is being
602	  accessed by a core while another core is remapping the virtual
603	  address to a new physical page using the recommended
604	  break-before-make sequence, then under very rare circumstances
605	  TLBI+DSB completes before a read using the translation being
606	  invalidated has been observed by other observers. The
607	  workaround repeats the TLBI+DSB operation.
608
609config ARM64_ERRATUM_1463225
610	bool "Cortex-A76: Software Step might prevent interrupt recognition"
611	default y
612	help
613	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
614
615	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
616	  of a system call instruction (SVC) can prevent recognition of
617	  subsequent interrupts when software stepping is disabled in the
618	  exception handler of the system call and either kernel debugging
619	  is enabled or VHE is in use.
620
621	  Work around the erratum by triggering a dummy step exception
622	  when handling a system call from a task that is being stepped
623	  in a VHE configuration of the kernel.
624
625	  If unsure, say Y.
626
627config ARM64_ERRATUM_1542419
628	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
629	default y
630	help
631	  This option adds a workaround for ARM Neoverse-N1 erratum
632	  1542419.
633
634	  Affected Neoverse-N1 cores could execute a stale instruction when
635	  modified by another CPU. The workaround depends on a firmware
636	  counterpart.
637
638	  Workaround the issue by hiding the DIC feature from EL0. This
639	  forces user-space to perform cache maintenance.
640
641	  If unsure, say Y.
642
643config ARM64_ERRATUM_1508412
644	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
645	default y
646	help
647	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
648
649	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
650	  of a store-exclusive or read of PAR_EL1 and a load with device or
651	  non-cacheable memory attributes. The workaround depends on a firmware
652	  counterpart.
653
654	  KVM guests must also have the workaround implemented or they can
655	  deadlock the system.
656
657	  Work around the issue by inserting DMB SY barriers around PAR_EL1
658	  register reads and warning KVM users. The DMB barrier is sufficient
659	  to prevent a speculative PAR_EL1 read.
660
661	  If unsure, say Y.
662
663config CAVIUM_ERRATUM_22375
664	bool "Cavium erratum 22375, 24313"
665	default y
666	help
667	  Enable workaround for errata 22375 and 24313.
668
669	  This implements two gicv3-its errata workarounds for ThunderX. Both
670	  with a small impact affecting only ITS table allocation.
671
672	    erratum 22375: only alloc 8MB table size
673	    erratum 24313: ignore memory access type
674
675	  The fixes are in ITS initialization and basically ignore memory access
676	  type and table size provided by the TYPER and BASER registers.
677
678	  If unsure, say Y.
679
680config CAVIUM_ERRATUM_23144
681	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
682	depends on NUMA
683	default y
684	help
685	  ITS SYNC command hang for cross node io and collections/cpu mapping.
686
687	  If unsure, say Y.
688
689config CAVIUM_ERRATUM_23154
690	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
691	default y
692	help
693	  The gicv3 of ThunderX requires a modified version for
694	  reading the IAR status to ensure data synchronization
695	  (access to icc_iar1_el1 is not sync'ed before and after).
696
697	  If unsure, say Y.
698
699config CAVIUM_ERRATUM_27456
700	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
701	default y
702	help
703	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
704	  instructions may cause the icache to become corrupted if it
705	  contains data for a non-current ASID.  The fix is to
706	  invalidate the icache when changing the mm context.
707
708	  If unsure, say Y.
709
710config CAVIUM_ERRATUM_30115
711	bool "Cavium erratum 30115: Guest may disable interrupts in host"
712	default y
713	help
714	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
715	  1.2, and T83 Pass 1.0, KVM guest execution may disable
716	  interrupts in host. Trapping both GICv3 group-0 and group-1
717	  accesses sidesteps the issue.
718
719	  If unsure, say Y.
720
721config CAVIUM_TX2_ERRATUM_219
722	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
723	default y
724	help
725	  On Cavium ThunderX2, a load, store or prefetch instruction between a
726	  TTBR update and the corresponding context synchronizing operation can
727	  cause a spurious Data Abort to be delivered to any hardware thread in
728	  the CPU core.
729
730	  Work around the issue by avoiding the problematic code sequence and
731	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
732	  trap handler performs the corresponding register access, skips the
733	  instruction and ensures context synchronization by virtue of the
734	  exception return.
735
736	  If unsure, say Y.
737
738config FUJITSU_ERRATUM_010001
739	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
740	default y
741	help
742	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
743	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
744	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
745	  This fault occurs under a specific hardware condition when a
746	  load/store instruction performs an address translation using:
747	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
748	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
749	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
750	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
751
752	  The workaround is to ensure these bits are clear in TCR_ELx.
753	  The workaround only affects the Fujitsu-A64FX.
754
755	  If unsure, say Y.
756
757config HISILICON_ERRATUM_161600802
758	bool "Hip07 161600802: Erroneous redistributor VLPI base"
759	default y
760	help
761	  The HiSilicon Hip07 SoC uses the wrong redistributor base
762	  when issued ITS commands such as VMOVP and VMAPP, and requires
763	  a 128kB offset to be applied to the target address in this commands.
764
765	  If unsure, say Y.
766
767config QCOM_FALKOR_ERRATUM_1003
768	bool "Falkor E1003: Incorrect translation due to ASID change"
769	default y
770	help
771	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
772	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
773	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
774	  then only for entries in the walk cache, since the leaf translation
775	  is unchanged. Work around the erratum by invalidating the walk cache
776	  entries for the trampoline before entering the kernel proper.
777
778config QCOM_FALKOR_ERRATUM_1009
779	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
780	default y
781	select ARM64_WORKAROUND_REPEAT_TLBI
782	help
783	  On Falkor v1, the CPU may prematurely complete a DSB following a
784	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
785	  one more time to fix the issue.
786
787	  If unsure, say Y.
788
789config QCOM_QDF2400_ERRATUM_0065
790	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
791	default y
792	help
793	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
794	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
795	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
796
797	  If unsure, say Y.
798
799config QCOM_FALKOR_ERRATUM_E1041
800	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
801	default y
802	help
803	  Falkor CPU may speculatively fetch instructions from an improper
804	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
805	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
806
807	  If unsure, say Y.
808
809config SOCIONEXT_SYNQUACER_PREITS
810	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
811	default y
812	help
813	  Socionext Synquacer SoCs implement a separate h/w block to generate
814	  MSI doorbell writes with non-zero values for the device ID.
815
816	  If unsure, say Y.
817
818endmenu
819
820
821choice
822	prompt "Page size"
823	default ARM64_4K_PAGES
824	help
825	  Page size (translation granule) configuration.
826
827config ARM64_4K_PAGES
828	bool "4KB"
829	help
830	  This feature enables 4KB pages support.
831
832config ARM64_16K_PAGES
833	bool "16KB"
834	help
835	  The system will use 16KB pages support. AArch32 emulation
836	  requires applications compiled with 16K (or a multiple of 16K)
837	  aligned segments.
838
839config ARM64_64K_PAGES
840	bool "64KB"
841	help
842	  This feature enables 64KB pages support (4KB by default)
843	  allowing only two levels of page tables and faster TLB
844	  look-up. AArch32 emulation requires applications compiled
845	  with 64K aligned segments.
846
847endchoice
848
849choice
850	prompt "Virtual address space size"
851	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
852	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
853	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
854	help
855	  Allows choosing one of multiple possible virtual address
856	  space sizes. The level of translation table is determined by
857	  a combination of page size and virtual address space size.
858
859config ARM64_VA_BITS_36
860	bool "36-bit" if EXPERT
861	depends on ARM64_16K_PAGES
862
863config ARM64_VA_BITS_39
864	bool "39-bit"
865	depends on ARM64_4K_PAGES
866
867config ARM64_VA_BITS_42
868	bool "42-bit"
869	depends on ARM64_64K_PAGES
870
871config ARM64_VA_BITS_47
872	bool "47-bit"
873	depends on ARM64_16K_PAGES
874
875config ARM64_VA_BITS_48
876	bool "48-bit"
877
878config ARM64_VA_BITS_52
879	bool "52-bit"
880	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
881	help
882	  Enable 52-bit virtual addressing for userspace when explicitly
883	  requested via a hint to mmap(). The kernel will also use 52-bit
884	  virtual addresses for its own mappings (provided HW support for
885	  this feature is available, otherwise it reverts to 48-bit).
886
887	  NOTE: Enabling 52-bit virtual addressing in conjunction with
888	  ARMv8.3 Pointer Authentication will result in the PAC being
889	  reduced from 7 bits to 3 bits, which may have a significant
890	  impact on its susceptibility to brute-force attacks.
891
892	  If unsure, select 48-bit virtual addressing instead.
893
894endchoice
895
896config ARM64_FORCE_52BIT
897	bool "Force 52-bit virtual addresses for userspace"
898	depends on ARM64_VA_BITS_52 && EXPERT
899	help
900	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
901	  to maintain compatibility with older software by providing 48-bit VAs
902	  unless a hint is supplied to mmap.
903
904	  This configuration option disables the 48-bit compatibility logic, and
905	  forces all userspace addresses to be 52-bit on HW that supports it. One
906	  should only enable this configuration option for stress testing userspace
907	  memory management code. If unsure say N here.
908
909config ARM64_VA_BITS
910	int
911	default 36 if ARM64_VA_BITS_36
912	default 39 if ARM64_VA_BITS_39
913	default 42 if ARM64_VA_BITS_42
914	default 47 if ARM64_VA_BITS_47
915	default 48 if ARM64_VA_BITS_48
916	default 52 if ARM64_VA_BITS_52
917
918choice
919	prompt "Physical address space size"
920	default ARM64_PA_BITS_48
921	help
922	  Choose the maximum physical address range that the kernel will
923	  support.
924
925config ARM64_PA_BITS_48
926	bool "48-bit"
927
928config ARM64_PA_BITS_52
929	bool "52-bit (ARMv8.2)"
930	depends on ARM64_64K_PAGES
931	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
932	help
933	  Enable support for a 52-bit physical address space, introduced as
934	  part of the ARMv8.2-LPA extension.
935
936	  With this enabled, the kernel will also continue to work on CPUs that
937	  do not support ARMv8.2-LPA, but with some added memory overhead (and
938	  minor performance overhead).
939
940endchoice
941
942config ARM64_PA_BITS
943	int
944	default 48 if ARM64_PA_BITS_48
945	default 52 if ARM64_PA_BITS_52
946
947choice
948	prompt "Endianness"
949	default CPU_LITTLE_ENDIAN
950	help
951	  Select the endianness of data accesses performed by the CPU. Userspace
952	  applications will need to be compiled and linked for the endianness
953	  that is selected here.
954
955config CPU_BIG_ENDIAN
956       bool "Build big-endian kernel"
957       help
958	  Say Y if you plan on running a kernel with a big-endian userspace.
959
960config CPU_LITTLE_ENDIAN
961	bool "Build little-endian kernel"
962	help
963	  Say Y if you plan on running a kernel with a little-endian userspace.
964	  This is usually the case for distributions targeting arm64.
965
966endchoice
967
968config SCHED_MC
969	bool "Multi-core scheduler support"
970	help
971	  Multi-core scheduler support improves the CPU scheduler's decision
972	  making when dealing with multi-core CPU chips at a cost of slightly
973	  increased overhead in some places. If unsure say N here.
974
975config SCHED_SMT
976	bool "SMT scheduler support"
977	help
978	  Improves the CPU scheduler's decision making when dealing with
979	  MultiThreading at a cost of slightly increased overhead in some
980	  places. If unsure say N here.
981
982config NR_CPUS
983	int "Maximum number of CPUs (2-4096)"
984	range 2 4096
985	default "256"
986
987config HOTPLUG_CPU
988	bool "Support for hot-pluggable CPUs"
989	select GENERIC_IRQ_MIGRATION
990	help
991	  Say Y here to experiment with turning CPUs off and on.  CPUs
992	  can be controlled through /sys/devices/system/cpu.
993
994# Common NUMA Features
995config NUMA
996	bool "NUMA Memory Allocation and Scheduler Support"
997	select ACPI_NUMA if ACPI
998	select OF_NUMA
999	help
1000	  Enable NUMA (Non-Uniform Memory Access) support.
1001
1002	  The kernel will try to allocate memory used by a CPU on the
1003	  local memory of the CPU and add some more
1004	  NUMA awareness to the kernel.
1005
1006config NODES_SHIFT
1007	int "Maximum NUMA Nodes (as a power of 2)"
1008	range 1 10
1009	default "4"
1010	depends on NEED_MULTIPLE_NODES
1011	help
1012	  Specify the maximum number of NUMA Nodes available on the target
1013	  system.  Increases memory reserved to accommodate various tables.
1014
1015config USE_PERCPU_NUMA_NODE_ID
1016	def_bool y
1017	depends on NUMA
1018
1019config HAVE_SETUP_PER_CPU_AREA
1020	def_bool y
1021	depends on NUMA
1022
1023config NEED_PER_CPU_EMBED_FIRST_CHUNK
1024	def_bool y
1025	depends on NUMA
1026
1027config HOLES_IN_ZONE
1028	def_bool y
1029
1030source "kernel/Kconfig.hz"
1031
1032config ARCH_SPARSEMEM_ENABLE
1033	def_bool y
1034	select SPARSEMEM_VMEMMAP_ENABLE
1035
1036config ARCH_SPARSEMEM_DEFAULT
1037	def_bool ARCH_SPARSEMEM_ENABLE
1038
1039config ARCH_SELECT_MEMORY_MODEL
1040	def_bool ARCH_SPARSEMEM_ENABLE
1041
1042config ARCH_FLATMEM_ENABLE
1043	def_bool !NUMA
1044
1045config HW_PERF_EVENTS
1046	def_bool y
1047	depends on ARM_PMU
1048
1049config SYS_SUPPORTS_HUGETLBFS
1050	def_bool y
1051
1052config ARCH_WANT_HUGE_PMD_SHARE
1053
1054config ARCH_HAS_CACHE_LINE_SIZE
1055	def_bool y
1056
1057config ARCH_ENABLE_SPLIT_PMD_PTLOCK
1058	def_bool y if PGTABLE_LEVELS > 2
1059
1060# Supported by clang >= 7.0
1061config CC_HAVE_SHADOW_CALL_STACK
1062	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1063
1064config PARAVIRT
1065	bool "Enable paravirtualization code"
1066	help
1067	  This changes the kernel so it can modify itself when it is run
1068	  under a hypervisor, potentially improving performance significantly
1069	  over full virtualization.
1070
1071config PARAVIRT_TIME_ACCOUNTING
1072	bool "Paravirtual steal time accounting"
1073	select PARAVIRT
1074	help
1075	  Select this option to enable fine granularity task steal time
1076	  accounting. Time spent executing other tasks in parallel with
1077	  the current vCPU is discounted from the vCPU power. To account for
1078	  that, there can be a small performance impact.
1079
1080	  If in doubt, say N here.
1081
1082config KEXEC
1083	depends on PM_SLEEP_SMP
1084	select KEXEC_CORE
1085	bool "kexec system call"
1086	help
1087	  kexec is a system call that implements the ability to shutdown your
1088	  current kernel, and to start another kernel.  It is like a reboot
1089	  but it is independent of the system firmware.   And like a reboot
1090	  you can start any kernel with it, not just Linux.
1091
1092config KEXEC_FILE
1093	bool "kexec file based system call"
1094	select KEXEC_CORE
1095	help
1096	  This is new version of kexec system call. This system call is
1097	  file based and takes file descriptors as system call argument
1098	  for kernel and initramfs as opposed to list of segments as
1099	  accepted by previous system call.
1100
1101config KEXEC_SIG
1102	bool "Verify kernel signature during kexec_file_load() syscall"
1103	depends on KEXEC_FILE
1104	help
1105	  Select this option to verify a signature with loaded kernel
1106	  image. If configured, any attempt of loading a image without
1107	  valid signature will fail.
1108
1109	  In addition to that option, you need to enable signature
1110	  verification for the corresponding kernel image type being
1111	  loaded in order for this to work.
1112
1113config KEXEC_IMAGE_VERIFY_SIG
1114	bool "Enable Image signature verification support"
1115	default y
1116	depends on KEXEC_SIG
1117	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1118	help
1119	  Enable Image signature verification support.
1120
1121comment "Support for PE file signature verification disabled"
1122	depends on KEXEC_SIG
1123	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1124
1125config CRASH_DUMP
1126	bool "Build kdump crash kernel"
1127	help
1128	  Generate crash dump after being started by kexec. This should
1129	  be normally only set in special crash dump kernels which are
1130	  loaded in the main kernel with kexec-tools into a specially
1131	  reserved region and then later executed after a crash by
1132	  kdump/kexec.
1133
1134	  For more details see Documentation/admin-guide/kdump/kdump.rst
1135
1136config XEN_DOM0
1137	def_bool y
1138	depends on XEN
1139
1140config XEN
1141	bool "Xen guest support on ARM64"
1142	depends on ARM64 && OF
1143	select SWIOTLB_XEN
1144	select PARAVIRT
1145	help
1146	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1147
1148config FORCE_MAX_ZONEORDER
1149	int
1150	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1151	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1152	default "11"
1153	help
1154	  The kernel memory allocator divides physically contiguous memory
1155	  blocks into "zones", where each zone is a power of two number of
1156	  pages.  This option selects the largest power of two that the kernel
1157	  keeps in the memory allocator.  If you need to allocate very large
1158	  blocks of physically contiguous memory, then you may need to
1159	  increase this value.
1160
1161	  This config option is actually maximum order plus one. For example,
1162	  a value of 11 means that the largest free memory block is 2^10 pages.
1163
1164	  We make sure that we can allocate upto a HugePage size for each configuration.
1165	  Hence we have :
1166		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1167
1168	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1169	  4M allocations matching the default size used by generic code.
1170
1171config UNMAP_KERNEL_AT_EL0
1172	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1173	default y
1174	help
1175	  Speculation attacks against some high-performance processors can
1176	  be used to bypass MMU permission checks and leak kernel data to
1177	  userspace. This can be defended against by unmapping the kernel
1178	  when running in userspace, mapping it back in on exception entry
1179	  via a trampoline page in the vector table.
1180
1181	  If unsure, say Y.
1182
1183config RODATA_FULL_DEFAULT_ENABLED
1184	bool "Apply r/o permissions of VM areas also to their linear aliases"
1185	default y
1186	help
1187	  Apply read-only attributes of VM areas to the linear alias of
1188	  the backing pages as well. This prevents code or read-only data
1189	  from being modified (inadvertently or intentionally) via another
1190	  mapping of the same memory page. This additional enhancement can
1191	  be turned off at runtime by passing rodata=[off|on] (and turned on
1192	  with rodata=full if this option is set to 'n')
1193
1194	  This requires the linear region to be mapped down to pages,
1195	  which may adversely affect performance in some cases.
1196
1197config ARM64_SW_TTBR0_PAN
1198	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1199	help
1200	  Enabling this option prevents the kernel from accessing
1201	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1202	  zeroed area and reserved ASID. The user access routines
1203	  restore the valid TTBR0_EL1 temporarily.
1204
1205config ARM64_TAGGED_ADDR_ABI
1206	bool "Enable the tagged user addresses syscall ABI"
1207	default y
1208	help
1209	  When this option is enabled, user applications can opt in to a
1210	  relaxed ABI via prctl() allowing tagged addresses to be passed
1211	  to system calls as pointer arguments. For details, see
1212	  Documentation/arm64/tagged-address-abi.rst.
1213
1214menuconfig COMPAT
1215	bool "Kernel support for 32-bit EL0"
1216	depends on ARM64_4K_PAGES || EXPERT
1217	select COMPAT_BINFMT_ELF if BINFMT_ELF
1218	select HAVE_UID16
1219	select OLD_SIGSUSPEND3
1220	select COMPAT_OLD_SIGACTION
1221	help
1222	  This option enables support for a 32-bit EL0 running under a 64-bit
1223	  kernel at EL1. AArch32-specific components such as system calls,
1224	  the user helper functions, VFP support and the ptrace interface are
1225	  handled appropriately by the kernel.
1226
1227	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1228	  that you will only be able to execute AArch32 binaries that were compiled
1229	  with page size aligned segments.
1230
1231	  If you want to execute 32-bit userspace applications, say Y.
1232
1233if COMPAT
1234
1235config KUSER_HELPERS
1236	bool "Enable kuser helpers page for 32-bit applications"
1237	default y
1238	help
1239	  Warning: disabling this option may break 32-bit user programs.
1240
1241	  Provide kuser helpers to compat tasks. The kernel provides
1242	  helper code to userspace in read only form at a fixed location
1243	  to allow userspace to be independent of the CPU type fitted to
1244	  the system. This permits binaries to be run on ARMv4 through
1245	  to ARMv8 without modification.
1246
1247	  See Documentation/arm/kernel_user_helpers.rst for details.
1248
1249	  However, the fixed address nature of these helpers can be used
1250	  by ROP (return orientated programming) authors when creating
1251	  exploits.
1252
1253	  If all of the binaries and libraries which run on your platform
1254	  are built specifically for your platform, and make no use of
1255	  these helpers, then you can turn this option off to hinder
1256	  such exploits. However, in that case, if a binary or library
1257	  relying on those helpers is run, it will not function correctly.
1258
1259	  Say N here only if you are absolutely certain that you do not
1260	  need these helpers; otherwise, the safe option is to say Y.
1261
1262config COMPAT_VDSO
1263	bool "Enable vDSO for 32-bit applications"
1264	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1265	select GENERIC_COMPAT_VDSO
1266	default y
1267	help
1268	  Place in the process address space of 32-bit applications an
1269	  ELF shared object providing fast implementations of gettimeofday
1270	  and clock_gettime.
1271
1272	  You must have a 32-bit build of glibc 2.22 or later for programs
1273	  to seamlessly take advantage of this.
1274
1275config THUMB2_COMPAT_VDSO
1276	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1277	depends on COMPAT_VDSO
1278	default y
1279	help
1280	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1281	  otherwise with '-marm'.
1282
1283menuconfig ARMV8_DEPRECATED
1284	bool "Emulate deprecated/obsolete ARMv8 instructions"
1285	depends on SYSCTL
1286	help
1287	  Legacy software support may require certain instructions
1288	  that have been deprecated or obsoleted in the architecture.
1289
1290	  Enable this config to enable selective emulation of these
1291	  features.
1292
1293	  If unsure, say Y
1294
1295if ARMV8_DEPRECATED
1296
1297config SWP_EMULATION
1298	bool "Emulate SWP/SWPB instructions"
1299	help
1300	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1301	  they are always undefined. Say Y here to enable software
1302	  emulation of these instructions for userspace using LDXR/STXR.
1303	  This feature can be controlled at runtime with the abi.swp
1304	  sysctl which is disabled by default.
1305
1306	  In some older versions of glibc [<=2.8] SWP is used during futex
1307	  trylock() operations with the assumption that the code will not
1308	  be preempted. This invalid assumption may be more likely to fail
1309	  with SWP emulation enabled, leading to deadlock of the user
1310	  application.
1311
1312	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1313	  on an external transaction monitoring block called a global
1314	  monitor to maintain update atomicity. If your system does not
1315	  implement a global monitor, this option can cause programs that
1316	  perform SWP operations to uncached memory to deadlock.
1317
1318	  If unsure, say Y
1319
1320config CP15_BARRIER_EMULATION
1321	bool "Emulate CP15 Barrier instructions"
1322	help
1323	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1324	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1325	  strongly recommended to use the ISB, DSB, and DMB
1326	  instructions instead.
1327
1328	  Say Y here to enable software emulation of these
1329	  instructions for AArch32 userspace code. When this option is
1330	  enabled, CP15 barrier usage is traced which can help
1331	  identify software that needs updating. This feature can be
1332	  controlled at runtime with the abi.cp15_barrier sysctl.
1333
1334	  If unsure, say Y
1335
1336config SETEND_EMULATION
1337	bool "Emulate SETEND instruction"
1338	help
1339	  The SETEND instruction alters the data-endianness of the
1340	  AArch32 EL0, and is deprecated in ARMv8.
1341
1342	  Say Y here to enable software emulation of the instruction
1343	  for AArch32 userspace code. This feature can be controlled
1344	  at runtime with the abi.setend sysctl.
1345
1346	  Note: All the cpus on the system must have mixed endian support at EL0
1347	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1348	  endian - is hotplugged in after this feature has been enabled, there could
1349	  be unexpected results in the applications.
1350
1351	  If unsure, say Y
1352endif
1353
1354endif
1355
1356menu "ARMv8.1 architectural features"
1357
1358config ARM64_HW_AFDBM
1359	bool "Support for hardware updates of the Access and Dirty page flags"
1360	default y
1361	help
1362	  The ARMv8.1 architecture extensions introduce support for
1363	  hardware updates of the access and dirty information in page
1364	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1365	  capable processors, accesses to pages with PTE_AF cleared will
1366	  set this bit instead of raising an access flag fault.
1367	  Similarly, writes to read-only pages with the DBM bit set will
1368	  clear the read-only bit (AP[2]) instead of raising a
1369	  permission fault.
1370
1371	  Kernels built with this configuration option enabled continue
1372	  to work on pre-ARMv8.1 hardware and the performance impact is
1373	  minimal. If unsure, say Y.
1374
1375config ARM64_PAN
1376	bool "Enable support for Privileged Access Never (PAN)"
1377	default y
1378	help
1379	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1380	 prevents the kernel or hypervisor from accessing user-space (EL0)
1381	 memory directly.
1382
1383	 Choosing this option will cause any unprotected (not using
1384	 copy_to_user et al) memory access to fail with a permission fault.
1385
1386	 The feature is detected at runtime, and will remain as a 'nop'
1387	 instruction if the cpu does not implement the feature.
1388
1389config AS_HAS_LDAPR
1390	def_bool $(as-instr,.arch_extension rcpc)
1391
1392config ARM64_LSE_ATOMICS
1393	bool
1394	default ARM64_USE_LSE_ATOMICS
1395	depends on $(as-instr,.arch_extension lse)
1396
1397config ARM64_USE_LSE_ATOMICS
1398	bool "Atomic instructions"
1399	depends on JUMP_LABEL
1400	default y
1401	help
1402	  As part of the Large System Extensions, ARMv8.1 introduces new
1403	  atomic instructions that are designed specifically to scale in
1404	  very large systems.
1405
1406	  Say Y here to make use of these instructions for the in-kernel
1407	  atomic routines. This incurs a small overhead on CPUs that do
1408	  not support these instructions and requires the kernel to be
1409	  built with binutils >= 2.25 in order for the new instructions
1410	  to be used.
1411
1412config ARM64_VHE
1413	bool "Enable support for Virtualization Host Extensions (VHE)"
1414	default y
1415	help
1416	  Virtualization Host Extensions (VHE) allow the kernel to run
1417	  directly at EL2 (instead of EL1) on processors that support
1418	  it. This leads to better performance for KVM, as they reduce
1419	  the cost of the world switch.
1420
1421	  Selecting this option allows the VHE feature to be detected
1422	  at runtime, and does not affect processors that do not
1423	  implement this feature.
1424
1425endmenu
1426
1427menu "ARMv8.2 architectural features"
1428
1429config ARM64_PMEM
1430	bool "Enable support for persistent memory"
1431	select ARCH_HAS_PMEM_API
1432	select ARCH_HAS_UACCESS_FLUSHCACHE
1433	help
1434	  Say Y to enable support for the persistent memory API based on the
1435	  ARMv8.2 DCPoP feature.
1436
1437	  The feature is detected at runtime, and the kernel will use DC CVAC
1438	  operations if DC CVAP is not supported (following the behaviour of
1439	  DC CVAP itself if the system does not define a point of persistence).
1440
1441config ARM64_RAS_EXTN
1442	bool "Enable support for RAS CPU Extensions"
1443	default y
1444	help
1445	  CPUs that support the Reliability, Availability and Serviceability
1446	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1447	  errors, classify them and report them to software.
1448
1449	  On CPUs with these extensions system software can use additional
1450	  barriers to determine if faults are pending and read the
1451	  classification from a new set of registers.
1452
1453	  Selecting this feature will allow the kernel to use these barriers
1454	  and access the new registers if the system supports the extension.
1455	  Platform RAS features may additionally depend on firmware support.
1456
1457config ARM64_CNP
1458	bool "Enable support for Common Not Private (CNP) translations"
1459	default y
1460	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1461	help
1462	  Common Not Private (CNP) allows translation table entries to
1463	  be shared between different PEs in the same inner shareable
1464	  domain, so the hardware can use this fact to optimise the
1465	  caching of such entries in the TLB.
1466
1467	  Selecting this option allows the CNP feature to be detected
1468	  at runtime, and does not affect PEs that do not implement
1469	  this feature.
1470
1471endmenu
1472
1473menu "ARMv8.3 architectural features"
1474
1475config ARM64_PTR_AUTH
1476	bool "Enable support for pointer authentication"
1477	default y
1478	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1479	# Modern compilers insert a .note.gnu.property section note for PAC
1480	# which is only understood by binutils starting with version 2.33.1.
1481	depends on LD_IS_LLD || LD_VERSION >= 233010000 || (CC_IS_GCC && GCC_VERSION < 90100)
1482	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1483	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1484	help
1485	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1486	  instructions for signing and authenticating pointers against secret
1487	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1488	  and other attacks.
1489
1490	  This option enables these instructions at EL0 (i.e. for userspace).
1491	  Choosing this option will cause the kernel to initialise secret keys
1492	  for each process at exec() time, with these keys being
1493	  context-switched along with the process.
1494
1495	  If the compiler supports the -mbranch-protection or
1496	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1497	  will also cause the kernel itself to be compiled with return address
1498	  protection. In this case, and if the target hardware is known to
1499	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1500	  disabled with minimal loss of protection.
1501
1502	  The feature is detected at runtime. If the feature is not present in
1503	  hardware it will not be advertised to userspace/KVM guest nor will it
1504	  be enabled.
1505
1506	  If the feature is present on the boot CPU but not on a late CPU, then
1507	  the late CPU will be parked. Also, if the boot CPU does not have
1508	  address auth and the late CPU has then the late CPU will still boot
1509	  but with the feature disabled. On such a system, this option should
1510	  not be selected.
1511
1512	  This feature works with FUNCTION_GRAPH_TRACER option only if
1513	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1514
1515config CC_HAS_BRANCH_PROT_PAC_RET
1516	# GCC 9 or later, clang 8 or later
1517	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1518
1519config CC_HAS_SIGN_RETURN_ADDRESS
1520	# GCC 7, 8
1521	def_bool $(cc-option,-msign-return-address=all)
1522
1523config AS_HAS_PAC
1524	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1525
1526config AS_HAS_CFI_NEGATE_RA_STATE
1527	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1528
1529endmenu
1530
1531menu "ARMv8.4 architectural features"
1532
1533config ARM64_AMU_EXTN
1534	bool "Enable support for the Activity Monitors Unit CPU extension"
1535	default y
1536	help
1537	  The activity monitors extension is an optional extension introduced
1538	  by the ARMv8.4 CPU architecture. This enables support for version 1
1539	  of the activity monitors architecture, AMUv1.
1540
1541	  To enable the use of this extension on CPUs that implement it, say Y.
1542
1543	  Note that for architectural reasons, firmware _must_ implement AMU
1544	  support when running on CPUs that present the activity monitors
1545	  extension. The required support is present in:
1546	    * Version 1.5 and later of the ARM Trusted Firmware
1547
1548	  For kernels that have this configuration enabled but boot with broken
1549	  firmware, you may need to say N here until the firmware is fixed.
1550	  Otherwise you may experience firmware panics or lockups when
1551	  accessing the counter registers. Even if you are not observing these
1552	  symptoms, the values returned by the register reads might not
1553	  correctly reflect reality. Most commonly, the value read will be 0,
1554	  indicating that the counter is not enabled.
1555
1556config AS_HAS_ARMV8_4
1557	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1558
1559config ARM64_TLB_RANGE
1560	bool "Enable support for tlbi range feature"
1561	default y
1562	depends on AS_HAS_ARMV8_4
1563	help
1564	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1565	  range of input addresses.
1566
1567	  The feature introduces new assembly instructions, and they were
1568	  support when binutils >= 2.30.
1569
1570endmenu
1571
1572menu "ARMv8.5 architectural features"
1573
1574config ARM64_BTI
1575	bool "Branch Target Identification support"
1576	default y
1577	help
1578	  Branch Target Identification (part of the ARMv8.5 Extensions)
1579	  provides a mechanism to limit the set of locations to which computed
1580	  branch instructions such as BR or BLR can jump.
1581
1582	  To make use of BTI on CPUs that support it, say Y.
1583
1584	  BTI is intended to provide complementary protection to other control
1585	  flow integrity protection mechanisms, such as the Pointer
1586	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1587	  For this reason, it does not make sense to enable this option without
1588	  also enabling support for pointer authentication.  Thus, when
1589	  enabling this option you should also select ARM64_PTR_AUTH=y.
1590
1591	  Userspace binaries must also be specifically compiled to make use of
1592	  this mechanism.  If you say N here or the hardware does not support
1593	  BTI, such binaries can still run, but you get no additional
1594	  enforcement of branch destinations.
1595
1596config ARM64_BTI_KERNEL
1597	bool "Use Branch Target Identification for kernel"
1598	default y
1599	depends on ARM64_BTI
1600	depends on ARM64_PTR_AUTH
1601	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1602	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1603	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1604	depends on !(CC_IS_CLANG && GCOV_KERNEL)
1605	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1606	help
1607	  Build the kernel with Branch Target Identification annotations
1608	  and enable enforcement of this for kernel code. When this option
1609	  is enabled and the system supports BTI all kernel code including
1610	  modular code must have BTI enabled.
1611
1612config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1613	# GCC 9 or later, clang 8 or later
1614	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1615
1616config ARM64_E0PD
1617	bool "Enable support for E0PD"
1618	default y
1619	help
1620	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1621	  that EL0 accesses made via TTBR1 always fault in constant time,
1622	  providing similar benefits to KASLR as those provided by KPTI, but
1623	  with lower overhead and without disrupting legitimate access to
1624	  kernel memory such as SPE.
1625
1626	  This option enables E0PD for TTBR1 where available.
1627
1628config ARCH_RANDOM
1629	bool "Enable support for random number generation"
1630	default y
1631	help
1632	  Random number generation (part of the ARMv8.5 Extensions)
1633	  provides a high bandwidth, cryptographically secure
1634	  hardware random number generator.
1635
1636config ARM64_AS_HAS_MTE
1637	# Initial support for MTE went in binutils 2.32.0, checked with
1638	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1639	# as a late addition to the final architecture spec (LDGM/STGM)
1640	# is only supported in the newer 2.32.x and 2.33 binutils
1641	# versions, hence the extra "stgm" instruction check below.
1642	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1643
1644config ARM64_MTE
1645	bool "Memory Tagging Extension support"
1646	default y
1647	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1648	select ARCH_USES_HIGH_VMA_FLAGS
1649	help
1650	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1651	  architectural support for run-time, always-on detection of
1652	  various classes of memory error to aid with software debugging
1653	  to eliminate vulnerabilities arising from memory-unsafe
1654	  languages.
1655
1656	  This option enables the support for the Memory Tagging
1657	  Extension at EL0 (i.e. for userspace).
1658
1659	  Selecting this option allows the feature to be detected at
1660	  runtime. Any secondary CPU not implementing this feature will
1661	  not be allowed a late bring-up.
1662
1663	  Userspace binaries that want to use this feature must
1664	  explicitly opt in. The mechanism for the userspace is
1665	  described in:
1666
1667	  Documentation/arm64/memory-tagging-extension.rst.
1668
1669endmenu
1670
1671config ARM64_SVE
1672	bool "ARM Scalable Vector Extension support"
1673	default y
1674	depends on !KVM || ARM64_VHE
1675	help
1676	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1677	  execution state which complements and extends the SIMD functionality
1678	  of the base architecture to support much larger vectors and to enable
1679	  additional vectorisation opportunities.
1680
1681	  To enable use of this extension on CPUs that implement it, say Y.
1682
1683	  On CPUs that support the SVE2 extensions, this option will enable
1684	  those too.
1685
1686	  Note that for architectural reasons, firmware _must_ implement SVE
1687	  support when running on SVE capable hardware.  The required support
1688	  is present in:
1689
1690	    * version 1.5 and later of the ARM Trusted Firmware
1691	    * the AArch64 boot wrapper since commit 5e1261e08abf
1692	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1693
1694	  For other firmware implementations, consult the firmware documentation
1695	  or vendor.
1696
1697	  If you need the kernel to boot on SVE-capable hardware with broken
1698	  firmware, you may need to say N here until you get your firmware
1699	  fixed.  Otherwise, you may experience firmware panics or lockups when
1700	  booting the kernel.  If unsure and you are not observing these
1701	  symptoms, you should assume that it is safe to say Y.
1702
1703	  CPUs that support SVE are architecturally required to support the
1704	  Virtualization Host Extensions (VHE), so the kernel makes no
1705	  provision for supporting SVE alongside KVM without VHE enabled.
1706	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1707	  KVM in the same kernel image.
1708
1709config ARM64_MODULE_PLTS
1710	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1711	depends on MODULES
1712	select HAVE_MOD_ARCH_SPECIFIC
1713	help
1714	  Allocate PLTs when loading modules so that jumps and calls whose
1715	  targets are too far away for their relative offsets to be encoded
1716	  in the instructions themselves can be bounced via veneers in the
1717	  module's PLT. This allows modules to be allocated in the generic
1718	  vmalloc area after the dedicated module memory area has been
1719	  exhausted.
1720
1721	  When running with address space randomization (KASLR), the module
1722	  region itself may be too far away for ordinary relative jumps and
1723	  calls, and so in that case, module PLTs are required and cannot be
1724	  disabled.
1725
1726	  Specific errata workaround(s) might also force module PLTs to be
1727	  enabled (ARM64_ERRATUM_843419).
1728
1729config ARM64_PSEUDO_NMI
1730	bool "Support for NMI-like interrupts"
1731	select ARM_GIC_V3
1732	help
1733	  Adds support for mimicking Non-Maskable Interrupts through the use of
1734	  GIC interrupt priority. This support requires version 3 or later of
1735	  ARM GIC.
1736
1737	  This high priority configuration for interrupts needs to be
1738	  explicitly enabled by setting the kernel parameter
1739	  "irqchip.gicv3_pseudo_nmi" to 1.
1740
1741	  If unsure, say N
1742
1743if ARM64_PSEUDO_NMI
1744config ARM64_DEBUG_PRIORITY_MASKING
1745	bool "Debug interrupt priority masking"
1746	help
1747	  This adds runtime checks to functions enabling/disabling
1748	  interrupts when using priority masking. The additional checks verify
1749	  the validity of ICC_PMR_EL1 when calling concerned functions.
1750
1751	  If unsure, say N
1752endif
1753
1754config RELOCATABLE
1755	bool "Build a relocatable kernel image" if EXPERT
1756	select ARCH_HAS_RELR
1757	default y
1758	help
1759	  This builds the kernel as a Position Independent Executable (PIE),
1760	  which retains all relocation metadata required to relocate the
1761	  kernel binary at runtime to a different virtual address than the
1762	  address it was linked at.
1763	  Since AArch64 uses the RELA relocation format, this requires a
1764	  relocation pass at runtime even if the kernel is loaded at the
1765	  same address it was linked at.
1766
1767config RANDOMIZE_BASE
1768	bool "Randomize the address of the kernel image"
1769	select ARM64_MODULE_PLTS if MODULES
1770	select RELOCATABLE
1771	help
1772	  Randomizes the virtual address at which the kernel image is
1773	  loaded, as a security feature that deters exploit attempts
1774	  relying on knowledge of the location of kernel internals.
1775
1776	  It is the bootloader's job to provide entropy, by passing a
1777	  random u64 value in /chosen/kaslr-seed at kernel entry.
1778
1779	  When booting via the UEFI stub, it will invoke the firmware's
1780	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1781	  to the kernel proper. In addition, it will randomise the physical
1782	  location of the kernel Image as well.
1783
1784	  If unsure, say N.
1785
1786config RANDOMIZE_MODULE_REGION_FULL
1787	bool "Randomize the module region over a 4 GB range"
1788	depends on RANDOMIZE_BASE
1789	default y
1790	help
1791	  Randomizes the location of the module region inside a 4 GB window
1792	  covering the core kernel. This way, it is less likely for modules
1793	  to leak information about the location of core kernel data structures
1794	  but it does imply that function calls between modules and the core
1795	  kernel will need to be resolved via veneers in the module PLT.
1796
1797	  When this option is not set, the module region will be randomized over
1798	  a limited range that contains the [_stext, _etext] interval of the
1799	  core kernel, so branch relocations are always in range.
1800
1801config CC_HAVE_STACKPROTECTOR_SYSREG
1802	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1803
1804config STACKPROTECTOR_PER_TASK
1805	def_bool y
1806	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1807
1808endmenu
1809
1810menu "Boot options"
1811
1812config ARM64_ACPI_PARKING_PROTOCOL
1813	bool "Enable support for the ARM64 ACPI parking protocol"
1814	depends on ACPI
1815	help
1816	  Enable support for the ARM64 ACPI parking protocol. If disabled
1817	  the kernel will not allow booting through the ARM64 ACPI parking
1818	  protocol even if the corresponding data is present in the ACPI
1819	  MADT table.
1820
1821config CMDLINE
1822	string "Default kernel command string"
1823	default ""
1824	help
1825	  Provide a set of default command-line options at build time by
1826	  entering them here. As a minimum, you should specify the the
1827	  root device (e.g. root=/dev/nfs).
1828
1829choice
1830	prompt "Kernel command line type" if CMDLINE != ""
1831	default CMDLINE_FROM_BOOTLOADER
1832	help
1833	  Choose how the kernel will handle the provided default kernel
1834	  command line string.
1835
1836config CMDLINE_FROM_BOOTLOADER
1837	bool "Use bootloader kernel arguments if available"
1838	help
1839	  Uses the command-line options passed by the boot loader. If
1840	  the boot loader doesn't provide any, the default kernel command
1841	  string provided in CMDLINE will be used.
1842
1843config CMDLINE_EXTEND
1844	bool "Extend bootloader kernel arguments"
1845	help
1846	  The command-line arguments provided by the boot loader will be
1847	  appended to the default kernel command string.
1848
1849config CMDLINE_FORCE
1850	bool "Always use the default kernel command string"
1851	help
1852	  Always use the default kernel command string, even if the boot
1853	  loader passes other arguments to the kernel.
1854	  This is useful if you cannot or don't want to change the
1855	  command-line options your boot loader passes to the kernel.
1856
1857endchoice
1858
1859config EFI_STUB
1860	bool
1861
1862config EFI
1863	bool "UEFI runtime support"
1864	depends on OF && !CPU_BIG_ENDIAN
1865	depends on KERNEL_MODE_NEON
1866	select ARCH_SUPPORTS_ACPI
1867	select LIBFDT
1868	select UCS2_STRING
1869	select EFI_PARAMS_FROM_FDT
1870	select EFI_RUNTIME_WRAPPERS
1871	select EFI_STUB
1872	select EFI_GENERIC_STUB
1873	default y
1874	help
1875	  This option provides support for runtime services provided
1876	  by UEFI firmware (such as non-volatile variables, realtime
1877          clock, and platform reset). A UEFI stub is also provided to
1878	  allow the kernel to be booted as an EFI application. This
1879	  is only useful on systems that have UEFI firmware.
1880
1881config DMI
1882	bool "Enable support for SMBIOS (DMI) tables"
1883	depends on EFI
1884	default y
1885	help
1886	  This enables SMBIOS/DMI feature for systems.
1887
1888	  This option is only useful on systems that have UEFI firmware.
1889	  However, even with this option, the resultant kernel should
1890	  continue to boot on existing non-UEFI platforms.
1891
1892endmenu
1893
1894config SYSVIPC_COMPAT
1895	def_bool y
1896	depends on COMPAT && SYSVIPC
1897
1898config ARCH_ENABLE_HUGEPAGE_MIGRATION
1899	def_bool y
1900	depends on HUGETLB_PAGE && MIGRATION
1901
1902config ARCH_ENABLE_THP_MIGRATION
1903	def_bool y
1904	depends on TRANSPARENT_HUGEPAGE
1905
1906menu "Power management options"
1907
1908source "kernel/power/Kconfig"
1909
1910config ARCH_HIBERNATION_POSSIBLE
1911	def_bool y
1912	depends on CPU_PM
1913
1914config ARCH_HIBERNATION_HEADER
1915	def_bool y
1916	depends on HIBERNATION
1917
1918config ARCH_SUSPEND_POSSIBLE
1919	def_bool y
1920
1921endmenu
1922
1923menu "CPU Power Management"
1924
1925source "drivers/cpuidle/Kconfig"
1926
1927source "drivers/cpufreq/Kconfig"
1928
1929endmenu
1930
1931source "drivers/firmware/Kconfig"
1932
1933source "drivers/acpi/Kconfig"
1934
1935source "arch/arm64/kvm/Kconfig"
1936
1937if CRYPTO
1938source "arch/arm64/crypto/Kconfig"
1939endif
1940